Miskolc Mathematical Notes
Vol. 14 (2013), No 3, pp. 1031-1035

Squares of congruence subgroups of the extended modular group

Recep Sahin and Sebahattin Ikikardes

SQUARES OF CONGRUENCE SUBGROUPS OF THE EXTENDED MODULAR GROUP

RECEP SAHIN AND SEBAHATTIN IKIKARDES

Received 6 June, 2013

Abstract

In this paper, we generalize some results related to the congruence subgroups of modular group Γ, given in [7] and [6] by Kiming, Schütt, and Verrill, to the extended modular group П.

2010 Mathematics Subject Classification: 11F06
Keywords: modular group, extended modular group, principal congruence subgroup

1. Introduction

The modular group $\Gamma=P S L(2, \mathbb{Z})$ is the discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ generated by two linear fractional transformations

$$
T(z)=-\frac{1}{z} \quad \text { and } \quad S(z)=-\frac{1}{z+1}
$$

Then modular group Γ has a presentation

$$
\Gamma=<T, S \mid T^{2}=S^{3}=I>\cong \mathbb{Z}_{2} * \mathbb{Z}_{3}
$$

The extended modular group $\Pi=P G L(2, \mathbb{Z})$ has been defined by adding the reflection $R(z)=1 / \bar{z}$ to the generators of the modular group Γ. The extended modular group Π has a presentation, see [5],

$$
\Pi=<T, S, R \mid T^{2}=S^{3}=R^{2}=(R T)^{2}=(R S)^{2}=I>\cong D_{2} *_{\mathbb{Z}_{2}} D_{3}
$$

Here T, S and R have matrix representations

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

respectively (in this work, we identify each matrix A in $G L(2, \mathbb{Z})$ with $-A$, so that they represent the same element of $\operatorname{PGL}(2, \mathbb{Z})$). Thus the modular group $\Gamma=$ $\operatorname{PSL}(2, \mathbb{Z})$ is a subgroup of index 2 in the extended modular group Π.

Let us define Π^{m} as the subgroup generated by the $m^{\text {th }}$ powers of all elements of Π, for some positive integer m. The subgroup Π^{m} is called the $m^{\text {th }}$ power subgroup of Π. As fully invariant subgroups, they are normal in Π.

Then, power subgroups of the extended modular group Π were examined by Sa hin, Ikikardes and Koruoglu in [10]. The authors showed that

$$
\begin{aligned}
& \left|\Pi: \Pi^{2}\right|=4, \Pi^{2}=\Gamma^{2} \\
& \Pi^{2}=<S, T S T \mid(S)^{3}=(T S T)^{3}=I>\cong \mathbb{Z}_{3} * \mathbb{Z}_{3}
\end{aligned}
$$

Also, from [5], we have the following. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ represent a general element of Π. For each integer $N \geq 1$, we define

$$
\begin{aligned}
\Pi(N) & =\{A \in \Pi \mid a \equiv d \equiv \pm 1 \text { and } b \equiv c \equiv 0(\bmod N)\} \\
\Gamma(N) & =\Pi(N) \cap \Gamma
\end{aligned}
$$

These are normal subgroups of finite index in Π, and they are called as the principal congruence subgroups. If $N>2$ then $\Pi(N)=\Gamma(N)$ and if $N=2$ then $\Pi(2) \geq$ $\Gamma(2) \geq \Pi(4)=\Gamma(4)$. A subgroup K of Π contains some $\Pi(N)$ if and only if it contains some $\Gamma(N)$. Such a subgroup K is called a congruence subgroup, and the level of K is the least n such that $\Pi(N) \leq K$. Any other subgroup of finite index in Π is called a non-congruence subgroup.

The most important of the congruence subgroups of Π are

$$
\Pi_{0}(N)=\{A \in \Pi \mid c \equiv 0(\bmod N)\}
$$

and

$$
\Pi^{1}(N)=\{A \in \Pi \mid a \equiv d \equiv \pm 1 \text { and } c \equiv 0(\bmod N)\}
$$

From [9], it is known that

$$
\Pi_{0}(N)=\Gamma_{0}(N) \cup T R . \Gamma_{0}(N) \text { and } \Pi^{1}(N)=\Gamma^{1}(N) \cup T R . \Gamma^{1}(N)
$$

Also, it is clear that $\Pi^{1}(N) \triangleleft \Pi_{0}(N)$ and for $N>2,\left|\Pi_{0}(N): \Pi^{1}(N)\right|=\varphi(N) / 2$ where φ is the Euler Phi function (for the index $\Gamma^{1}(N)$ in $\Gamma_{0}(N)$, see [4]).

On the other hand, in [7] and [6], Kiming Schütt, and Verrill studied lifts of projective congruence subgroups. Now, we recall the following information from [7]. For a subgroup Λ of $S L(2, \mathbb{Z})$ denote by $\bar{\Lambda}$ the image of Λ in $\operatorname{PSL}(2, \mathbb{Z})$. A lift of $\bar{\Lambda}$ is a subgroup of $S L(2, \mathbb{Z})$ that projects to $\bar{\Lambda}$ in $\operatorname{PSL}(2, \mathbb{Z})$. A lift is called a congruence lift if it is a congruence subgroup.

In [7] and [6], the authors gave some consequences of their main results for the groups generated by squares of elements in congruence subgroups. These results are
a) $\Gamma(N)^{2}$ is a congruence if and only if $N \leq 2$.
b) All lifts of $\Gamma_{0}(N) \leq P S L(2, \mathbb{Z})$ are congruence subgroups of $S L(2, \mathbb{Z})$ if and only if either $N \in\{3,4,8\}$ or if $4 \nmid N$ and all odd prime divisors of N are congruent to 1 modulo 4.
c) All lifts of $\Gamma^{1}(N) \leq P S L(2, \mathbb{Z})$ are congruence subgroups of $S L(2, \mathbb{Z})$ if and only if $N \leq 4$.

The congruence and principal congruence subgroups (especially, $\Pi(2), ~ Г(2)$, $\Gamma_{0}(N)$ and $\left.\Gamma^{1}(N)\right)$ of Γ and Π have been studied from various aspects in the literature, for example, number theory, modular forms, modular curves, Belyi's theory, graph theory, (please see [1], [2], [3] and [8]).

In this paper, we generalize the above results related with congruence subgroups of Γ, given in [7] and [6], to the extended modular group Π.

2. SQuares of Congruence Subgroups of Π

From [5], if $N>2$ then $\Pi(N)=\Gamma(N)$ and so $\Pi(N)^{2}=\Gamma(N)^{2}$. Thus, if $N>2$ then $\Pi^{2}(N)$ is not a congruence. Also, from [10] and [5], $\Pi^{2}(1)=\Pi^{\prime}$ and $\Pi(6) \leq$ $\Pi^{2}(1)$ and so $\Pi^{2}(1)$ is a congruence subgroup. Therefore we need the following theorem.

Theorem 1. $\Pi(2)^{2}=\Pi(4)$.
Proof. We know that the group structure of $\Pi(2)$ is

$$
\begin{aligned}
\Pi(2) & =<T R, R S T S, R S^{2} T S^{2} \mid(T R)^{2}=(R S T S)^{2}=\left(R S^{2} T S^{2}\right)^{2}=I> \\
& \cong \mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}
\end{aligned}
$$

Let $a=T R, b=R S T S, c=R S^{2} T S^{2}$. Then the quotient group $\Pi(2) / \Pi(2)^{2}$ is the group obtained by adding the relation $X^{2}=I$ for all $X \in \Pi$ (2) to the relations of $\Pi(2)$. Thus we have

$$
\Pi(2) / \Pi(2)^{2} \cong<a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(a c)^{2}=(b c)^{2}=\ldots=I>
$$

As $a^{2}=b^{2}=c^{2}=I$, we obtain

$$
\Pi(2) / \Pi(2)^{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Therefore, we obtain $\left|\Pi(2): \Pi(2)^{2}\right|=8$.
Thus we use the Reidemeister-Schreier process to find the presentation of the subgroup $\Pi(2)^{2}$. Now we choose $\Sigma=\{I, a, b, c, a b, a c, b c, a b c\}$ as a Schreier transversal for $\Pi(2)^{2}$. According to the Reidemeister-Schreier method, we can form all possible products :

$I \cdot a \cdot(a)^{-1}=I$,	$I \cdot b \cdot(b)^{-1}=I$,	$I \cdot c \cdot(c)^{-1}=I$,
$a \cdot a \cdot(I)^{-1}=I$,	$a \cdot b \cdot(a b)^{-1}=I$,	$a \cdot c \cdot(a c)^{-1}=I$,
$b \cdot a \cdot(a b)^{-1}=b a b a$,	$b \cdot b \cdot(I)^{-1}=I$,	$b \cdot c \cdot(b c)^{-1}=I$,
$c \cdot a \cdot(a c)^{-1}=c a c a$,	$c \cdot b \cdot(b c)^{-1}=c b c b$,	$c \cdot c \cdot(I)^{-1}=I$,
$a b \cdot a \cdot(b)^{-1}=a b a b$,	$a b \cdot b \cdot(a)^{-1}=I$,	$a b \cdot c \cdot(a b c)^{-1}=I$,
$a c \cdot a \cdot(c)^{-1}=a c a c$,	$a c . b \cdot(a b c)^{-1}=a c b c b a$,	$a c \cdot c \cdot(a)^{-1}=I$,
$b c \cdot a \cdot(a b c)^{-1}=b c a c b a$,	$b c \cdot b \cdot(c)^{-1}=b c b c$,	$b c \cdot c \cdot(b)^{-1}=I$,
$a b c \cdot a \cdot(b c)^{-1}=a b c a c b$,	$a b c \cdot b \cdot(a c)^{-1}=a b c b c a$,	$a b c \cdot c \cdot(a b)^{-1}=I$,

as $a^{-1}=a, b^{-1}=b$, and $c^{-1}=c$. Also, since $(b a b a)^{-1}=a b a b,(c a c a)^{-1}=$ $a c a c,(c b c b)^{-1}=b c b c,(b c a c b a)^{-1}=a b c a c b$ and $(a c b c b a)^{-1}=a b c b c a$, the generators of $\Pi(2)^{2}$ are $a b a b=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$, $a c a c=\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)$, $b c b c=\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right), a b c a c b=\left(\begin{array}{cc}-7 & -12 \\ -4 & -7\end{array}\right)$ and $a b c b c a=\left(\begin{array}{ll}5 & -4 \\ 4 & -3\end{array}\right)$.

From [7, Lemma 32], $\Pi(2)^{2}=\Gamma(4)$. As $\Gamma(4)=\Pi(4)$, we obtain $\Pi(2)^{2}=\Pi(4)$.

Using the above results, we have the following.
Proposition 1. $\Pi(N)^{2}$ is a congruence if and only if $N \leq 2$.

Now we present some results related with the congruence subgroups $\Pi_{0}(N)$ and $\Pi^{1}(N)$ of Π. To do this, we suppose that

$$
A=\left(\begin{array}{cc}
x & * \\
0 & x^{-1}
\end{array}\right)(\bmod N)
$$

is an element of $\Gamma_{0}(N)$. Then

$$
T R . A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & * \\
0 & x^{-1}
\end{array}\right)=\left(\begin{array}{cc}
-x & * \\
0 & x^{-1}
\end{array}\right)(\bmod N)
$$

is an element of $\Pi_{0}(N)$. Therefore

$$
(T R A)^{2}=\left(\begin{array}{cc}
-x & * \\
0 & x^{-1}
\end{array}\right)\left(\begin{array}{cc}
-x & * \\
0 & x^{-1}
\end{array}\right)=\left(\begin{array}{cc}
x^{2} & * \\
0 & x^{-2}
\end{array}\right)\left(\begin{array}{c}
\bmod N)
\end{array}\right.
$$

is an element of $\Gamma_{0}(N)^{2}$. Thus, we get $\Pi_{0}(N)^{2}=\Gamma_{0}(N)^{2}$.
Similarly to the case $\Pi_{0}(N)$, if

$$
B=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)(\bmod N)
$$

is an element of $\Gamma^{1}(N)$, then

$$
T R . B=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & * \\
0 & 1
\end{array}\right)(\bmod N)
$$

is an element of $\Pi^{1}(N)$. Therefore

$$
(T R B)^{2}=\left(\begin{array}{cc}
-1 & * \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & * \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)(\bmod N)
$$

is an element of $\Gamma^{1}(N)^{2}$ and so we obtain $\Pi^{1}(N)^{2}=\Gamma^{1}(N)^{2}$.
On the other hand, if $\Pi_{0}(N)$ and $\Pi^{1}(N)$ are not congruence, then $\Pi_{0}(N)^{2}$ and $\Pi^{1}(N)^{2}$ are not congruence, since any lift of $\Pi_{0}(N)\left(\right.$ or $\left.\Pi^{1}(N)\right)$ necessarily contains $\Pi_{0}(N)^{2}$ (or $\Pi^{1}(N)^{2}$), from [7, Lemma 5]. Consequently, we have the following.

Corollary 1. a) $\Pi_{0}(N)^{2}$ is not congruence if and only if either $N \notin\{3,4,8\}$ or if $4 \mid N$ and all odd prime divisors of N are congruent to 3 modulo 4.
b) $\Pi^{1}(N)^{2}$ is not congruence if and only if $N>4$.

REFERENCES

[1] M. C. N. Cheng and A. Dabholkar, "Borcherds-Kac-Moody symmetry of $\mathcal{N}=4$ dyons," Commun. Number Theory Phys., vol. 3, no. 1, pp. 59-110, 2009.
[2] W. M. Goldman and W. D. Neumann, "Homological action of the modular group on some cubic moduli spaces," Math. Res. Lett., vol. 12, no. 4, pp. 575-591, 2005.
[3] W. J. Harvey, "Teichmüller spaces, triangle groups and Grothendieck dessins," in Handbook of Teichmüller theory. Volume I, ser. IRMA Lectures in Mathematics and Theoretical Physics, A. Papadopoulos, Ed. Zürich: European Mathematical Society (EMS), 2007, vol. 11, pp. 249-292.
[4] I. Ivrissimtzis and D. Singerman, "Regular maps and principal congruence subgroups of Hecke groups," Eur. J. Comb., vol. 26, no. 3-4, pp. 437-456, 2005.
[5] G. A. Jones and J. S. Thornton, "Automorphisms and congruence subgroups of the extended modular group," J. Lond. Math. Soc., II. Ser., vol. 34, pp. 26-40, 1986.
[6] I. Kiming, "Lifts of projective congruence groups ii," Proc. Amer. Math. Soc., to appear.
[7] I. Kiming, M. Schütt, and H. A. Verrill, "Lifts of projective congruence groups," J. Lond. Math. Soc., II. Ser., vol. 83, no. 1, pp. 96-120, 2011.
[8] B. Köck and D. Singerman, "Real Belyi theory," Q. J. Math., vol. 58, no. 4, pp. 463-478, 2007.
[9] R. S. Kulkarni, "An arithmetic-geometric method in the study of the subgroups of the modular group," Am. J. Math., vol. 113, no. 6, pp. 1053-1133, 1991.
[10] R. Şahin, S. İkikardeş, and O. Koruoğlu, "On the power subgroups of the extended modular group $\bar{\Gamma}$, , Turk. J. Math., vol. 28, no. 2, pp. 143-151, 2004.

Authors' addresses

Recep Sahin

Balikesir University, Department of Mathematics, Cagis Kampusu, 10145 Balikesir, Turkey
E-mail address: rsahin@balikesir.edu.tr

Sebahattin Ikikardes

Balikesir University, Department of Mathematics, Cagis Kampusu, 10145 Balikesir, Turkey
E-mail address: skardes@balikesir.edu.tr

