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Abstract. This paper is concerned with higher integrability for gradients of weak solutions to
quasilinear parabolic systems of Hörmander’s vector fields. We establish Lp estimates for gradi-
ents of weak solutions by deriving a parabolic Caccioppli inequality and using the reverse Hölder
inequality in parabolic cylinders, and then obtain Lp estimates for gradients of weak solutions
to homogeneous parabolic system. At last higher integrability of gradients in Morrey space with
p � 2 is proved.
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1. INTRODUCTION

Let XD .X1; � � � ;Xq/ be a family of real smooth vector fields in a neighborhood
Q̋ of some bounded domain ˝ � Rn.q � n/ with the form

Xj D

nX
kD1

bjk.x/
@

@xk
; .bjk.x/ 2 C

1.˝/;j D 1;2; : : : ;q/

and satisfying Hörmander’s condition, namely, the Lie algebra generated by the fa-
mily X1; : : : ;Xq at any point of Q̋ spans Rn.

Regularity for weak solutions to parabolic equations and systems in Euclidean
spaces (i.e., q D n;Xi D @

@xi
; i D 1;2; � � � ;n) had fairly complete results. When coef-

ficients are discontinuous and belong to some VMO spaces, Mcbride in [15] derived
the generalized Morrey estimates for gradients of weak solutions to linear parabolic
systems. Giaquinta and Struwe in [12] treated partial regularity for weak solutions
to quasilinear parabolic systems under the natural condition and got a sharp Hölder
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exponent by establishing a Caccioppoli inequality and the reverse Hölder inequality.
For some other studies, we quote [2, 3, 11, 17] and references therein.

Divergence equations or systems constituted by Hörmander’s vector fields have
received extensive attention. Di Fazio and Fanciullo in [4] studied gradient estimates
in Morrey spaces when p D 2 for weak solutions to linear degenerate elliptic system
with coefficients in some VMO spaces. Dong and Niu in [6] generalized the result
and derived gradient estimates in Morrey spaces when p > 2 for weak solutions to
linear elliptic systems by establishing energy estimate and using the reverse Hölder
inequality on the homogeneous spaces, and got Hölder regularity. Xu and Zuily in
[20] attained interior regularity for weak solutions to quasilinear elliptic systems with
natural condition. Partial Hölder regularity for weak solutions to quasilinear elliptic
systems under quadratic natural growth condition and controllable growth condition
was deirved by Gao and Niu in [8]. Related results can also be found in [18, 19].

The purpose of this paper is to investigate quasilinear parabolic systems of Hörman-
der’s vector fields

uit CX
�
˛

�
a
˛ˇ
i .´;u/Xˇu

i
�
D gi .´;u;Xu/CX

�
˛f

˛
i .´/; (1.1)

where ˛;ˇD 1;2; : : : ;q, i D 1;2; : : : ;N ,X�j D�XjCcj .cj D�
nP
kD1

@bjk
@xk
2C1 .˝//

is the transposed vector field of Xj , ´ D .x; t/ 2 QT � RnC1, QT D ˝ � .0;T /,
gi .´;u;Xu/ satisfies natural growth condition. We will establish higher integrability
of gradients in the Morrey spaces Lp;�X .p > 2/ for weak solutions to (1.1).

Definition 1 (BMO and VMO spaces). For any f 2 L1.QT /, we set

�R .f /D sup
´02QT ;06�6R

�
1

jQT\Q�.´0/j

’
QT\Q�.´0/

ˇ̌
f .´/�fQT\Q�.´0/.´/

ˇ̌
d´

�
;

where fQT\Q�.´0/D
1

jQT\Q�.´0/j

’
QT\Q�.´0/

f .´/d´, and the meaning ofQ�.´0/

sees the next section. If sup
R>0

�R .f / <C1, we say f 2BMO.QT / (Bounded Mean

Oscillation). Moreover, if �R .f /! 0 as R! 0, then we say f 2VMO.QT / (Va-
nishing Mean Oscillation).

Now we introduce the relevant assumptions.
(H1) (ellipticity condition) Let coefficients a˛ˇi .´;u/ satisfy the ellipticity condi-

tion, namely, there exists a constant ı > 0 such that for any � 2 R.qC1/N ,

a
˛ˇ
i .´;u/� i˛�

i
ˇ > ı j�j2 ; (1.2)

where ´D .x; t/ 2QT , QT D˝ � .0;T /, ˝ � Rn.
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(H2) (VMO \L1) Assume a˛ˇi .´;u0/ 2 VMO uniformly on ´ 2QT for some
fixed u0 2 RN , that is,

lim
R!0

�R.a
˛ˇ
i .�;u0//D 0;

and there exists a constant L > 0, such that for any ´ 2 QT and u 2 RN , one hasˇ̌̌
a
˛ˇ
i .´;u/

ˇ̌̌
6 L.

(H3) (Continuity) There exist a positive constant c and a continuous concave func-
tion ! W RC! RC, !.0/D 0, 06 ! 6 1, such that for any ´ 2QT , u;v 2 RN ,ˇ̌̌

a
˛ˇ
i .´;u/�a

˛ˇ
i .´;v/

ˇ̌̌
6 c!

�
ju�vj2

�
:

(H4) (Natural growth condition) Let u 2W 1;1
2 .QT ;RN /\L1.QT ;RN / (the de-

finition ofW 1;1
2 .QT ;RN / sees Section 2),M D sup

´2QT

ju.´/j and gi .´;u;Xu/ satisfy

jgi .´;u;Xu/j6 �.M/
�
jXuj2Cgi .´/

�
;

where �.M/ > 0, gi .´/ 2 Lm;�X .QT /, f ˛i .´/ 2 L
m;�
X .QT /, i D 1;2; � � � ;N , m >

p (for definition of p see Theorem 3.2), 0 < � < QC 2 (Q is the homogeneous
dimension relative to ˝), and 2�.M/M < ı.

Definition 2. If u 2W 1;1
2 .QT ;RN /\L1.QT ;RN / satisfies“

QT

h
uit'

i
Ca

˛ˇ
i .´;u/X˛'

iXˇu
i
i
d´D

“
QT

h
gi .´;u;Xu/'

i
Cf ˛i .´/X˛'

i
i
d´;

for any ' 2 C10 .QT ;R
N /, then u is said a weak solution to (1.1).

Now the main result of the paper is stated as follows.

Theorem 1. Suppose that assumptions (H1)-(H4) hold. If u 2W 1;1
2 .QT ; RN /\

L1.QT ;RN / is a weak solution of (1.1) in QT , then there exists a constant "0 > 0
such that for any p 2

h
2;2C 2Q

QC2
"0

�
,Q0��Q00��QT , we haveXu2Lp;�

X;loc
.QT /

and

kXuk
L
p;�
X .Q0/

6 c

 
kXukLp.Q00/C

X
i




gi



L
p;�
X .QT /

Ckf k
L
p;�
X .QT /

!
: (1.3)

Remark 1. These conclusions are new even in quasilinear parabolic systems under
Euclidean spaces. The proofs depend on some a priori estimates, e.g., parabolic Cac-
cioppoli inequalities. We note that in the study of regularity to parabolic equations
in Euclidean spaces, a normal tool is a parabolic Poincaré inequality. But for (1.1),
a corresponding parabolic Poincaré inequality is still not proved, we introduce the
average Nu.t/ of u.x; t/ as done in [5] and [12], and apply (2.2) below to deduce a
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parabolic Caccioppoli inequality. In order to get higher integrability, we employ a
reverse Hölder inequality in parabolic cylinders.

The plan of the paper is organized as follows. In Section 2, we describe the no-
tions of Carnot-Carathéodory distance, ball, doubling property, parabolic cylinder,
and some function spaces related to vector fields, such as Morrey space, Sobolev
space, and then recall the known iterative lemma, Sobolev-Poincaré inequality in
˝, reverse Hölder inequality relate to parabolic cylinder. In Section 3, we establish
a parabolic Caccioppoli inequality with the average Nu.t/ of u.x; t/ and get the Lp

estimates of gradients for weak solutions (Theorem 3) by using the reverse Hölder
inequality. In Section 4, higher integrability of gradients for weak solutions to homo-
geneous parabolic system are derived. In Section 5, the proof of Theorem 1 is given
with the help of previous results.

2. PRELIMINARIES

Let us denote the commutator of vector fields X1; � � � ;Xq by

Xˇ D
�
Xˇd ;

�
Xˇd�1 ; � � �

�
Xˇ2 ;Xˇ1

�
� � �
��
;

where ˇ D .ˇ1; � � � ;ˇd /, 1 6 ˇi 6 q, i D 1; � � � ;d , jˇj D d , and recall that d is the
length of Xˇ .

Definition 3. If
˚
Xˇ .x0/

	
jˇ j6s

spans Rn at every x0 2˝ � Rn, then we say that
the system X D .X1; � � � ;Xq/ satisfies Hörmander’s condition of step s.

Following [20], we can assume that Hörmander’s vector fields X1; � � � ;Xq are free
up to the order s.

Definition 4 (Carnot-Carathéodory distance). Let ˝ be a bounded set in Rn. An
absolutely continuous curve 
 W Œ0;T �!˝ is called a sub-unit curve with respect to
the system X D .X1; � � � ;Xq/, if 
 0.t/ exists for a.e. t 2 Œ0;T � and satisfies

< 
 0.t/;� >26
qX

jD1

<Xj .
.t//;� >
2; for any � 2 Rn:

We denote the length of this curve by lS .
/D T . Given any x;y 2˝, let ˚.x;y/
be the collection of all sub-unit curves connecting x and y, and define the Carnot-
Carathéodory distance induced by X as follows

dX.x;y/D infflS .
/ W 
 2 ˚.x;y/g:

With this distance, we denote a metric ball of radius R centered at x by

BR.x/D B.x;R/D fy 2˝ W d.x;y/ < Rg:

If one does not need to consider the center of the ball, then we also write BR instead
of B.x;R/.



GRADIENT ESTIMATES IN MORREY SPACES 855

It is well known that the doubling property (see [16]) for metric balls holds true,
i.e., there exist positive constants cD andRD , such that for any x0 2˝, 0<2R<RD ,
B.x0;2R/�˝,

jB.x0;2R/j6 cD jB.x0;R/j :

Furthermore, it follows that for any R 6RD and � 2 .0;1/,

jB�Rj> c�1D �Q jBRj :

The number Q D log2 cD is called a locally homogeneous dimension relative to ˝.
Clearly, Q > n.

As in [20] we assume that for any small positive R there exist two positive cons-
tants c1 and c2, such that

c1R
Q 6 jBRj6 c2R

Q: (2.1)
Throughout this paper, we denote ´0 D .x0; t0/ 2QT � RnC1. A parabolic cylinder
with vertex at ´0 is defined by

QR.´0/D BR.x0/�

�
t0�

R2

2
; t0C

R2

2

�
In what follows, let us denote IR .t0/D .t0� R

2

2
; t0C

R2

2
�, and the parabolic bo-

undary of QR by

@pQR.´0/D

�
@BR.x0/�

�
t0�

R2

2
; t0C

R2

2

��
[BR.x0/�

�
t0�

R2

2

�
:

We denote by jB.x;R/j the Lebesgue measure of B.x;R/ in the n-dimensional
space, and the Lebesgue measure of QR.´0/ in the .nC 1/-dimensional space by
jQR.´0/j. To simplify the notations, in the sequel, QR.´0/, BR.x0/, IR.t0/,s

qP
iD1

jXiuj
2 and .x; t/ are written as QR, BR, IR, jXuj and ´, respectively.

Definition 5 (Morrey space Lp;�X .QT /). For 1 6 p < C1, � > 0, we say that
f 2 Lp.QT / belongs to the Morrey space Lp;�X .QT / if

kf k
L
p;�
X

D sup
´02QT ;06�6d0

 
��ˇ̌

QT \Q�.´0/
ˇ̌ “

QT\Q�.´0/

jf jpd´

! 1
p

<1;

where d0 is the diameter of QT .

It is easy to prove as in [15] that the spaces Lp;�X .QT / are Banach spaces.

Definition 6 (parabolic Sobolev spaceW m;k
p .QT /). Letm and k be non-negative

integers, 16 p <C1. The set

W m;k
p .QT /D fuIX˛u;@

r
tu 2 L

p.QT /; 06 j˛j6m; 06 r 6 kg
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is called a parabolic Sobolev space related to Hörmander’s vector fields, with the
norm

kuk
W
m;k
p .QT /

D

X
j˛j6m

kX˛ukLp.QT /C
X
r6k

kXrt ukLp.QT /:

The spaceW m;k
p;0 .QT / is the closure ofC10

�
NQT
�

inW m;k
p .QT /, whereC10

�
NQT
�

is the set of all infinitely differentiable functions in NQT vanishing on the parabolic
boundary of QT .

Lemma 1 (see [13]). Let H.�/ be a non-negative increasing function. Suppose
that for any 0 < � < R 6R0 D dist.x0;@˝/,

H.�/6 A
h� �
R

�a
C "

i
H.R/CBRb;

whereA;a and b are positive constants with a>b. Then there exist "1D "1.A;a;b/>
0 and c D c.A;a;b/ > 0, such that if " < "1, then one has

H.�/6 c

�� �
R

�b
H.R/CB�b

�
:

Lemma 2 (Sobolev-Poincaré inequality, see [9,14]). For any open set˝ 0, N̋ 0 ��
˝, there exist positive constants R0 and c, such that for any 0 < R 6 R0, BR �˝,
and u 2 C1.BR/, it holds�

1

jBRj

Z
BR

ju�uRj
p0dx

� 1
p0

6 cR

�
1

jBRj

Z
BR

jXujpdx

� 1
p

;

where 1 < p < Q, 1 6 p0 6 pQ
Q�p

, uR D 1
jBRj

R
BR
u.x/dx, R0 and c depend on ˝

and ˝ 0.

In particular, if p D p0, thenZ
BR

ju�uRj
pdx 6 cRp

Z
BR

jXujpdx: (2.2)

If p D 2, p0 D 2Q
Q�2

, then�
1

jBRj

Z
BR

ju�uRj
2Q
Q�2dx

�Q�2
2Q

6 cR

�
1

jBRj

Z
BR

jXuj2dx

� 1
2

: (2.3)

For u 2 C
1

0 .BR/, it follows�
1

jBRj

Z
BR

jujp
0

dx

� 1
p0

6 cR

�
1

jBRj

Z
BR

jXujpdx

� 1
p

: (2.4)
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We need to define a parabolic distance dp corresponding to dX . For .x; t/; .y;
s/ 2QT , set

dp ..x; t/; .y;s//D

q
dX .x;y/2Cjt � sj:

Denote a ball under the distance dp:

Bp ..x0; t0/;R/D
˚
.x; t/ 2QT W dp ..x0; t0/; .x; t// < R

	
:

Since Bp ..x0; t0/;R/ is a homogeneous space ([1]) and it holds

QR.´/� Bp.´;2R/�Q2R.´/;

we immediately follow the following result, which is the generalization on QT of
results in [10].

Lemma 3 (reverse Hölder inequality). Let Og; Of be nonnegative onQT and satisfy

Og 2 L Oq.QT / and Of 2 Lr.QT /; 1 < Oq < r:

Assume that there exist constants b > 0 and � 2 Œ0;1/ such that for any Q2R �QT
the following inequality holds

1

jQRj

“
QR

Og Oqd´6 b

24 1ˇ̌
Q4R=3

ˇ̌ “
Q4R=3

Ogd´

! Oq
C

1ˇ̌
Q4R=3

ˇ̌ “
Q4R=3

Of Oqd´

35
C�

1ˇ̌
Q4R=3

ˇ̌ “
Q4R=3

Og Oqd´;

then there exist positive constants "0 and �0 D �0. Oq;QT /, such that if � < �0, then
Og 2 L

Op

loc
.QT / for any Op 2 Œ Oq; OqC "0/, and

 
1

jQRj

“
QR

Og Opd´

! 1
Op

6 c

24 1

jQ2Rj

“
Q2R

Og Oqd´

! 1
Oq

+

 
1

jQ2Rj

“
Q2R

Of Opd´

! 1
Op

35 ;
where c and "0 depend on b; Oq;� and Q.

Lemma 4 (Jensen inequality). For any bounded open subset U � Rn, suppose
that f W U ! R is an integrable function and ! W R! R is a concave function. Then

1

jU j

“
U

!.f /d´6 !

�
1

jU j

“
U

fd´

�
:
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3. PARABOLIC CACCIOPPOLI INEQUALITY AND Lp ESTIMATES

In this section, we first establish a parabolic Caccioppoli inequality (Theorem 2)
for the weak solution u to (1.1) with the help of the average Nu.t/ of u and then get a
Lp estimates for the gradient of the weak solution (Theorem 3) by using Lemma 3.

Let two cut-off functions �.x/ and �.t/ satisfy that for any 0 < � < R,
B� � BR �˝,

�.x/ 2 C10 .BR/; 06 � 6 1; jX�j6
c

R��
; and � D 1 in B�;

�.t/D

8̂<̂
:

2t�2
�
t0�

R2

2

�
R2��2

; t 2
�
t0�

R2

2
; t0�

�2

2

�
;

1; t 2
h
t0�

�2

2
; t0C

R2

2

i
:

and set 1
jBRj

R
BR
�2dx D N1. Similarly to [5, 12], we denote the average on BR of

u.x; t/ by

Nu.t/D

�Z
BR

�2dx

��1Z
BR

u�2dx D
1

N1 jBRj

Z
BR

u�2dx:

Theorem 2 (parabolic Caccioppoli inequality). Let u2W 1;1
2 .QT ;RN /\L1.QT ;RN /

be a weak solution of (1.1). Then for any 0 < � < R, QR �QT , one has

sup
I�

Z
B�

ju� Nu.t/j2dxC

“
Q�

jXuj2d´

6
c

.R��/2

“
QR

ju� Nu.t/j2d´C c

“
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´; (3.1)

where the positive constant c depends on Q;ı;L;M and �.M/,
I� D

�
t0�

�2

2
; t0 C

�2

2

i
.

Proof. Noting B� � BR � ˝, multiplying both sides of (1.1) by .u� Nu.t//�2

.x/�.t/, and integrating on Q0R D BR.x0/�
�
t0�

R2

2
; s
i
(s 6 t0C

R2

2
), we get“

Q0R

h
uit CX

�
˛

�
a
˛ˇ
i Xˇu

i
�i�

ui � Nui .t/
�
�2�d´

D

“
Q0R

�
gi CX

�
˛f

˛
i

��
ui � Nui .t/

�
�2�d´: (3.2)

By properties of �.x/ and �.t/, and the definition of Nu.t/, we haveZ
BR

.u� Nu.t//�2�dx D

Z
BR

u�2�dx� Nu.t/

Z
BR

�2�dx D 0;
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and “
QR

Nu.t/t .u� Nu.t//�
2�d´D

Z
IR

Nu.t/tdt

Z
BR

.u� Nu.t//�2�D 0:

It yields “
QR

ut .u� Nu.t//�
2�d´D

“
QR

.ut � Nu.t/t /.u� Nu.t//�
2�d´

D

“
QR

��
1

2
ju� Nu.t/j2 �

�
t

�2�
1

2
ju� Nu.t/j2 �2�t

�
d´:

Since the left and right hand sides of (3.2) have the form

“
Q0R

h
uit CX

�
˛

�
a
˛ˇ
i Xˇu

i
�i�

ui � Nui .t/
�
�2�d´

D

“
Q0R

��
1

2

ˇ̌̌
ui � Nui .t/

ˇ̌̌2
�

�
t

�2�
1

2

ˇ̌̌
ui � Nui .t/

ˇ̌̌2
�2�t Ca

˛ˇ
i �2�X˛u

iXˇu
i

C2a
˛ˇ
i

�
ui � Nui .t/

�
��X˛�Xˇu

i
i
d´

and

“
Q0R

�
gi CX

�
˛f

˛
i

��
ui � Nui .t/

�
�2�d´

D

“
Q0R

h
gi

�
ui � Nui .t/

�
�2�Cf ˛i �

2�X˛u
i
C2��

�
ui � Nui .t/

�
f ˛i X˛�

i
d´;

respectively, it follows that (3.2) becomes“
Q0R

��
1

2

ˇ̌̌
ui � Nui .t/

ˇ̌̌2
�

�
t

�2Ca
˛ˇ
i �2�X˛u

iXˇu
i

�
d´

D

“
Q0R

�
1

2

ˇ̌̌
ui � Nui .t/

ˇ̌̌2
�2�t �2a

˛ˇ
i

�
ui � Nui .t/

�
��X˛�Xˇu

i

�
d´

C

“
Q0R

h
gi

�
ui � Nui .t/

�
�2�Cf ˛i �

2�X˛u
i
i
d´

C

“
Q0R

h
2��

�
ui � Nui .t/

�
f ˛i X˛�

i
d´: (3.3)
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By (H1), (H4), juj6M and the Young inequality, it implies from (3.3) that“
Q0R

�
1

2
ju� Nu.t/j2 �

�
t

�2d´C ı

“
Q0R

jXuj2 �2�d´

6
“
Q0R

1

2
ju� Nu.t/j2 �2�td´C "

“
Q0R

jXuj2 �2�d´

C c"

“
Q0R

ju� Nu.t/j2 jX�j2 �d´C2�.M/M

“
Q0R

jXuj2 �2�d´

C�.M/c"

“
Q0R

X
i

ˇ̌̌
gi
ˇ̌̌2
�2�d´C�.M/"

“
Q0R

ju� Nu.t/j2 �2�d´

C2c"

“
Q0R

jf j2 �2�d´C "

“
Q0R

jXuj2 �2�d´: (3.4)

Using “
Q0R

�
1

2
ju� Nu.t/j2 �

�
t

�2d´D

Z
BR

1

2
ju� Nu.s/j2 �2�dx;

it follows by (3.4) thatZ
BR

1

2
ju� Nu.s/j2 �2�dxC .ı�2."C�.M/M//

“
Q0R

jXuj2 �2�d´

6
“
Q0R

1

2
ju� Nu.t/j2 �2�td´C c"

“
Q0R

ju� Nu.t/j2 jX�j2 �d´

C2c"

“
Q0R

jf j2 �2�d´C�.M/"

“
Q0R

ju� Nu.t/j2 �2�d´

C�.M/c"

“
Q0R

X
i

ˇ̌̌
gi
ˇ̌̌2
�2�d´: (3.5)

Because 2�.M/M < ı, we can choose a small positive " such that 2."C�.M/

M/ < ı, and by (3.5) we obtain (3.1). The proof is completed. �

Theorem 3. Let u 2W 1;1
2 .QT ;RN /\L1.QT ;RN / be a weak solution of (1.1)

in QT . Then there exists a positive constants "0 such that Xu 2 Lp
loc
.QT /, p 2h

2;2C 2Q
QC2

"0

�
, and for any QR �Q2R �QT , it holds

 
1

jQRj

“
QR

jXujpd´

! 1
p

6
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6 c

24 1

jQ2Rj

“
Q2R

jXuj2d´

! 1
2

C

0@ 1

jQ2Rj

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!p
2

d´

1A
1
p

375
(3.6)

where the positive constant c depends on Q;ı;L;M and �.M/.

Proof. Denote 2� D 2Q
Q�2

, Qq D 2Q
QC2

. Clearly,“
Q4R=5

ju� Nu.t/j2d´

6 sup
I4R=5

 Z
B4R=5

ju� Nu.t/j2dx

! 1
2

�

0@Z
I4R=5

 Z
B4R=5

ju� Nu.t/j2dx

! 1
2

dt

1A
� A �B: (3.7)

In virtue of (2.2) and (3.1),

A6
c

R

 “
QR

ju� Nu.t/j2d´

! 1
2

C c

 “
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´

! 1
2

6 c

 “
QR

jXuj2d´

! 1
2

C c

 “
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´

! 1
2

: (3.8)

By (2.1), (2.2), (2.3) and the Hölder inequality, we have

B 6
Z
IR

�Z
BR

ju� Nu.t/j Qq dx

� 1
2 Qq
�Z
BR

ju� Nu.t/j2
�

dx

� 1
2�2�

dt

6 cR
1
2

Z
IR

�Z
BR

jXuj Qq dx

� 1
2 Qq
�Z
BR

jXuj2dx

� 1
4

dt

6 cR
3
2
� 1
Q

 “
QR

jXuj Qqd´

! 1
2 Qq
 “

QR

jXuj2d´

! 1
4

: (3.9)

Inserting (3.8) and (3.9) into (3.7) follows“
Q4R=5

ju� Nu.t/j2d´6 cR
3
2
� 1
Q

 “
QR

jXuj2d´

! 3
4

�

 “
QR

jXuj Qqd´

! 1
2 Qq

C cR
3
2
� 1
Q

 “
QR

jXuj Qqd´

! 1
2 Qq
 “

QR

jXuj2d´

! 1
4

�

 “
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´

! 1
2

� I CII: (3.10)



862 YAN DONG

To estimate I and II , it uses the Young inequality to get

I 6 "R2
“
QR

jXuj2d´C c"R
� 4
Q

 “
QR

jXuj Qqd´

! 2
Qq

; (3.11)

II 6 "R2
“
QR

jXuj2d´C "c"R
� 4
Q

 “
QR

jXuj Qqd´

! 2
Qq

C c"R
2

“
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´: (3.12)

Putting (3.11) and (3.12) into (3.10),“
Q4R=5

ju� Nu.t/j2d´6 "R2
“
QR

jXuj2d´C c"R
� 4
Q

 “
QR

jXuj Qqd´

! 2
Qq

C c"R
2

“
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´: (3.13)

Let us return (3.1) with (3.13), then

1ˇ̌
Q3R=4

ˇ̌ “
Q3R=4

jXuj2d´6
"

jQRj

“
QR

jXuj2d´C c"

 
1

jQRj

“
QR

jXuj Qqd´

! 2
Qq

C
c"

jQRj

“
QR

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´:

Denoting Og D jXuj Qq . Oq D 2
Qq
D

QC2
Q

> 1/, Of D
�P
i

ˇ̌
gi
ˇ̌2
Cjf j2

� Q
QC2

, � D ", the

above inequality is

1ˇ̌
Q3R=4

ˇ̌ “
Q3R=4

Og Oqd´6 c

24 1

jQRj

“
QR

Ogd´

! Oq
C

1

jQRj

“
QR

Of Oqd´

35
C

�

jQRj

“
QR

Og Oqd´: (3.14)

By Lemma 3, we know that there exist positive constant c and "0, such that for
Op 2 Œ Oq; OqC "0/, �

1
jQRj

’
QR
jXuj Op Qqd´

� 1
Op 6
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6 c

264� 1
jQ2Rj

’
Q2R
jXuj2d´

� Q
QC2
C

0@ 1
jQ2Rj

’
Q2R

�P
i

ˇ̌
gi
ˇ̌2
Cjf j2

� Op Qq
2

d´

1A 1
Op

375 :
Setting p D Op Qq 2

h
2;2C 2Q

QC2
"0

�
, the proof is finished. �

4. HOMOGENEOUS PARABOLIC SYSTEM

In this section, we study the following homogeneous parabolic system

uit CX
�
˛ .a

˛ˇ
i .´;u/Xˇu

i /D 0: (4.1)

For convenience, we divide (4.1) into two parts. Concretely, let v 2W 1;1
2 \L1 be a

weak solution of the following constant coefficients system:(
vit CX

�
˛

��
a
˛ˇ
i .�; Nu.t//

�
R
Xˇv

i
�
D 0; in QR;

v�u 2W
1;1
2;0 \L

1; on@pQR;
(4.2)

then w D u�v satisfies:8̂̂<̂
:̂
wit CX

�
˛

��
a
˛ˇ
i .�; Nu.t//

�
R
Xˇw

i
�

DX�˛

���
a
˛ˇ
i .�; Nu.t//

�
R
�a

˛ˇ
i .´;u/

�
Xˇu

i
�
; in QR;

w 2W
1;1
2;0 \L

1; on @pQR;

(4.3)

where
�
a
˛ˇ
i .�; Nu.t//

�
R
D

1
jQRj

’
QR

a
˛ˇ
i .´; Nu.t//d´.

Lemma 5 ([7]). Let v 2 W 1;1
2 .QT ;RN /\L1.QT ;RN / be a weak solution of

(4.2). Then for any 0 < � < R, QR ��QT , one has“
Q�

jXvj2d´6 c
� �
R

�QC2“
QR

jXvj2d´:

Theorem 4. Let u 2W 1;1
2 .QT ;RN /\L1.QT ;RN / be a weak solution of (4.1).

Then for any 0 < � < R, QR �� QT , there exists "0 > 0, such that for any p 2h
2;2C 2Q

QC2
"0

�
, p�2
p
.QC2/ < � <QC2, we have“

Q�

jXujpd´6 c
� �
R

� 2.QC2/�p.QC2��/
2

“
QR

jXujpd´:

Proof. When 1
2
R 6 � < R, the result is clearly true. Now it is enough to treat the

case � < 1
2
R.

Multiplying both sides of (4.3) by wi and integrating on QR, we obtain“
QR

�
witw

i
C

�
a
˛ˇ
i .�; Nu.t//

�
R
Xˇw

iX˛w
i
�
d´
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D

“
QR

��
a
˛ˇ
i .�; Nu.t//

�
R
�a

˛ˇ
i .´;u/

�
Xˇu

iX˛w
id´: (4.4)

Noting
’
QR

witw
id´D

R
BR
dx
R t0CR2=2
t0�R2=2

widwi > 0 and (H1), we get

ı

“
QR

jXwj2d´6
“
QR

ˇ̌̌�
a
˛ˇ
i .�; Nu.t//

�
R
�a

˛ˇ
i .´; Nu.t//

ˇ̌̌
jXuj jXwjd´

C

“
QR

ˇ̌̌
a
˛ˇ
i .´; Nu.t//�a

˛ˇ
i .´;u/

ˇ̌̌
jXuj jXwjd´

D I CII: (4.5)

Because a˛ˇi .´;u/ satisfies (H2), it follows“
QR

ˇ̌̌
a
˛ˇ
i .´; Nu.t//�

�
a
˛ˇ
i .�; Nu.t//

�
R

ˇ̌̌ 2p
p�2

d´

6 c

“
QR

ˇ̌̌
a
˛ˇ
i .´; Nu.t//�

�
a
˛ˇ
i .�; Nu.t//

�
R

ˇ̌̌
d´6 c jQRj�R

�
a
˛ˇ
i

�
:

By the Young inequality and the Hölder inequality, we have

I 6 c"

 “
QR

ˇ̌̌
a
˛ˇ
i .´; Nu.t//�

�
a
˛ˇ
i .�; Nu.t//

�
R

ˇ̌̌ 2p
p�2

d´

!p�2
p
 “

QR

jXujpd´

! 2
p

C "

“
QR

jXwj2d´

6 c"

�
jQRj�R

�
a
˛ˇ
i

��p�2
p

 “
QR

jXujpd´

! 2
p

C "

“
QR

jXwj2d´: (4.6)

By the Young inequality, (H3), Lemma 4 and the Hölder inequality, it shows

II 6 c"

“
QR

ˇ̌̌
a
˛ˇ
i .´; Nu.t//�a

˛ˇ
i .´;u/

ˇ̌̌2
jXuj2d´C "

“
QR

jXwj2d´

6 c"

“
QR

!2
�
ju� Nu.t/j2

�
jXuj2d´C "

“
QR

jXwj2d´

6 c"

 “
QR

�
!
�
ju� Nu.t/j2

�� 2p
p�2

d´

!p�2
p
 “

QR

jXujpd´

! 2
p

C "

“
QR

jXwj2d´
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6 c"

 
jQRj!

 
1

jQRj

“
QR

ju� Nu.t/j2d´

!!p�2
p
 “

QR

jXujpd´

! 2
p

C "

“
QR

jXwj2d´: (4.7)

Inserting (4.6) and (4.7) into (4.5), we have

ı

“
QR

jXwj2d´

6 c" jQRj

24��R �a˛ˇi ��p�2
p
C

 
!

 
1

jQRj

“
QR

ju� Nu.t/j2d´

!!p�2
p

35
�

 
1

jQRj

“
QR

jXujpd´

! 2
p

C2"

“
QR

jXwj2d´:

Let G.´0;R/D
�
�R

�
a
˛ˇ
i

��p�2
p
C

�
!
�

1
jQRj

’
QR
ju� Nu.t/j2d´

��p�2
p

and cho-
ose " small enough such that ı�2" > 0, then the above can be rewritten as“

QR

jXwj2d´6 cG.´0;R/ jQRj

 
1

jQRj

“
QR

jXujpd´

! 2
p

:

By the above, Lemma 5 and the Hölder inequality, we know that for any � < 1
2
R,“

Q2�

jXuj2d´6 c
� �
R

�QC2“
QR

jXvj2d´C c

“
QR

jXwj2d´

6 c
� �
R

�QC2“
QR

jXuj2d´C c

“
QR

jXwj2d´

6 c jQRj

�� �
R

�QC2
CG.´0;R/

� 
1

jQRj

“
QR

jXujpd´

! 2
p

: (4.8)

Due to Theorem 3 with gi D f D 0 and (4.8), it holds“
Q�

jXujpd´6 c
ˇ̌
Q�
ˇ̌ 1ˇ̌

Q2�
ˇ̌ “

Q2�

jXuj2d´

!p
2

6 c

�� �
R

�QC2
CG.´0;R/

�p
2

 
jQRjˇ̌
Q�
ˇ̌ !p�22 “

QR

jXujpd´:
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TakingH.�/D
�ˇ̌
Q�
ˇ̌p�2
2
’
Q�
jXujpd´

� 2
p

,H.R/D
�
jQRj

p�2
2
’
QR
jXujpd´

� 2
p

,

a DQC 2, B D 0: We have by Lemma 1 with b D � (p�2
p
.QC2/ < � < QC 2)

that  ˇ̌
Q�
ˇ̌p�2
2

“
Q�

jXujpd´

! 2
p

6 c
� �
R

�� 
jQRj

p�2
2

“
QR

jXujpd´

! 2
p

:

Inserting jQRj
jQ�j

6 c
� �
R

��Q�2 into the above, we get the result. �

5. PROOFS OF THE MAIN RESULTS

In this section, we will prove Theorem 1. Let v 2W 1;1
2 \L1 be a weak solution

of the following system:(
vit CX

�
˛

�
a
˛ˇ
i .�; Nu.t//Xˇv

i
�
D 0; in QR;

v�u 2W
1;1
2;0 \L

1; on @pQR;
(5.1)

then w D u�v satisfies:(
wit CX

�
˛

�
a
˛ˇ
i .�; Nu.t//Xˇw

i
�
D gi CX

�
˛f

˛
i ; in QR;

w 2W
1;1
2;0 \L

1; on @pQR:
(5.2)

Lemma 6. Let w 2 W 1;1
2;0 .QT ;R

N /\L1.QT ;RN / be a weak solution of (5.2)
in QT . Then there exists a positive constant "0, such that Xw 2 Lp

loc
.QT /, p 2h

2;2C 2Q
QC2

"0

�
, and it holds“

QR

jXwjpd´6 c

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌p
Cjf jp

!
d´C c

“
Q2R

jXujpd´;

for any Q2R ��QT .

Proof. Sincew 2W 1;1
2;0 .QT ;R

N /\L1.QT ;RN /, there exists a constantM1 >0,
such that jwj6M1.

Multiplying both sides of (1.1) by wi and integrating on Q2R leads to“
Q2R

h
witw

i
Ca

˛ˇ
i Xˇw

iX˛w
i
i
d´D

“
Q2R

h
giw

i
Cf ˛i X˛w

i
i
d´:

Since “
Q2R

wtwd´D

Z
B2R

dx

Z
I2R

w
@w

@t
dt D

Z
B2R

1

2
w2dx > 0;
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we have by (H1), (H4), the Young inequality and (2.4) that

ı

“
Q2R

jXwj2d´6
“
Q2R

wtwd´C ı

“
Q2R

jXwj2d´

6
“
Q2R

�.M/

 
jXuj2C

X
i

ˇ̌̌
gi
ˇ̌̌!
jwjd´C c"

“
Q2R

jf j2d´C "

“
Q2R

jXwj2d´

6 �.M/M1

“
Q2R

jXuj2d´C c

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´C2"

“
Q2R

jXwj2d´;

where " is small enough such that ı�2" > 0. It gets“
Q2R

jXwj2d´6 c

“
Q2R

jXuj2d´C c

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´:

Using the above estimate into (3.6) and the Hölder inequality, it follows

1

jQRj

“
QR

jXwjpd´

6 c

"
1

jQ2Rj

“
Q2R

jXuj2d´C
1

jQ2Rj

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌2
Cjf j2

!
d´

#p
2

C
c

jQ2Rj

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌p
Cjf jp

!
d´

6
c

jQ2Rj

“
Q2R

jXujpd´C
c

jQ2Rj

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌p
Cjf jp

!
d´:

Hence the conclusion is proved. �

Theorem 5. Suppose that assumptions (H1)-(H4) hold. Let u2W 1;1
2 .QT ; RN /\

L1.QT ;RN / be a weak solution of (1.1). Then there exists a positive constant "0,
such that for any p 2

h
2;2C 2Q

QC2
"0

�
, we have

Xu 2 L
p;�

X;loc

�
QT ;R

qn
�
:

Moreover, there exists a constantR0 6 d0 such that for any � andR, 0< �<R6R0,
Q2R ��QT , one has

kXuk
p

L
p;�
X .Q�/

6 c

"
kXuk

p

Lp.QR/
C

X
i




gi


p
L
p;�
X

Ckf k
p

L
p;�
X

#
:
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Proof. By Lemma 6 and Theorem 4, it shows“
Q�

jXujpd´6 c

“
Q�

jXvjpd´C c

“
Q�

jXwjpd´

6 c
� �
R

� 2.QC2/�p.QC2��/
2

“
QR

jXujpd´C c

“
Q2R

 X
i

ˇ̌̌
gi
ˇ̌̌p
Cjf jp

!
d´

C c

“
Q2R

jXujpd´

6

"
c
� �
R

� 2.QC2/�p.QC2��/
2

C c

#“
Q2R

jXujpd´

C cRQC2��

 X
i




gi


p
L
p;�
X

Ckf k
p

L
p;�
X

!
:

Denote H.�/ D
’
Q�
jXujpd´, H.R/ D

’
QR
jXujpd´, a D 2.QC2/�p.QC2��/

2
,

b DQC2��, B D c
�P
i



gi

p
L
p;�
X

Ckf k
p

L
p;�
X

�
, 0 < � <QC2. Then there exists

�, QC2� 2�
p
< � <QC2, such that a > b. By Lemma 1, we have“

Q�

jXujpd´

6 c

"� �
R

�QC2��“
Q2R

jXujpd´C�QC2��

 X
i




gi


p
L
p;�
X

Ckf k
p

L
p;�
X

!#
:

This proof is completed. �

Proof. (of Theorem 1) By Theorem 5 and the cutoff function technique, it is easy
to see that Theorem 1 is true. �
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