

Squares of congruence subgroups of the extended modular group

Recep Sahin and Sebahattin Ikikardes

Miskolc Mathematical Notes Vol. 14 (2013), No. 3, pp. 1031–1035

SQUARES OF CONGRUENCE SUBGROUPS OF THE EXTENDED MODULAR GROUP

RECEP SAHIN AND SEBAHATTIN IKIKARDES

Received 6 June, 2013

Abstract. In this paper, we generalize some results related to the congruence subgroups of modular group Γ , given in [7] and [6] by Kiming, Schütt, and Verrill, to the extended modular group Π .

2010 Mathematics Subject Classification: 11F06

Keywords: modular group, extended modular group, principal congruence subgroup

1. INTRODUCTION

The modular group $\Gamma = PSL(2,\mathbb{Z})$ is the discrete subgroup of $PSL(2,\mathbb{R})$ generated by two linear fractional transformations

$$T(z) = -\frac{1}{z}$$
 and $S(z) = -\frac{1}{z+1}$.

Then modular group Γ has a presentation

$$T = \langle T, S \mid T^2 = S^3 = I \rangle \cong \mathbb{Z}_2 * \mathbb{Z}_3.$$

The extended modular group $\Pi = PGL(2,\mathbb{Z})$ has been defined by adding the reflection $R(z) = 1/\overline{z}$ to the generators of the modular group Γ . The extended modular group Π has a presentation, see [5],

$$\Pi = \langle T, S, R \mid T^2 = S^3 = R^2 = (RT)^2 = (RS)^2 = I > \cong D_2 *_{\mathbb{Z}_2} D_3.$$

Here T, S and R have matrix representations

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

respectively (in this work, we identify each matrix A in $GL(2,\mathbb{Z})$ with -A, so that they represent the same element of $PGL(2,\mathbb{Z})$). Thus the modular group $\Gamma = PSL(2,\mathbb{Z})$ is a subgroup of index 2 in the extended modular group Π .

Let us define Π^m as the subgroup generated by the m^{th} powers of all elements of Π , for some positive integer m. The subgroup Π^m is called the m^{th} power subgroup of Π . As fully invariant subgroups, they are normal in Π .

© 2013 Miskolc University Press

Then, power subgroups of the extended modular group Π were examined by Sahin, Ikikardes and Koruoglu in [10]. The authors showed that

$$|\Pi:\Pi^2| = 4, \ \Pi^2 = \Gamma^2.$$

$$\Pi^2 = \langle S, TST | (S)^3 = (TST)^3 = I \rangle \cong \mathbb{Z}_3 * \mathbb{Z}_3$$

Also, from [5], we have the following. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ represent a general element of Π . For each integer $N \ge 1$, we define

$$\Pi(N) = \{A \in \Pi \mid a \equiv d \equiv \pm 1 \text{ and } b \equiv c \equiv 0 \pmod{N} \}$$
$$\Gamma(N) = \Pi(N) \cap \Gamma.$$

These are normal subgroups of finite index in Π , and they are called as the *principal* congruence subgroups. If N > 2 then $\Pi(N) = \Gamma(N)$ and if N = 2 then $\Pi(2) \ge \Gamma(2) \ge \Pi(4) = \Gamma(4)$. A subgroup K of Π contains some $\Pi(N)$ if and only if it contains some $\Gamma(N)$. Such a subgroup K is called a *congruence subgroup*, and the *level* of K is the least n such that $\Pi(N) \le K$. Any other subgroup of finite index in Π is called a *non-congruence subgroup*.

The most important of the congruence subgroups of Π are

$$\Pi_0(N) = \{A \in \Pi \mid c \equiv 0 \pmod{N}\}$$

and

$$\Pi^{1}(N) = \{ A \in \Pi \mid a \equiv d \equiv \pm 1 \text{ and } c \equiv 0 \pmod{N} \}$$

From [9], it is known that

$$\Pi_0(N) = \Gamma_0(N) \cup TR.\Gamma_0(N)$$
 and $\Pi^1(N) = \Gamma^1(N) \cup TR.\Gamma^1(N)$.

Also, it is clear that $\Pi^1(N) \triangleleft \Pi_0(N)$ and for N > 2, $|\Pi_0(N) : \Pi^1(N)| = \varphi(N)/2$ where φ is the Euler Phi function (for the index $\Gamma^1(N)$ in $\Gamma_0(N)$, see [4]).

On the other hand, in [7] and [6], Kiming Schütt, and Verrill studied lifts of projective congruence subgroups. Now, we recall the following information from [7]. For a subgroup Λ of $SL(2, \mathbb{Z})$ denote by $\overline{\Lambda}$ the image of Λ in $PSL(2, \mathbb{Z})$. A lift of $\overline{\Lambda}$ is a subgroup of $SL(2, \mathbb{Z})$ that projects to $\overline{\Lambda}$ in $PSL(2, \mathbb{Z})$. A lift is called a congruence lift if it is a congruence subgroup.

In [7] and [6], the authors gave some consequences of their main results for the groups generated by squares of elements in congruence subgroups. These results are a) $\Gamma(N)^2$ is a congruence if and only if $N \le 2$.

b) All lifts of $\Gamma_0(N) \leq PSL(2,\mathbb{Z})$ are congruence subgroups of $SL(2,\mathbb{Z})$ if and only if either $N \in \{3,4,8\}$ or if $4 \nmid N$ and all odd prime divisors of N are congruent to 1 modulo 4.

1032

c) All lifts of $\Gamma^1(N) \leq PSL(2,\mathbb{Z})$ are congruence subgroups of $SL(2,\mathbb{Z})$ if and only if $N \leq 4$.

The congruence and principal congruence subgroups (especially, $\Pi(2)$, $\Gamma(2)$, $\Gamma_0(N)$ and $\Gamma^1(N)$) of Γ and Π have been studied from various aspects in the literature, for example, number theory, modular forms, modular curves, Belyi's theory, graph theory, (please see [1], [2], [3] and [8]).

In this paper, we generalize the above results related with congruence subgroups of Γ , given in [7] and [6], to the extended modular group Π .

2. Squares of Congruence Subgroups of Π

From [5], if N > 2 then $\Pi(N) = \Gamma(N)$ and so $\Pi(N)^2 = \Gamma(N)^2$. Thus, if N > 2 then $\Pi^2(N)$ is not a congruence. Also, from [10] and [5], $\Pi^2(1) = \Pi'$ and $\Pi(6) \leq \Pi^2(1)$ and so $\Pi^2(1)$ is a congruence subgroup. Therefore we need the following theorem.

Theorem 1. $\Pi(2)^2 = \Pi(4)$.

Proof. We know that the group structure of $\Pi(2)$ is

$$\Pi(2) = \langle TR, RSTS, RS^2TS^2 | (TR)^2 = (RSTS)^2 = (RS^2TS^2)^2 = I \rangle$$

$$\cong \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2.$$

Let a = TR, b = RSTS, $c = RS^2TS^2$. Then the quotient group $\Pi(2)/\Pi(2)^2$ is the group obtained by adding the relation $X^2 = I$ for all $X \in \Pi(2)$ to the relations of $\Pi(2)$. Thus we have

$$\Pi(2)/\Pi(2)^2 \cong \langle a, b, c | a^2 = b^2 = c^2 = (ab)^2 = (ac)^2 = (bc)^2 = \dots = I > .$$

As $a^2 = b^2 = c^2 = I$, we obtain
 $\Pi(2)/\Pi(2)^2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.$

Therefore, we obtain $|\Pi(2) : \Pi(2)^2| = 8$.

Thus we use the Reidemeister-Schreier process to find the presentation of the subgroup $\Pi(2)^2$. Now we choose $\Sigma = \{I, a, b, c, ab, ac, bc, abc\}$ as a Schreier transversal for $\Pi(2)^2$. According to the Reidemeister-Schreier method, we can form all possible products :

4

$I.a.(a)^{-1} = I,$	$I.b.(b)^{-1} = I,$	$I.c.(c)^{-1} = I,$
$a.a.(I)^{-1} = I,$	$a.b.(ab)^{-1} = I,$	$a.c.(ac)^{-1} = I,$
$b.a.(ab)^{-1} = baba,$	$b.b.(I)^{-1} = I,$	$b.c.(bc)^{-1} = I,$
$c.a.(ac)^{-1} = caca,$	$c.b.(bc)^{-1} = cbcb,$	$c.c.(I)^{-1} = I,$
$ab.a.(b)^{-1} = abab,$	$ab.b.(a)^{-1} = I,$	$ab.c.(abc)^{-1} = I,$
$ac.a.(c)^{-1} = acac,$	$ac.b.(abc)^{-1} = acbcba,$	$ac.c.(a)^{-1} = I,$
$bc.a.(abc)^{-1} = bcacba,$	$bc.b.(c)^{-1} = bcbc,$	$bc.c.(b)^{-1} = I,$
$abc.a.(bc)^{-1} = abcacb,$	$abc.b.(ac)^{-1} = abcbca,$	$abc.c.(ab)^{-1} = I,$

as $a^{-1} = a$, $b^{-1} = b$, and $c^{-1} = c$. Also, since $(baba)^{-1} = abab$, $(caca)^{-1} = acac$, $(cbcb)^{-1} = bcbc$, $(bcacba)^{-1} = abcacb$ and $(acbcba)^{-1} = abcbca$, the generators of $\Pi(2)^2$ are $abab = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$, $acac = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$, $bcbc = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}$, $abcacb = \begin{pmatrix} -7 & -12 \\ -4 & -7 \end{pmatrix}$ and $abcbca = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$. From [7, Lemma 32], $\Pi(2)^2 = \Gamma(4)$. As $\Gamma(4) = \Pi(4)$, we obtain $\Pi(2)^2 = \Pi(4)$.

Using the above results, we have the following.

Proposition 1. $\Pi(N)^2$ is a congruence if and only if $N \leq 2$.

Now we present some results related with the congruence subgroups $\Pi_0(N)$ and $\Pi^1(N)$ of Π . To do this, we suppose that

$$A = \left(\begin{array}{cc} x & * \\ 0 & x^{-1} \end{array}\right) (\mod N)$$

is an element of $\Gamma_0(N)$. Then

$$TR.A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & * \\ 0 & x^{-1} \end{pmatrix} = \begin{pmatrix} -x & * \\ 0 & x^{-1} \end{pmatrix} \pmod{N}$$

is an element of $\Pi_0(N)$. Therefore

$$(TRA)^{2} = \begin{pmatrix} -x & * \\ 0 & x^{-1} \end{pmatrix} \begin{pmatrix} -x & * \\ 0 & x^{-1} \end{pmatrix} = \begin{pmatrix} x^{2} & * \\ 0 & x^{-2} \end{pmatrix} \pmod{N}$$

is an element of $\Gamma_0(N)^2$. Thus, we get $\Pi_0(N)^2 = \Gamma_0(N)^2$.

Similarly to the case $\Pi_0(N)$, if

$$B = \left(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array}\right) (\mod N)$$

is an element of $\Gamma^1(N)$, then

$$TR.B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & * \\ 0 & 1 \end{pmatrix} \pmod{N}$$

is an element of $\Pi^1(N)$. Therefore

$$(TRB)^{2} = \begin{pmatrix} -1 & * \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & * \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N}$$

is an element of $\Gamma^1(N)^2$ and so we obtain $\Pi^1(N)^2 = \Gamma^1(N)^2$.

On the other hand, if $\Pi_0(N)$ and $\Pi^1(N)$ are not congruence, then $\Pi_0(N)^2$ and $\Pi^1(N)^2$ are not congruence, since any lift of $\Pi_0(N)$ (or $\Pi^1(N)$) necessarily contains $\Pi_0(N)^2$ (or $\Pi^1(N)^2$), from [7, Lemma 5]. Consequently, we have the following.

1034

Corollary 1. a) $\Pi_0(N)^2$ is not congruence if and only if either $N \notin \{3,4,8\}$ or if 4 | N and all odd prime divisors of N are congruent to 3 modulo 4. b) $\Pi^1(N)^2$ is not congruence if and only if N > 4.

REFERENCES

- [1] M. C. N. Cheng and A. Dabholkar, "Borcherds-Kac-Moody symmetry of $\mathcal{N} = 4$ dyons," *Commun.* Number Theory Phys., vol. 3, no. 1, pp. 59-110, 2009.
- [2] W. M. Goldman and W. D. Neumann, "Homological action of the modular group on some cubic moduli spaces," Math. Res. Lett., vol. 12, no. 4, pp. 575-591, 2005.
- [3] W. J. Harvey, "Teichmüller spaces, triangle groups and Grothendieck dessins," in Handbook of Teichmüller theory. Volume I, ser. IRMA Lectures in Mathematics and Theoretical Physics, A. Papadopoulos, Ed. Zürich: European Mathematical Society (EMS), 2007, vol. 11, pp. 249-292.
- [4] I. Ivrissimtzis and D. Singerman, "Regular maps and principal congruence subgroups of Hecke groups," Eur. J. Comb., vol. 26, no. 3-4, pp. 437-456, 2005.
- [5] G. A. Jones and J. S. Thornton, "Automorphisms and congruence subgroups of the extended modular group," J. Lond. Math. Soc., II. Ser., vol. 34, pp. 26-40, 1986.
- [6] I. Kiming, "Lifts of projective congruence groups ii," Proc. Amer. Math. Soc., to appear.
- [7] I. Kiming, M. Schütt, and H. A. Verrill, "Lifts of projective congruence groups," J. Lond. Math. Soc., II. Ser., vol. 83, no. 1, pp. 96-120, 2011.
- [8] B. Köck and D. Singerman, "Real Belyi theory," Q. J. Math., vol. 58, no. 4, pp. 463–478, 2007.
- [9] R. S. Kulkarni, "An arithmetic-geometric method in the study of the subgroups of the modular group," Am. J. Math., vol. 113, no. 6, pp. 1053–1133, 1991.
- [10] R. Şahin, S. İkikardeş, and O. Koruoğlu, "On the power subgroups of the extended modular group *Γ*," *Turk. J. Math.*, vol. 28, no. 2, pp. 143–151, 2004.

Authors' addresses

Recep Sahin

Balikesir University, Department of Mathematics, Cagis Kampusu, 10145 Balikesir, Turkey E-mail address: rsahin@balikesir.edu.tr

Sebahattin Ikikardes

Balikesir University, Department of Mathematics, Cagis Kampusu, 10145 Balikesir, Turkey E-mail address: skardes@balikesir.edu.tr