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Abstract. In the hyperbolic plane there are infinite regular lattices. From a fix vertex of a lattice
tree graphs can be constructed recursively to the next layers with edges of the lattice. In this
article we examine the properties of the growing of trees and the probabilities of length of trees
considering the vertices on level i .
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1. INTRODUCTION

In a regular mosaic we can define belts of cells around a fix vertex of the mosaic.
Belt 0 is the fix vertex. The first belt consists of the cells of the mosaic having
common (finite) points with the fix vertex. If belt i is known, let belt .iC1/ consist
of the cells that have a common (finite) point (not necessarily a common vertex)
with the belt i , but have not with the belt .i � 1/. Figure 1 shows the first three
belts in mosaic f4;5g. Earlier studies have dealt with the problem of the growing
of belts. Let vi be the number of the cells in the belt i . The crystal-growing ratio,
limi!1 .viC1=vi /, is known for all 2-dimensional and some 3- and 4-dimensional
regular mosaics in hyperbolic spaces ([4–9]).

In this article we consider a regular planar mosaic with Schläfli’s symbol fp;qg
([2]) as a lattice and construct tree graphs along the edges . The number of the trees
grows from belt to belt and we examine the intensity of this growth. If .p� 2/.q�
2/ D 4, then the lattice is Euclidean, while for .p� 2/.q� 2/ > 4 the lattice is hy-
perbolic. There are only three regular lattices (f3;6g, f4;4g, f6;3g) on the Euclidean
plane but there are infinite ones on the hyperbolic plane. (Some papers have stud-
ied percolation problems on hyperbolic lattices, where mosaics are considered to be
lattices [1, 3].)

2. TREES

Let us fix a B0 vertex of the lattice as a main root (label it layer 0 or level 0). Let
the outer boundary of belt i be layer i or level i . Now we connect the vertices from
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layer 0 to layer 1 along the edges of the lattice. We build the trees from level .i �1/
to level i using the maximum number of edges between level .i �1/ and level i . (All
vertices on level i are connected to only one vertex of the previous level. We do
not let leaves on level .i � 1/.) We never connect edges on the same layer. The rest
vertices on layer i will be also roots of new trees. In this recursive way, we obtain
infinitely long trees. Let B denote the roots and A the other vertices. In Figure 1 and
2 the thick edges show the trees from level 0 to level 4. (The dual problem is the case
when we get trees by connecting the centres of the cells of the mosaic (Figure 3).)

FIGURE 1. Trees of the mosaic fp;qg D f4;5g.

FIGURE 2. Trees of the mosaic fp;qg D f3;7g.

In case of q D 3 there is not any tree with this definition, because only one edge is
not enough to connect the layers. If p D 3 the algorithm does not give roots except
the main one (Figure 2). Let ai and bi be the numbers of the vertices A and B on
level i , respectively.
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FIGURE 3. Trees of the mosaic f5;4g, dual of mosaic f4;5g.

In the following we shall give some properties of the sequences ai and bi for all
hyperbolic planar lattices fp;qg except the case p D 3 or q D 3.

In case of all fp;qg lattices a0 D 0, b0 D 1 and a1 D q, b1 D q.p�3/.

Lemma 1. If p > 3, q > 3 and i � 1, then aiC1 D .q�3/ai C .q�2/bi and
biC1 D ..q�3/.p�3/�1/ai C ..q�2/.p�3/�1/bi .

Proof. The degrees of all vertices are q. On level i a vertex has an edge from level
.i � 1/ and two on level i . So, this vertex is connected to the next level with q� 3
edges to q�3 different A (in Figure 4 we can see a part of level i and .iC1/, where
a circle denotes a vertex A, a square a vertex B and a triangle a vertex whose type is
unknown). Similarly, a root has two edges on level i , so it is connected to q�2 new
vertices A on the next level.

FIGURE 4. Vertices and edges from level i to level .iC1/.

All vertices A are rounded by q pieces of p-gons. Two of them are in the belt i ,
the others are in the belt .iC 1/. Among them there are q� 4 pieces of p-gons that
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have p� 3 vertices which are not connected to the tree of A but they are on level
.iC1/. So they are roots in the next level. Two further p-gons can have vertices as
roots, but they are connected not only to A but also to other vertices on level i (filled
squares in Figure 4). Due to the multiplicity we calculate only half of them to the
vertex A. Then the number of roots on level .i C 1/ calculated from a vertex A is
.q�4/.p�3/C2.p�4/=2D .q�3/.p�3/�1.

We can determine the number of new roots in a similar way in case of a vertex
B . Now there are q� 3 pieces of p-gons and all have p� 3 vertices which are new
roots. Similarly to case A, there are two polygons around B having an other vertex
on level i (filled squares in Figure 4). Due to the multiplicity we have to divide
their number by two to obtain the correct number of new roots. So the new roots are
.q�3/.p�3/C2.p�4/=2D .q�2/.p�3/�1 altogether. �

From Lemma 1 we derive a recursive equation system .p > 3; q > 3; i � 1/

aiC1 D .q�3/ai C .q�2/bi (2.1)
biC1 D

�
.q�3/.p�3/�1

�
ai C

�
.q�2/.p�3/�1

�
bi ; (2.2)

that can also be written in a matrix form

wiC1 DMwi ; (2.3)

where wi D Œai bi �
T , MD

�
q�3 q�2

.q�3/.p�3/�1 .q�2/.p�3/�1

�
.

All frig1iD1 recursive sequences are defined by

ri D ˛T wi ; (2.4)

and can be determined explicitly as ([6, 7])

ri D gr1´
i
1Cgr2´

i
2; (2.5)

where ˛ is a real vector and if c D .p � 2/.q � 2/� 2 > 2 then ´1 D
cC
p

c2�4
2

,

´2 D
c�
p

c2�4
2

. The quantities ´1, ´2 are the eigenvalues of matrix M and ´1 D

j´1j> j´2j ¤ 0 with

gr1 D
r2�´2r1

´1.´1�´2/
¤ 0; gr2 D

´1r1� r2

´2.´1�´2/
:

Theorem 1. The growing ratios of the vertices, of the roots and in addition, of all
the vertices are equal to ´1, lim

i!1

aiC1

ai
D lim

i!1

biC1

bi
D lim

i!1

aiC1CbiC1

aiCbi
D ´1 .i � 1/.

Proof. Let sequences ri be equal to ai , bi or ai C bi . Then ˛T D Œ0 1�T M�1,
˛T D Œ1 0�T M�1 or ˛T D Œ1 1�T M�1, respectively, and from [6] we obtain that the
limits are equal to the largest eigenvalue ´1 of matrix M. �

With the help of equation (2.5), we can write ai D ga1´
i
1Cga2´

i
2, bi D gb1´

i
1C

gb2´
i
2, ai Cbi D gab1´

i
1Cgab2´

i
2. Let LD gb1

ga1
and K D L

1CL
.
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Theorem 2. lim
i!1

biPi
jD0 bj

D
´1�1

´1
.i � 1/. lim

i!1

bi

ai
DL, lim

i!1

bi

aiCbi
DK .i � 1/.

Proof. The first limit for ri D bi comes from [6].

As lim
i!1

�
´2

´1

�i
D 0, then

lim
i!1

bi

ai
D lim

i!1

gb1´
i
1Cgb2´

i
2

ga1´
i
1Cga2´

i
2

D lim
i!1

gb1Cgb2

�
´2

´1

�i

ga1Cga2

�
´2

´1

�i
D
gb1

ga1
D L: (2.6)

lim
i!1

bi

ai Cbi
D lim

i!1

bi

ai

1C bi

ai

DK: (2.7)

�

3. PROBABILITY

In what follows let us suppose that i is large enough. We consider a vertex V from
level i . Let pi;j .0 � j � i/ be the probability that the root of the vertex V on level
i is on level j and let pi;�j be the probability that the root of the vertex V on level i
is on level j or on a level below. Let M D hL

1ChL
, where hD q�2

q�3
and q > 3.

Theorem 3. If 0 < j < i , then pi;�j D .1�K/.1�M/i�j�1 and pi;j D .1�

K/M.1�M/i�j�1. Moreover pi;i DK and pi;0 D pi;�0 D .1�K/.1�M/i�1.

Proof. The ratio of the roots and all vertices on level i is bi

aiCbi
. If i is large

enough, then bi

aiCbi
�K (in case of mosaic f4;5g if i D 7 then the difference between

the two values is less than 10�6). Similarly, bi�1

ai�1Cbi�1
� K. Let V be a vertex on

level i . Thus the probability that the vertex V is a root is K and that V is not a root
is 1�K. So pi;i DK and pi;�.i�1/ D 1�K.

On level .i � 1/ the ratio of the numbers of roots and other vertices is bi�1

ai�1
� L.

Equation (2.1) implies that q�2
q�3

L gives the ratio between the numbers of vertices
with roots on level .i � 1/ and with roots below. If k1 is the number of the vertices
which have roots on level .i �1/, then k1

a1
�M . Thus the probability that the root of

V is neither on level i , nor on level .i �1/ is .1�K/.1�M/, therefore pi;�.i�2/ D

.1�K/.1�M/.
Similarly, if k2 is the number of the vertices on level i whose roots are on level

.i �2/ then k2

a1�k1
�M . Thus pi;�.i�3/ D .1�K/.1�M/2.

Generally, we obtain pi;�j D .1�K/.1�M/i�.jC1/, here 0� j < i . And in case
of 0 < j < i , pi;j D .1�K/.1�M/i�.jC1/� .1�K/.1�M/i�j D .1�K/.1�

M/i�j�1
�
1� .1�M/

�
D .1�K/M.1�M/i�j�1. �
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The probabilities in Theorem 3 are more precise the higher the i is and the closer
the j is to i .

FIGURE 5. Probability of vertices on level i .

Examples for lattice f4;5g.
For lattice f4;5g (Figure 1) we give all the results discussed above. The numbers

of vertices and roots on level i are in Table 1 .0� i � 10/.

TABLE 1. Numbers of vertices and roots on level i

i 0 1 2 3 4 5 6 7 8 9 10
ai 0 5 25 95 335 1325 4945 18455 68875 257045 959305
bi 1 5 15 55 205 765 2855 10655 39765 148405 553855

ai Cbi 1 10 40 150 560 2090 7800 29110 108640 405450 1513160

The recursion matrix of growing is MD
�
2 3

1 2

�
and the crystal-growing ratio is

´1 D 2C
p
3 � 3:732051 (while the other eigenvalue is ´2 D 2�

p
3). In case of

i D 10 the difference between the corresponding ratios and their limits are less then
10�9 (in case of i D 100 the difference is less then 10�113).
The values of gr1 for the recursive sequences ai , bi , aiCbi are ga1 D�

5
2
C

5
2

p
3�

1:830127, gb1 D
5
2
�

5
6

p
3 � 1:056624, gab1 D

5
3

p
3 � 2:886751. Other import-

ant values are LD 1
3

p
3� 0:577350, K D 1

2
.
p
3� 1/� 0:366025 and M D �3C

2
p
3� 0:464102. The difference between the value of K (pi;i � K) and the exact

probability p10;10 D
b10

a10Cb10
is less then 10�10.

For the probabilities from Theorem 3 we obtain the values in Table 2.
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TABLE 2. Probabilities pi;j

j i D 7 i D 10

10 - 0.366025
9 - 0.294228
8 - 0.157677
7 0.366025 0.084499
6 0.294229 0.045283
5 0.157677 0.024267
4 0.084499 0.013005
3 0.045283 0.006969
2 0.024267 0.003735
1 0.013005 0.002001
0 0.015016 0.002311

We can give the number of the vertices on level i which have the common main
root given by the expression si D q.q�3/.i�1/. Then the exact probability is pi;0 D

si

aiCbi
. If i D 7 or i D 10, then p7;0 D

320
29110

� 0:010993 or p10;0 D
2560

1513160
�

0:001692 and we obtain that O.p7;0/ � 10
�3 or O.p10;0/ � 10

�4 (in case of i D
100, O.p100;0/� 10

�28).
We can conclude that the probabilities from Theorem 3 are exact enough even in

case of i D 7. The worst result is in case of j D 0, but as j is getting closer to i the
result is getting more precise.

Remarks
We can join the main trees in their common main root creating an infinite main

tree without root and we can connect the other roots to the main tree by edges, this
way we obtain a spanning tree of the vertices of the lattice. In case of p D 3 the
definition in the introduction always gives a spanning tree and we can go back to the
main root from all vertices on level i .

There is only one regular Euclidean planar lattice when p > 3 and q > 3. Now we
examine that f4;4g lattice (Figure 6). The a0 D 0, b0 D 1, ai D 8i �4 and bi D 4 is
constant. As ´1D ´2D 1, the growing of the vertices from level to level is slow, if i is
large enough, the growth is almost constant. The probability that the root of a vertex

V on level i is on level j .0 < j < i/ is pi;�j D
8jC4

8i
D

jC 1
2

i
and lim

i!1
pi;�j D 0.
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FIGURE 6. Trees of the mosaic fp;qg D f4;4g.
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