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Abstract. In this paper we provide sharp bounds for the Jensen divergence generated by different
classes of functions including functions of bounded variation, absolutely continuous, Lipschitz
continuous, convex functions and differentiable functions whose derivatives enjoy various prop-
erties as mentioned above. The bounds are expressed in terms of known and simpler diver-
gence measures that are of importance in various applications such as the analysis of diversity as
between and within populations and to cluster analysis.
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1. INTRODUCTION

For a function @ defined on an interval I of the real line R, following Burbea and
Rao [2], we consider the Jensen divergence (or simply -divergence) between x and
y from I" (where n > 1) defined by the quantity

Z (1
Ino(x3) =3 { L () + 0 ()~ (

i=1

Xi +yi

5 )}, (x,y)el"xI".

For a probability distribution py,..., pr > 0 (k > 2) with Z;c:l p;j = 1 the authors
of [2] also considered the generalized mutual information measure defined by

n k k
P (yl,...,yk) =) pj<1>(y,-’)—<1> > pivi
i=1|j=1 ji=1
where (yl,...,yk) el x..xI",

For the convex function @ : [0,00) — R, @ (¢) := t logt with the usual convention
that Olog0 = 0, {,’5@ which is nonnegative, is the same as the mutual information
(trans-information) ¢ defined in information theory as a measure of information on
a k-input channel for input distribution p = (p1,..., pr) -
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For a discussion on the properties of g7 see Gallager [3, p. 16] and Aczél and
Darécezy [1, 196-199].

In biological work, 7 is defined to be the information radius on the probability
distributions associated with y!, ..., yk (see [12]). Applications of this concept to
cluster analysis are discussed in [12] and [5]. For applications of 5(,{) in the analysis
of diversity as between and within populations, see [6] and [10].

Define

n
Sn = {(xl,...,xn) € I(;l?zxi = 1} ’IO = (0?1)
i=1
We denote by

n
S, = {(xl,...,xn) ETS,Z)@ = 1} o= [0,1]

i=1
the closure of Sj,.
Utilizing the family of functions

@=D7' " 1), a#l
Dy (1) :=
tlogt a=1,

by Havrda and Charvét in [4] to introduce their entropies of degree o we mention, as
examples, the following family of Jensen divergences considered in [2]

(a—l)‘IZE(x?‘ﬂf‘)—(x";y") } a1

i=1

nalX,)y) = 1.1
Frac(6:) T, (x5 )2 (1.1)

X;+yi ’

I <Xi+yi) 2
i=1 2

that can be extended on S, x S, with the usual convention that 0log0 = 0.
The divergence 1, written in its equivalent form as

log

n
Fna (x.y) = %Z{xi log x; + y; log yi — (x; + yi)log (xl ery’ )} :
i=1

is also known in the literature as the Jensen-Shannon divergence. Its important ap-
plications in various fields of Mathematics and Statistics can be found, for instance
in [8,9,11,13] and the references therein.

The convexity of divergence measures is an attractive feature. The following result
concerning this property holds:
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Theorem 1 (Burbea-Rao, 1982, [2]). Let @ be a C? function on the interval of
real numbers I. Then $, ¢ is convex (concave) on I"™ x I" if and only if @ is convex
(concave) and % is concave (convex) on 1. Further, in this case gf o s also convex

(concave) on I™* for any given probability distribution p.

In this paper we endeavour to provide sharp upper and lower bounds for the Jensen
divergence for various classes of functions @, including functions of bounded vari-
ation, absolutely continuous functions, Lipschitzian continuous functions, convex
functions and differentiable functions whose derivative belong to the above men-
tioned classes. The bounds will be expressed in terms of known and simpler diver-
gence measures that have been employed in various applications as mentioned above.

2. SOME GENERAL RESULTS

The following result may be stated

Proposition 1. If @ : [a,b] — R is a bounded function with —oo <m < @ (t) <
M < oo foranyt € [a,b], then

|Fn.0 (x. )| <n(M—m). 2.1)

For a fixed n, the multiplicative constant 1 in front of M —m cannot be replaced by
a smaller quantity.

Proof. For the sake of completeness, we present a short proof.
Since @ is bounded, we have m < ®(x) <M, m < ®(y) <M and —M <

— (*32) < —m, which gives, by addition that

—(M—m)f(p(x);q)(y)—di(x;y)fM—m,

for each x,y € [a,b], i.c.,

‘@(X)+¢(y)_q§(X+y)‘<M—m (2.2)
2 2 )1 |

which implies the desired inequality (2.1).
Let us prove the sharpness of the constant for the case n = 1.

If®:[a.b] >R @) = )z—“;b then @ (a) = @ (b) = £52, @ (252 ) =0,

M = b;—a and m = 0 and the inequality (2.2) becomes an equality with both terms

equal to b%“. O

Proposition 2. Let @ : [a,b] — R be a function of bounded variation on the
compact interval [a,b] of real numbers R. Then for any x = (X1,...,Xn), y =
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(V1++.-, yn) € [a,b]" we have the inequality

Yi
\ (@)

Xi

n b
1 1
EXESIEEDY =5n\/ (@) 2.3)

i=1

where \/2 (@) denotes the total variation of ® on [a,b].
The constant % is best possible in both inequalities from (2.3).

Proof. Tt suffices to prove the inequality forn = 1.
Assume that x < y. Then

q§(x)+¢(y)_(p(x+y)
2 2

y
s%[’cb(x“;y)—@(x) +‘q>(y)—q>(x;y)u 5%\!(¢).

By symmetry reasons, we deduce a similar inequality when y < x. Therefore, for any
x,y € I we have

<! (2.4)

@(x)—kq)(y)_(p(x—ky)
2 2

y
\ (@)

which implies the desired inequality (2.3).

The last part of (2.3) is obvious since ‘\/;’i (QD)‘ < \/2 (@) for any selection of
vectors X = (X1,....x5), ¥y = (y1,..., yn) € [a,b]".

Now, if we take the function @ : [0,1] = R, @ (x) = sgn (x — %) , then this func-
tion is of bounded variation on [0, 1] and if we take x = 0 and x = 1 then we have
\/(1) (@) = 2 and we get in both sides of (2.4) the same quantity 1, which proves the
sharpness of the constant % in both inequalities (2.3). O

Corollary 1. Let @ : [a,b] — R be a L-Lipschitzian function on [a,b], i.e. we
recall that @ satisfies the condition

|@(t)—D(s)| < L|t—s| foranyt,s € [a,b]

where L > 0 is given.
Then for any x = (x1,....,Xn), ¥y = (V1,..., ¥n) € [a,b]" we have the inequality

1 n
[Fn0 (x.7)] < EL;m—m = LE(x.y). 2.5)
1=
where 6 (x,y) := %Z:’l:l |x; — yi| is known in the literature as the statistical dis-
tance between x and y.
The constant % is best possible in (2.5).



SHARP BOUNDS FOR THE JENSEN DIVERGENCE 67

Proof. Tt is well known that, any L-Lipschitzian function on [a, b] is of bounded
variation on [a,b] and \/Z (@) < L(b—a). Applying this property to the inequality
(2.3), we deduce the desired result (2.5).

We prove the sharpness esof the constant % for the case n = 1, i.e.,

PW+P0) 4 (m)

1
< _Llx— 2.
7 > =5 [x —y] (2.6)

is a sharp inequality provided @ : [a,b] — R is a L-Lipschitzian function on [a, b].
If we consider the function @ : [a,b] — [0, c0) defined by @ (¢) = )t — “;b , then
@ is Lipschitzian with the constant L = 1 and if we use this function and x =a,y =b

in (2.6) we obtain the same quantity % (b —a) in both sides.
This proves the desired result. g

The following lemma may be stated.

Lemma 1. Letu : [a,b] — Rand y,I" € Rwith I" > y. The following statements
are equivalent:

(1) The function u — # -e,wheree (t)=t,t €la,b],is % (I" — y)-Lipschitzian;

(i) We have the inequality:
) < ut)—u(s)

< Py <I foreach t,s€la,b] witht #s;
(ii1)) We have the inequality:

y(t—s)<u(@)—u(@s)<IL{—s) foreach t,s<la,b] witht>s.
Following [7], we can introduce the concept:

Definition 1. A function u : [a,b] — R which satisfies one of the equivalent con-
ditions (i) — (iii) is said to be (y, I")-Lipschitzian on [a, b].

Notice that in [6], the definition was introduced on utilizing the statement (iii) and
only the equivalence (i) < (iii) was considered.

Utilizing Lagrange’s mean value theorem, we can state the following result that
provides practical examples of (y, I")-Lipschitzian functions.

Proposition 3. Let u : [a,b] — R be continuous on [a,b] and differentiable on
(a,b).If

—oco<y:= inf u'(1), sup u'(t) =:T < o0
€(a,b) te(a,b)

then u is (y, I')-Lipschitzian on [a, b] .

We can improve the inequality (2.6) as follows:
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Corollary 2. Let @ : [a,b] — R be (y, I')-Lipschitzian on [a,b] with y < I'. Then
forany x = (x1,....,Xn), ¥ = (V1+.... yn) € [a,b]" we have the inequality

1 - 1
[Fn0 o = (M=) Y Ixi—yil =S (T =p)8x.y). @7
i=1
The constant % is best possible in (2.7).
In particular, if @ : [a,b] — R is differentiable on (a,b) and the derivative ®’

satisfies the inequality —oo <y < @' (t) < I' < oo for each t € (a,b), then (2.7) is
valid as well.

Proof. Follows by Corollary 1 on taking into account that
Fno—rir . (X)) = Ino (x.7)
and the details are omitted. g

We recall that a function f : [a,b] — R is absolutely continuous on [a, b] if and
only if it is differentiable almost everywhere in [a, b]. The derivative f’ is Lebesgue
integrable on this interval and f (y)— f (x) = f; f'(t)dt forany x,y € [a,b].

We use the following notations for Lebesgue integrable functions:

y 1/p
18l y1.p = ‘/ lg ()| ds if 1 <p<oo, x,y€la,b] and g € Lp[a,b];
X

and for g € Lo [a,b] we denote

€55 SUPycpxp 1€ ()] ifx <y
”g”[x,y],oo = )
esssuPgery 118 (8)| if y <x.

Theorem 2. Assume that @ : [a,b] — R is absolutely continuous on [a,b]. Then
we have the bounds

|Fn.0 (x.)] (2.8)

Z?:l|yi_xi|”(p/”[xl~,y,j],oo if(p/ELOO [a,b]

oy n =1 o

—EX Zi=l|yi_xi| 2 ”¢ ”[xi,yi],p if P ELP[a?b]’p>1
Z?=1 ”¢,”[xi,y,-],1
19" 1 12,5],00 D=1 |¥i = xi if @' € Loo[a.b]

1 p=1

=5XY 19 by p Xi=1 Vi—xil 7 if @' € Lpla.b].p>1

n 12 llfa.p1.1
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forany x = (x1,....%n), ¥y = (V1,.... yn) € [a,b]".
Moreover, if the modulus of the derivative is convex, then we have the inequality

|Fn,0 (x,y)| < %Zl)’i — Xi| H@/(xi ;J’i)‘ + | (xi)|‘;|¢ (J’i)|:| (2.9)

i=1

1 n
< lyi—xil[[@ ()| + |2 ()]

i=1

(=190 08 220)

forany x = (x1,....xn), ¥y = (¥1,.... yn) € [a,b]".
The constant % is best possible in both inequalities.

Proof. Assume that x < y. Then we have
x+ty

) ) 1 L[

('x)+ (J’)_@(X‘i‘J’) — _/ 2 ¢/(S)ds+—/ @l(s)ds
2 2 2 Jx 2 Jxgy
1|5 e

= P (s)d = P’ (s)d

SZ/X (s)s—|—2‘/x;ry (s)ds

x+y

| - L[
55/x \cb/(s){ds+5/xgy @' (s)| ds

1 1Y
= —/ |(D’(s)‘ds.
2 Jx
If y < x, then we also get

¢(x)+¢(y)_q§(x+y)‘ lfy}qy(s)‘ds.

< _
2 2 -2

Therefore, for any x, y € [a,b] we have the inequality

D(x)+D(y) + L rr, .,
al 7 4 —(D(xzy) EE/x }qb (s)‘ds

Further, on making use of Holder’s integral inequality, we also have that

y 1y =X 1Pl 1x,y1,00 if @’ € Loo[a.b]
/ @' (5)|ds
X

< 2.11)
y=x7 @y, it P € Lplab],p>1.

The above two inequalities (2.10) and (2.11) provide the result

D(x)+P(y) ® (x+y)‘

. (2.10)

5 — (2.12)
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1y =X 1Pl (x, 51,00 if @' € Loo[a,b]
1 =1 .
=S5X) =277 19l P E€Lplabl.p>1 (2.13)
”qy”[x,y],p

for any x, y € [a,b], which imply the first inequality in (2.8). The second inequality
is obvious.

In order to prove the inequality (2.9) we use the following refinement of the cel-
ebrated Hermite-Hadamard inequality

1P 1 a+pB\ @+ f(B)
— t)dt < =
g, s (550) TR
_S@+ 1B
- 2
that works for a convex function f : [a,b] — R and any «, 8 € [a,b] with o #£ .
Applying this inequality for the convex function |@’| we have

[M1eolas E%[dy(x+y)‘+|¢%xn+¢¢%ynyy_x|

2 2
<29/ + ]2 0 []1y -

which together with (2.10) produces the required result (2.9).
Let us prove the sharpness of the constant % for n = 1, meaning that we need to
prove that the inequalities

cD(x)—{—(D(y)_q)(x—i—y)'

2 2
S%[¢(;+y)%1¢(mru¢(wqw_x
< (o] + ]2 0 ]ly -

2 2
reduce to equality for some function f and some numbers x, y € [a,b].
2
Consider @ : [a,b] > R, @ (¢) = %(l —#) . Then @' (t) =1t — # and, ob-

viously, |®’| is a convex function.
If we replace this function in (2.14) and choose x = a and y = b, then we get in
all sides the same quantity % (b—a)?. U

(2.14)

3. BOUNDS FOR CONVEX FUNCTIONS

The case of convex functions is as follows:
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Theorem 3. Let @ : I — R be a convex function on the interval I of real numbers
R. Then for any x = (x1,...,Xn), ¥ = (¥1,...., yn) € I", where I denotes the interior

of I, we have the inequalities

i > i=yi) (‘Dﬁr(—) (xi) =P, (y"))

i=1
> gn,dj (x,y)

1< , [ Xi tyi
Zzzm—yil Pi|

i=1

)

—¢L(

2

where @g_ ©) (z) denote the right (left) derivative of @ in z.

The constant % is best possible in both inequalities.

Proof. It suffices to prove the inequality for n = 1.
It is well know that, if @ : I — R is a convex function on the interval /, then for
any x,y € I we have the gradient inequality

M =x)=2P ()= (x) = A(x)(y—x)

where p () € [@L(y). @ (y)] and A (x) € [ (x), P} (x)].

=)

>0

3.1

3.2)

Now, making use of the second inequality in (3.2) and assuming that x > y we can

xX+y
2

[ X+y
@/
_+(2

write that
x+y 1,
Px)—P|—— || ==
(x) ( 2 ) =30+
and
X+y 1,
D(y)— >——0
-0 (52) =52
If we multiply both inequalities with % and add, we obtain
1 xX+y 1
— [P @ -l —)=-(x—
se@+emi-o(2) = 16y
By symmetry reasons, if y > x we also have
1 xX+y 1
— [P 0 -l —)=-(—-
se@+om-o ()= ;o0

Therefore, for any x,y € IO we have

Je@+o0-o(T2) = py-vel (32)

and the second inequality in (3.1)

>0,

is proven.

[ x+y
@4( '

)

(3% )w-»

)u—w.

— @’
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In order to prove the sharpness of the constant % in (3.3), we consider the function

®:la,b] >R, &(x)= ‘x — %| . This function is convex and

b b
o, (“F2) — 1 white o’ (2F2) = 1.
T\ 2 2

If we write the inequality (3.3) for this convex function and x = a, y = b we obtain
in both sides of this inequality the same quantity % (b — a) which proves the desired
result. .

Now, making use of the first inequality in (3.2) and assuming that x,y € I we can
write that

1

F2ho 0=z om-o (1)

and
1 xX+y
5P ME=nz2(y) - (T) :
If we multiply both inequalities with % and add, we obtain

eow-0tow]e-nzslewrem-o(*3) 6

for any x,y € [ and the first inequality in (3.1) is also proven.

If we consider the same function @ : [a,b] — R, @ (x) = )x — a'zH’ ), then we

observe that @ (b) = 1,®/, (a) = —1 and if we write the inequality (3.4) for this
function and for x = b,y = a we obtain in both sides of this inequality the same
quantity % (b—a). O

Corollary 3. Let @ : I — R be a differentiable convex function on the interval |

of real numbers R. Then for any x = (x1,...,xn), ¥y = (V1,..., Vn) € Io” we have the
inequalities

12000 (@ ()~ (1) = e (x.2) 2 0 (3.5)

i=1

Remark 1. We observe that if @’ is r — H-Holder continuous on 7, i.e., there exist
the constants r € (0,1] and H > 0 such that |®' (s) — @’ (¢)| < H |s —¢|" for any
s,t € I, then by (3.5) we have the upper bound

1 n
ZHZ; i —yil " = ne (x.) 20
1=

and, in particular, for r = 1, we have the bound

Hfno(x,y) > no(x,y) >0
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where, by (1.1),

ot =3[ 56200 (U51) | = T

i=1 1—1
For two vectors x = (x1,...,xn), ¥ = (¥1,....,yn) € I" we say that x < y if
for all i € {1,...,n} we have that x; < y;. For x < y, we call the set [x,y] :=
{g =(g1,---8n)| With x; < g; < y; foralli € {1,...,n}} the generalized interval gen-
erated by x and y.

Theorem 4. Let @ : I — R be a convex function on the interval I of real numbers
R.
(1) Ifx,y,ze€I"™aresothat x <y < z, then

Ofgn,é (x,y)'i‘gn,@ (J’»Z) 53",@ (X,Z), (36)
i.e., $n,@ is superadditive as a functional of the generalized interval;
(i) Ifx,y,z,uel™aresothat x <y <z <u, then
OS gﬂ,@ (yaZ) 5 gﬂ,¢ (xvu)’ (37)
i.e., $n,@ is monotonic nondecreasing as a functional of the generalized in-

terval.

Proof. (i) It suffices to prove it forn = 1.
So, assume that x, y, z € I with x <y <z. We claim that, if ® : I - Ris a
convex function on the interval /, then

sewromi-o(3) 1 lemrem-o (57

S%[@(x)—Fq?(z)]—(P(x—i_Z).

2
Observe that, this inequality actually reduces to
d(—o (1) <o (252 o (22 (3.8)
2 2 2

If either x = y or y = z, then (3.8) reduces to an equality, so we can suppose that
x<y<z.

Now, for a convex function ¢ : I C R — R, where [ is an interval, and any real
numbers f1,%,,51 and s, from / and with the properties that #; < s; and t, < s we
have that

p(t)—p2) _ ¢(51)_(P(52).

= (3.9)
1hH—1 §1—952
Indeed, since ¢ is convex on / then for any a € [ the function ¥ : I\ {a} — R
¢ (1) —¢(a)

v (1) =

{—
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is monotonic nondecreasing where it is defined. Utilizing this property repeatedly we
have

¢(t)—p2) _¢b1)—¢2) _ ¢()—¢ (1)

t1—1 a s1—1I I —s51
- @ (s2) =@ (s1) _ @ (s1)— @ (s2)
- 52— 81 S1—52

which proves the inequality (3.9).
Now, if we choose

x+y y+z xX+z
h=yt= 7 S1=" and 5o = >

then we have 71 < s1 and 7, < s, and by (3.9) we can write that

20— () _*(3F)-*(F)
Txty © yFz_xiz
2 2 2

y

which is equivalent to the desired result (3.8).
(i1). We have from (i) that

Ino (xX.Y)+Fn0 (y.2) +In,0 (2, u) < In.o (x,u)
and since ¢,.0 (x,y), In,o (y.2) > 0 we deduce the desired result (3.7). a

Remark 2. With the assumptions of Theorem 4, we have the bound

sup  Fn,0 (¥,2) = In,0 (x,u).

X=<Y=Z=u

For a constant ¢ € R we denote the vector having all components equal to this
constant by ¢, i.e., ¢ = (¢, ...,c) € R". With this notation we have:

Corollary 4. Let @ : I — R be a convex function on the interval I of real numbers
R.

@) Ifm,M €I and x € I" are such thatm < x; <M foralli € {1,...,n}, then

Ofﬂn’qs(m,x)‘an,@(x’mSn[%[gb(m)+¢(M)]_(p(m—;M):|;

) If m,M € I and x,y € I" are such that m < x; < y; <M foradll i €
{1,...,n}, then

OS5‘n,q>(x,y)En[%[¢(m)+¢(M)]_¢(sz)}‘
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4. INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS
The following result holds:

Theorem 5. Let @ : [a,b] — R be a differentiable function on the interval |a,b]
of real numbers R.

(i) If the derivative @' is of bounded variation on [a,b], then

Vi
|5ln,¢(x»y){ ZD’I_XI \/ %\/ Zb’l_xz 4.1)
1—1 Xi i=1
1 b
Ey )8(x.y)

forany x = (x1,....xn), ¥y = (V1,.... yn) € [a,b]".
The constant % is best possible in both inequalities (4.1).
(i) If the derivative ®' is K-Lipschitzian on [a,b] with the constant K > 0, then

1 < 1
|Jn,0 (x,7)] < gK;(yi —x1)* = S Kfn 2 (x.y) 4.2)
forany x = (x1,....xn), ¥y = (V1,.... yn) € [a,b]".
The constant % is best possible in (4.2).
Proof. For x,y € [a,b] with x < y we consider the kernel K : [x, y] — R defined
by
s—x ifx<s< #
Kx’y (S) =
y—s if % <s<y.
Integrating by parts in the Riemann-Stieltjes integral we have that

y 3y y
[ Ky,y ()d [D'(s)] = / (s—x)d D' (s)] + /xﬂ (y—9)d D' (s)]

x+y

=(s—x)<1§/(s)|));2ry—[ * o (s)dt

X

y
+w—n¢muﬂ+/ &' (5) di

x+y
e (5) e (5) e
2 2 2
y—x ,(X+Yy x+y
() oo (5]
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:2|:<D(x)+<1§(y)_¢(x+y):|

2 2
i.e., we have the following representation of interest
D(x)+D(y) X +
fy—cp 4 / Koy (5)d [0/ (5)].
If y < x, then we also get

P (x)+ P () + e ,
—xz Y <p(x2y)_§fy Kyx(s)d [ (5)].

(i) Tt is well known that, if p : [o, 8] — R is continuous and v : [«, ] — R is of
bounded variation, then the Riemann-Stieltjes integral f h p (s)dv (s) exists and

B
/ p(s)dv(s)| <

If x < y, then on utilizing this property of the Riemann-Stieltjes integral we have
successively

sup |p(s)|\/(v)

s€[a,B

‘CD(X)Jr@(y)_q)(m)‘

2 2
y
:% [ Ky (5)d[®' (5)]
ty y
= % /x (s—x)d [Q§/(S)] +/x;y (y—s)d [@’(s)]
1] , 1
= /x (s=x)d [ (9)]|+3 [CH (y—s)d[@' (S)]‘
xpy y
YZX \/ (¢/ _X)V(¢/)

and, similarly, if y < x, then

‘Qﬁ(x)—i-q)(y)_(p(x-i-y)
2

<—(x—y) \/
Therefore, for any x, y € [a,b] we have the following inequality

‘cb(x)—i—fp(y)_(p(x—i—y)
2 2

y

V(@)

X

y —X
4

’
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which written for x;,y; € [a,b], i € {l,...,n} produces by summation the desired
result (4.1).

In order to prove the sharpness of the constant % in both inequalities from (4.1),
assume that there exists a constant G > 0 such that

D)+ Db +b b ’
‘ (a)2 ()_qﬁ(a2 )'SG(b_a)\./(gb)' (4.3)

Consider the function @ : [a,b] > R, @ (t) = ’t - #‘ . This function is absolutely

continuous, @’ (t) = sgn (t - ”'H’) ,t €la,b]\ {#} and \/2 (@) =2. Thus, (4.3)

2

becomes
b—a

2

<2G(b—a),

which implies that G > %.

(i1) We utilize the fact that for an L—Lipschitzian function, p : [¢, 8] — R and a
Riemann integrable function v : [, ] — R, the Riemann-Stieltjes integral [, f p(s)dv(s)
exists and

f p
/p(s)dv(s) sL/ 0 ()] ds.

If x < y, then on utilizing this property of the Riemann-Stieltjes integral we have
successively

'@(x)—l—@(y)_@(x—l—y)‘

2 2
y
=3[ Ko el
:% /x (S—X)d[é/(s)]+/x+2y (y—S)d[¢/(s)]
f% /x (S—X)d[gb/(s)] +% /‘X;y(y_s)d[@/(s)]‘

1 2ty
<-K
< /

The same inequality holds if y < x, and the desired inequality (4.2) is thus obtained.
To prove the sharpness of the constant % in (4.2), let us assume that there exist

U > 0 so that
‘cb(a)%—q)(b)_(p(a—l—b)

(s—x)ds+[:ry (y—s)dsj| = %K(y_x)2.

> — )| <UK@®b-a)?. (4.4)
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2
Consider @ : [a,b] > R, @ (1) = % ”'ZH’) . Then &' (t) =t — “+b is Lipschit-

zian with the constant K = 1 and (4.4) becomes
1 2 2
g(b—a) <U(b-a),

which implies that U > £. O

Corollary 5. Let @ : [a,b] — R be a differentiable function on the interval [a, b] of
real numbers R. If the derivative @' is (A, §)-Lipschitzian on |a,b] with the constant
A > §, then

A+
Fn.0 (X, y)——gznz(x ») SE(“ 8>Z(y,—x, )2 (4.5)
i=1

1
= (A= dn2(x.),

forany x = (x1,....xn), ¥y = (V1,.... yn) € [a,b]" . The constant % is best possible
in(4.5).

In particular; if @ is twice differentiable and the second derivative ®" satisfies the
inequality —00 < § < ®" (t) < A < oo foreacht € (a,b), then (4.5) is valid as well.

Proof. Follows by the statement (ii) from Theorem 5 on noticing that the func-

tion @ — A+8 e? has the property that @' — A;r 8eis 4 —L1psch1tz1an on [a,b]. The

details are omltted. O

Theorem 6. Let @ : [a,b] — R be a differentiable function on the interval [a,b]
of real numbers R.

(i) If the derivative @' is absolutely continuous on [a,b], then

|Fn.0 (x,)] (4.6)

L (i —xi)?

if®" € Loo|a,b]
ol xitvi] NP N xi+;s '
[ II[xi, 421 00 | II[Z;yl,yi}m}

IA

I _ +
(«1+1)‘/"22Jrl i i =il if @” €L [?,b],
1,-+-=1
d" . XA T p>1, ,
191, s 19" g, ] 7t
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12" fa.bl.00 Xim1 (i —xi)? if ®" € Loola,b]

A

if®" € Lyla.b],

1 " n 14+
—— T ® =1 1Yi —Xi| 4 1,1
PRRNIZITS) 19" g b1, p 2oi=1 yi = il p>144+1=1,

forany x = (x1,....xn), ¥y = (V1,.... yn) € [a,b]".
(ii) If the absolute value of the second derivative |®" | is convex on [a,b], then

\zn o (x.)] 4.7

¢”(yz)|+|¢“(xz)| w((XitYi
s o[ (50

< 1o 2 0r = [ 0+ [0

i=1

1
= 5 H(D” H [a,b],00 gn,Z (x’ y)a

forany x = (x1,....xn), ¥y = (¥1,.... yn) € [a,b]".

Proof. (i) Since @’ is absolutely continuous on [a, b], then the Riemann-Stieltjes
integral in the proof of Theorem 5 can be replaced with the Lebesgue integral and
therefore we have

‘¢(X)42r@(y)_q)(x42ry)‘ 4.8)
5|/ " Ky ()9 () ds

:% /XX;( x)cD”(s)ds-i-/z (y—95)@" (s)ds

5% /xx;y (s—x) D" (s)ds +% [(ﬂ (y—5)@" (s)ds
5%/+ x>\<b”<s>|ds+/ (y—sﬂ@”(s)!ds}

for any x,y € [a,b] with x < y.
Utilizing Holder’s integral inequality, we can state that

x+y

/ - (s—x)|®" (s)|ds (4.9)
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M " . "
s | ||[x’%],oo if @” € Loola,b]

IA

T@IP, 50y, @€ Lplablp>1

2

where

x;y 1/q
1(g)= U (s—x)qu}

andé+%=1,p>1.

Observe that
a7
—x)? 1 —x\1+3
1 =| S0 = (y x) T (4.10)
q+1 (@+DYeN 2
1 1+1
= (y—=x) 7.
(q_i_l)l/qzl"r%
In a similar manner we also have the inequality
Y "
[Cﬂ (y—s)‘@ (s)}ds 4.11)
=

— 2 .
CFEN® g ] 00 9" € Loola )
<

/A . "
1(q)]||® ||[%’y],p if®" eLya,b]l,p>1
where I (g) is given in (4.10).
Utilizing (4.8), (4.9) and (4.11) we can state that

‘@(x)+¢(y)_¢(x+y)‘
2 2

4.12)

2

(y—x)? " " . Vi
6 |:||§D |||:x’%],oo+||¢ ||[X+y,y],oo:| if @ eLoo [a,b]

IA

+|y—x|l+é
(q+1)1/6122+% if @NELP [Cl,b],

1,1 _
x ||<p”||[x,x§y],p+||¢"||W,y}p] p>lgtg=1

for any x,y € [a,b].
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@ii). It is well know that, if ¢ : [a, B] = R is a convex function, then for each
s € [a, B] we have the inequality

(s 06)90(/3)+(ﬂ—S)<P(01)
B—a

Utilizing this property and the fact that |@”| is convex, we have for x < y that

(s—x) ‘cp“(%)( + (252 =) 10" (0)

y—x

2

p(s) <

@7 (s)] =

for any s € [x, #] and

(S_$) 1" ()| + (v —5) )@P” (¥)‘

y—Xx
2

2" (s)| <

x+y

foranyse[ ,y]

These imply the inequalities

(=02 [0 (32) |+ (52 =s) (s =) [0 (x)|

(s—x)|@"(s)| < e (4.13)
2
for any s € [ +y] and
(s= =) 0 =9)10" M)+ (=97 |o" (352)|
(y—s)|@"(s)| < =% (4.14)
2
for any s € [x+y,y]
Integrating (4.13) on [ x+y] +y ] we get
x+y (D” x+y
(s—x)|®" (5)|ds < ———% / s—x)2ds (4.15)
X X
2 @// +v
+ | (X)|/ ’ (—x+y )(S—X)ds
y—x Jx 2

and

y 21" y
/x?(y—s)\cb”(s)ldsswﬂﬂ (s—x;y)(y—s)ds 4.16)

45” x+y ‘/ (y—s)2ds.
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Since simple calculations reveal that:

Xty
(s—x)%ds = M,
X 24

= -x)3
. 2 48

y x+y (y—x)°
[ (=55 ) omsas = 02

y
and / (y—s)*ds
xty

2

then (4.15) and (4.16) become
xty

> _ 2
/ (s—x)|@" (s)| ds < v =x)

12

" + —x)? "
o (57| 5 el

and

y 2 Y
ool <2 ol O o (412)]

Further on, by making use of the inequality (4.8) we deduce

‘cb(x)—l—@(y)_@(x—l—y)‘

5 4.17)

y
(s —x) ‘@”(s)|ds+/x+y (y—s) }¢//(s)|ds:|
D" ()| + 2" ()] n ‘(p// (X‘H’)H

1 2[ |
< — —
12 ¥ =x) [ 4 2
for any x,y € [a,b].

The first inequality in (4.7) follows then easily from (4.17). The other two inequal-
ities are obvious. g

5. APPLICATIONS

For the convex function @ : I C (0,00) — R with @ (¢) = —Int we define the
Jensen divergence

Fon0 (x,7) 1= Z{ln(x" ;y") G IOl ey € 7T
i=1
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which can be written as

n Xi+yi
Fno(x,y) =ln|:l_[( x2 .)i|,(x,y) el"xI".

i=1 Yi

If one wants to compare the Jensen divergence for a convex function @ : [m, M| —
Rwithd (x,y):=5 Z —1 |xi — yil, the statistical distance between x and y, then one
has from (2.7) the following inequality

0= o (7)< 5 (®L.(M) @}, ()5 (x.) 6.0

for any x,y € [m,M]", provided the lateral derivatives &’ (M) and @ (m) are
finite.

For instance, if we apply the inequality (5.1) to the function @ (¢) = —Int defined
on the interval [m, M] C (0,00), then we get

0<nox,y)= 780y (5.2)

- 2mM
for any x,y € [m, M]".

The same inequality (5.1) applied for the convex function @ (¢) =t Int defined on
the interval [m, M| C (0,00) produces the result

055’n,1(x,J’)§1n\/g-5(x,Y) (5.3)

for any x,y € [m, M]".
As another example, we can consider the convex function @ (¢) = expt,t € R. If
we apply the inequality (5.1) to this function, we get

0% o exp (¥.) = 5 (exp (M) —exp(m)) (x.) (5.4)

for any x,y € [m,M]".

Now, if one wants to compare the Jensen divergence for a twice differentiable
convex function @ : [m, M| — R satisfying the condition 0 <§ < @"(t) < A < o0
for any t € (m, M), with

gn,z(x’y)=2|:% (xi2+yi2)_(XZ +yl) :| Z(xt yl)2

i=1 z—l

that one has from (4.5) the following double inequality

1 1
Eggn,Z (x,y) = gn,¢ (x’y) = EAgn,Z (x’y)’ (55)

forany x,y € [m, M]".
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If we apply the inequality (5.5) to the function @ (¢) = —Int defined on the interval
[m, M] C (0,00), then we get
1
2M?2
forany x,y € [m, M]".
The same inequality (5.5) applied to the convex function @ (¢) = ¢ Int defined on
the interval [m, M| C (0,00) produces the result

1 1
2M5ln,2(X,y)§3n,1(X,y)S%5%,2(36,)7), (57)

for any x,y € [m,M]".
Finally, if we apply the inequality (5.5) to the convex function @ (¢) = exp? on the
interval [m, M] C R, then we get the bounds

1
gn,Z(xay)fgn,O(xvy)fWﬂn,z(x»y) (5.6)

1 1
SIn2 (5 )XDM = Foop (X.9) = S 2 (X V)exp M, (5.8)

for any x,y € [m,M]".
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