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A. A transitive relational system means a pair (A,R) whereA , ∅ and
R is a transitive binary relation onA. We define a congruenceθ on (A,R) and a
factor relationR/θ on the factor setA/θ such that the factor system (A/θ,R/θ) is
also a transitive relational system. We show that these congruences are in a one-to-
one correspondence with the so-called LU-morphisms whenever the relationR is a
quasiorder onA.
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T      was introduced by A. I. Maltsev [5, 6]. We
will restrict our consideration to relational systems with only one binary relation.

Hence, by arelational systemwe will mean a pairA = (A,R), whereA , ∅ and
R ⊆ A × A, i. e., R is a binary relation onA. Relational systems play an important
role both in mathematics and in applications since every formal description of a real
system can be done by means of relations. For these considerations we often ask
about a certain factorisation of a relational systemA = (A,R) because it enables us
to introduce the method of abstraction onA. Hence, ifθ is an equivalence relation
on A, we ask about a ’factor relation’R/θ on the factor setA/θ such that the factor
system (A/θ,R/θ) shares some of ’good’ properties ofA.

In this paper, we are mostly interested in relational systemsA = (A,R) whereR is
transitive, i.e. 〈a, b〉 ∈ Rand〈b, c〉 ∈ R imply 〈a, c〉 ∈ R. ThenA is called atransitive
system. A transitive relation formalises the concept of an “ordering” so that, in a set
A, one can thus ask what elements ofA go “before” or “after” a given element ofA.
Our topic is to define a congruenceθ onA and a factor relationR/θ such that

(i) the system (A/θ,R/θ) is also transitive, and ifR is reflexive or symmetrical,
thenR/θ shares the same properties;

(ii) a possible common bound is preserved by our construction.

Let us note that a similar task for ordered sets was already solved in [4], and we will
try to modify that construction for transitive relational systems.
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A quasiordered systemwill mean a relational systemA = (A,R) whereR is aqua-
siorderon A, i. e.,R is a reflexive and transitive relation. Quasiorders on a given set
A form an algebraic lattice, which was studied, e. g., in [3]. Here, we are interested
in quasiordered systems where elements may have common “lower” and/or “upper”
bounds. The systems where every two elements ofA have also suprema and infima
with respect to the quasiorderR are very important in applications; they were inves-
tigated by the author in [1, 2]. However, the lower and upper bounds can be defined
also for general relational systems as follows.

Notation 1. Let A = (A,R) be a relational system anda, b ∈ A. Introduce the
following notation:

LA(a,b) = {x ∈ A; 〈x,a〉 ∈ Rand〈x, b〉 ∈ R},
UA(a, b) = {x ∈ A; 〈a, x〉 ∈ Rand〈b, x〉 ∈ R}.

If a = b, we will write LA(a) or UA(a) instead ofLA(a,a) or UA(a,a), respectively.
Clearly, if R is reflexive, thena ∈ LA(a) anda ∈ UA(a) for eacha ∈ A. It is easy to
prove that ifR is transitive, then〈a, b〉 ∈ R iff LA(a, b) = LA(a) iff UA(a,b) = UA(a).

Naturally, if R is transitive anda, b ∈ R, thenLA(a, b) is the set of all lower bounds
of a,b andUA(a,b) is the set of all upper bounds ofa,b with respect toR.

If f : A→ B is a mapping andP ⊆ A, we put f (P) = { f (z) : z ∈ P}.
Definition. Let A = (A,R),B = (B,Q) be two relational systems. A surjective
mappingf : A→ B is called anLU-morphismif

f (LA(x, y)) = LB( f (x), f (y))

and
f (UA(x, y)) = UB( f (x), f (y)) for all x, y ∈ A.

A mapping f is called ahomomorphismofA intoB if

〈a, b〉 ∈ R⇒ 〈 f (a), f (b)〉 ∈ Q.

A homomorphismf is calledstrongif, for arbitrarya,b ∈ A, there existc, d ∈ A such
that f (c) = f (a), f (d) = f (b) and〈 f (a), f (b)〉 ∈ Q⇒ 〈c,d〉 ∈ R.

Lemma 1. LetA = (A,R), B = (B,Q) be transitive relational systems andf be
an LU-morphism ofA ontoB. Then f is a homomorphism ofA ontoB. If R is,
moreover, reflexive, thenf is a strong homomorphism.

Proof. Suppose〈a,b〉 ∈ R. SinceR is transitive, it impliesLA(a, b) = LA(a) and,
therefore,

LB( f (a), f (b)) = f (LA(a, b)) = f (LA(a)) = LB( f (a)),

whence〈 f (a), f (b)〉 ∈ Q; thus, f is a homomorphism. Suppose now thatR is also
reflexive. If〈 f (a), f (b)〉 ∈ Q, then

f (LA(a,b)) = LB( f (a), f (b)) = LB( f (a)) = f (LA(a))
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and, on account of reflexivity, we havea ∈ LA(a); thus, f (a) ∈ f (LA(a)) = f (LA(a,b)).
Analogously, one can show thatf (b) ∈ f (UA(a, b)). Hence, there existc ∈ LA(a,b)
andd ∈ UA(a, b) such thatf (c) = f (a), f (d) = f (b). The conditionc ∈ LA(a,b)
yields〈c, a〉 ∈ Rand〈c, b〉 ∈ R, and the conditiond ∈ UA(a,b) implies that〈a,d〉 ∈ R
and〈b, d〉 ∈ R. Using the transitivity ofR, we conclude that〈c, d〉 ∈ R. Hence,f is a
strong homomorphism. �

If f : A→ B is a mapping, we denote byθ f the so-calledinduced equivalenceon
A, i. e.,〈x, y〉 ∈ θ f iff f (x) = f (y).

We say that relational systemsA, B are isomorphic, in symbolsA � B, if there
exists a bijectionf : A→ B such that bothf and f −1 are homomorphisms.

Theorem 1. LetA = (A,R), B = (B,Q) be quasiordered relational systems and
f : A→ B a surjective mapping. The following statements are equivalent:

(1) f is an LU-morphism;
(2) f is a homomorphism and, for arbitraryx, y ∈ A with 〈 f (x), f (y)〉 ∈ Q, there

existu, v ∈ A such that〈v, x〉 ∈ R, 〈x,u〉 ∈ R and 〈v, y〉 ∈ R, 〈y,u〉 ∈ R and
f (u) = f (y), f (v) = f (x).

Proof. The implication (1)⇒ (2) follows directly by the same argument as in the
proof of Lemma 1.

Let us prove the implication (2)⇒ (1). Let f be a homomorphism ofA ontoB.
Then f (UA(x, y)) ⊆ UB( f (x), f (y)) and f (LA(x, y)) ⊆ LB( f (x), f (y)). Let us prove
the converse inclusions. Suppose thatz ∈ UB( f (x), f (y)). Thenz = f (w) for some
w ∈ A with 〈 f (x), f (w)〉 ∈ Q, 〈 f (y), f (w)〉 ∈ Q. By (2), there existc,d ∈ A such that
〈x, c〉 ∈ R, 〈w, c〉 ∈ Rand〈y,d〉 ∈ R, 〈w,d〉 ∈ Rand f (c) = f (w) = f (d). Applying the
reflexivity of Q, we obtain〈 f (c), f (d)〉 ∈ Q and, by (2), there existsu ∈ A such that
〈c, u〉 ∈ R, 〈d,u〉 ∈ Rand f (u) = f (c) = f (w) = z. SinceR is transitive, it follows that
〈x, u〉 ∈ R, 〈y,u〉 ∈ R, thusu ∈ UA(x, y), i. e.,z = f (u) ∈ f (UA(x, y)). Analogously, it
can be shown that the inclusionf (LA(x, y)) ⊇ LB( f (x), f (y)) is true. �

Definition. Let A = (A,R) be a relational system andθ be an equivalence onA.
Define a binary relationR/θ on the setA/θ as follows:

〈[a]θ, [b]θ〉 ∈ R/θ iff there existx ∈ [a]θ andy ∈ [b]θ with 〈x, y〉 ∈ R.

The systemA/θ = (A/θ,R/θ) will be called afactor systemofA by θ.

The following statement is obvious.

Lemma 2. LetA = (A,R) andθ be an equivalence onA. If R is reflexive or symmet-
rical, thenR/θ also has this property.

Definition. LetA = (A,R) be a relational system andθ be an equivalence onA. We
say thatθ is acongruence onA if θ = R× Ror
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(a) for arbitraryx, y ∈ [a]θ, there exists ac ∈ [a]θ such that〈x, c〉 ∈ R and
〈y, c〉 ∈ R;

(b) if 〈v,a〉 ∈ R, 〈v,b〉 ∈ R, and〈v,a〉 ∈ θ, then there exists at ∈ A such that
〈a, t〉 ∈ R, 〈b, t〉 ∈ R, and〈b, t〉 ∈ θ

and the conditions (a) and (b) hold forR−1.

Theorem 2. LetA = (A,R) be a transitive relational system andθ be a congruence
onA. ThenA/θ = (A/θ,R/θ) is also a transitive relational system.

Proof. Suppose〈[a]θ, [b]θ〉 ∈ R/θ and〈[b]θ, [c]θ〉 ∈ R/θ. Then there existx ∈ [a]θ,
y, y′ ∈ [b]θ, andz ∈ [c]θ such that〈x, y〉 ∈ R and〈y′, z〉 ∈ R. By (a), there exists an
u ∈ [b]θ such that〈y,u〉 ∈ R and〈y′, u〉 ∈ R. SinceR is transitive and〈x, y〉 ∈ R, we
also have〈x,u〉 ∈ R. By (b), there exists av ∈ A such that〈u, v〉 ∈ R, 〈z, v〉 ∈ R and
〈z, v〉 ∈ θ, i. e., v ∈ [c]θ. However,〈x,u〉 ∈ R and〈u, v〉 ∈ R yield 〈x, v〉 ∈ R; thus,
〈[a]θ, [c]θ〉 ∈ R/θ. �

Theorem 3. LetA = (A,R), B = (B,Q) be quasiordered relational systems. Then:

(1) if f : A → B is an LU-morphism, thenθ f is a congruence onA andA/θ f �
B;

(2) if θ is a congruence onA, then the canonical mappingh : A → A/θ (given
by the relationh(a) = [a]θ) is an LU-morphism.

Proof. (1) Suppose thatx, y ∈ [a]θ f . Then f (x) = f (y) and, in view of the reflexivity
of Q, we have〈 f (x), f (y)〉 ∈ Q. By Theorem 1, there exists anu ∈ A with 〈x, u〉 ∈ R,
〈y,u〉 ∈ R and f (x) = f (u) = f (y). Hence,u ∈ [a]θ f . Analogously, one can show the
existence ofv ∈ [a]θ f with 〈v, x〉 ∈ R, 〈v, y〉 ∈ R, i. e., [a]θ f satisfies (a) and its dual
(i. e., it is “directed”).

Let us prove (b). Let〈v,a〉 ∈ R, 〈v,b〉 ∈ R and〈v,a〉 ∈ θ f . Then f (v) = f (a) and,
therefore,f (UA(a,b)) = UB( f (a), f (b)) = UB( f (v), f (b)) = UB( f (b)) = f (UA(b)).
Hence, there exists at ∈ A such thatt ∈ UA(a,b) and f (t) = f (b), whence〈b, t〉 ∈ θ f

and〈a, t〉 ∈ R, 〈b, t〉 ∈ R. We have thus shown that (b) holds. Analogously, the dual
of (b) can be obtained.

(2) Suppose thata,b ∈ A and 〈a,b〉 ∈ R. Sincea ∈ [a]θ, b ∈ [b]θ, we have
〈h(a), h(b)〉 = 〈[a]θ, [b]θ〉 ∈ R/θ, i. e., h (the canonical mapping) is a surjective ho-
momorphism. Letx, y ∈ A and〈h(x),h(y)〉 ∈ Q. Then〈[x]θ, [y]θ〉 ∈ R/θ; thus, there
existc ∈ [x]θ, d ∈ [y]θ with 〈c,d〉 ∈ R. By (a), there exists av ∈ A with 〈v, x〉 ∈ R,
〈v, c〉 ∈ R andv ∈ [x]θ, and there existst ∈ A with 〈d, t〉 ∈ R, 〈y, t〉 ∈ R andt ∈ [y]θ.
By (b), there is anu ∈ A such that〈t, u〉 ∈ R, 〈x, u〉 ∈ R and〈u, t〉 ∈ θ. On account of
the transitivity ofR, we also have〈x, u〉 ∈ R, 〈y,u〉 ∈ R, andu ∈ [y]θ, i. e.,h(u) = h(y).
Analogously, there is ans ∈ A such that〈s, x〉 ∈ R, 〈s, y〉 ∈ R, andh(s) = h(x). By
Theorem 1,h is an LU-morphism. �
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Theorem 4. LetA = (A,R) be a quasiordered system andθ be an equivalence onA.
Thenθ is a congruence onA if and only if the following assertion is true: for every
a ∈ A, [a]θ is directed and

(i) 〈a,b〉 ∈ R, 〈a,a1〉 ∈ θ ⇒ ∃b1 ∈ A with 〈a1,b1〉 ∈ Rand〈b1,b〉 ∈ θ;
(ii) 〈a,b〉 ∈ R, 〈b,b1〉 ∈ θ ⇒ ∃a1 ∈ A with 〈a1,b1〉 ∈ Rand〈a1,a〉 ∈ θ.

Proof. (1) Suppose that〈a, b〉 ∈ R and〈a,a1〉 ∈ θ for somea,a1, b ∈ A. By (a), there
existsd ∈ [a]θ with 〈d,a1〉 ∈ R, 〈d, a〉 ∈ R and, due to the transitivity,〈d,b〉 ∈ R. By
(b), there existsb1 ∈ [b]θ such that〈a1,b1〉 ∈ R. We have obtained (i). Analogously,
it can be shown that (ii) is true.

(2) Let θ be an equivalence onA satisfying (i) and (ii). Clearly, (i)+ (ii) yields
property (b). �

Corollary. LetA = (A,R) be a quasiordered system andθ be an equivalence onA.
Thenθ is a congruence onA if and only if:

(i) R/θ is a quasiorder onA/θ;
(ii) [ LA(x, y)]θ = LA/θ([x]θ, [y]θ) and [UA(x, y)]θ = UA/θ([x]θ, [y]θ) for arbitrary

x, y ∈ A.

Proof. If θ is a congruence onA, then by Theorem 2 and Lemma 2, we obtain (i).
Applying Theorem 3, we have (ii). Conversely, letθ be an equivalence onA satisfying
(i) and (ii). Then the canonical mappingh : A→ A/θ is an LU-morphism and, due
to Theorem 3, we haveθ = θh is a congruence onA. �
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