Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No 3, pp. 851-869 DOI: 10.18514/MMN.2013.765

Gradient estimates in Morrey spaces of weak
solutions to quasilinear parabolic systems of
Hormander’s vector fields

Yan Dong



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No. 3, pp. 851-869

GRADIENT ESTIMATES IN MORREY SPACES OF WEAK
SOLUTIONS TO QUASILINEAR PARABOLIC SYSTEMS OF
HORMANDER’S VECTOR FIELDS

YAN DONG
Received 16 April, 2013

Abstract. This paper is concerned with higher integrability for gradients of weak solutions to
quasilinear parabolic systems of Hormander’s vector fields. We establish L? estimates for gradi-
ents of weak solutions by deriving a parabolic Caccioppli inequality and using the reverse Holder
inequality in parabolic cylinders, and then obtain L2 estimates for gradients of weak solutions
to homogeneous parabolic system. At last higher integrability of gradients in Morrey space with
p =2 1is proved.
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1. INTRODUCTION

Let X = (X1,---, X4) be a family of real smooth vector fields in a neighborhood
2 of some bounded domain §2 C R" (¢ < n) with the form

n
a .
k=1

and satisfying Hormander’s condition, namely, the Lie algebra generated by the fa-
mily X1,..., X, at any point of £2 spans R”.

Regularity for weak solutions to parabolic equations and systems in Euclidean
spaces (i.e.,q =n,X; = aixi,i =1,2,---,n) had fairly complete results. When coef-
ficients are discontinuous and belong to some VMO spaces, Mcbride in [15] derived
the generalized Morrey estimates for gradients of weak solutions to linear parabolic
systems. Giaquinta and Struwe in [12] treated partial regularity for weak solutions
to quasilinear parabolic systems under the natural condition and got a sharp Holder
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exponent by establishing a Caccioppoli inequality and the reverse Holder inequality.
For some other studies, we quote [2, 3, | 1, 17] and references therein.

Divergence equations or systems constituted by Hormander’s vector fields have
received extensive attention. Di Fazio and Fanciullo in [4] studied gradient estimates
in Morrey spaces when p = 2 for weak solutions to linear degenerate elliptic system
with coefficients in some VMO spaces. Dong and Niu in [0] generalized the result
and derived gradient estimates in Morrey spaces when p > 2 for weak solutions to
linear elliptic systems by establishing energy estimate and using the reverse Holder
inequality on the homogeneous spaces, and got Holder regularity. Xu and Zuily in
[20] attained interior regularity for weak solutions to quasilinear elliptic systems with
natural condition. Partial Holder regularity for weak solutions to quasilinear elliptic
systems under quadratic natural growth condition and controllable growth condition
was deirved by Gao and Niu in [8]. Related results can also be found in [18, 19].

The purpose of this paper is to investigate quasilinear parabolic systems of Horman-
der’s vector fields

wy+ Xy (a2 Xpu') = gi (2w, Xu) + X3 £2(2), (1.1
n
wherea, f=1.2.....0.i =1.2.....N. X} =—X; +cj(cj =— Y. Fik e C®(2))
k=1

is the transposed vector field of X;, z = (x,1) € Or C Re+1 Or =£2x(0,7),
gi (z,u, Xu) satisfies natural growth condition. We will establish higher integrability

of gradients in the Morrey spaces L)’;’A (p = 2) for weak solutions to (1.1).

Definition 1 (BMO and VMO spaces). For any f € L1(Q7), we set

R(f) = sup (m forngsenl /@ —fQTme(zo)(Z)}dZ)’

z0€Q7,0<p<R

where f0,n0,(z0) = mﬂQrﬁQO(zo) f(z)dz, and the meaning of Q ,(z0)

sees the next section. If sup ng (f) < 400, we say f eBMO(Q7) (Bounded Mean
R>0
Oscillation). Moreover, if ng (f) — 0 as R — 0, then we say f eVMO(Qr) (Va-

nishing Mean Oscillation).

Now we introduce the relevant assumptions.
(H1) (ellipticity condition) Let coefficients a;-xﬂ (z,u) satisfy the ellipticity condi-
tion, namely, there exists a constant § > 0 such that for any § € RG+TDN |

a? (z.w)ELEL = §1&, (1.2)

where z = (x,t) € O1, Q7 = 2 %x(0,T), 2 C R™.
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(H2) (VMO N L) Assume a;x'B (z,ug9) € VMO uniformly on z € Q7 for some
fixed ug € RY, that is,

lim ng(@® (- u9)) =0,

Jim n(ai® (o))

and there exists a constant L > 0, such that for any z € Q7 and u € RY, one has
of

‘ai (z,u)‘ <L.
(H3) (Continuity) There exist a positive constant ¢ and a continuous concave func-

tion w : Rt — RT, w(0) =0, 0 < w < 1, such that for any z € Q7, u,v € RV,

a?ﬂ(z,u)—a;w(z,v)‘ <cw (|u—v|2).

(H4) (Natural growth condition) Let u € Wzl’1 (07, RY)YNL®(Q71,RY) (the de-

finition of Wzl’1 (O1.RY) sees Section 2), M = sup |u(z)| and g; (z,u, Xu) satisfy
ze0r

g1 o X)) < p () (1 Xu +¢'(2)).

where (M) > 0, g'(z) € L®*(Qr), f*(z) € LE*(Qr), i =1,2,--,N, m >
p (for definition of p see Theorem 3.2), 0 < A < Q + 2 (Q is the homogeneous
dimension relative to £2), and 2u(M)M < 6.

Definition 2. If u € W, (Qr,RV) N L®(Q 7, RY) satisfies
// [u’}fﬂi +af’ﬂ(z,u)Xa¢iXﬁui]dz=// [gi(z,u,Xu)goi +fi“(Z)Xa<0i]dz,
or or

for any ¢ € C§°(Qr., RY), then u is said a weak solution to (1.1).
Now the main result of the paper is stated as follows.

Theorem 1. Suppose that assumptions (H1)-(H4) hold. If u € W, (O, RV) N

L®(Q71.RY) is a weak solution of (1.1) in Q7, then there exists a constant g > 0
such that for any p € [2,2+ Qz—gzso), Q' cC 0" cC Qr, we have Xu € L;}’?oc(QT)
and

| Xt gy <€ <||Xu||Lp<Q~) +Y|¢]
i

L§!A(QT) + ||f||L}1;g)t(QT)) . (1.3)

Remark 1. These conclusions are new even in quasilinear parabolic systems under
Euclidean spaces. The proofs depend on some a priori estimates, e.g., parabolic Cac-
cioppoli inequalities. We note that in the study of regularity to parabolic equations
in Euclidean spaces, a normal tool is a parabolic Poincaré inequality. But for (1.1),
a corresponding parabolic Poincaré inequality is still not proved, we introduce the
average u(t) of u(x,t) as done in [5] and [12], and apply (2.2) below to deduce a
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parabolic Caccioppoli inequality. In order to get higher integrability, we employ a
reverse Holder inequality in parabolic cylinders.

The plan of the paper is organized as follows. In Section 2, we describe the no-
tions of Carnot-Carathéodory distance, ball, doubling property, parabolic cylinder,
and some function spaces related to vector fields, such as Morrey space, Sobolev
space, and then recall the known iterative lemma, Sobolev-Poincaré inequality in
£2, reverse Holder inequality relate to parabolic cylinder. In Section 3, we establish
a parabolic Caccioppoli inequality with the average u(¢) of u(x,t) and get the L?
estimates of gradients for weak solutions (Theorem 3) by using the reverse Holder
inequality. In Section 4, higher integrability of gradients for weak solutions to homo-
geneous parabolic system are derived. In Section 5, the proof of Theorem 1 is given
with the help of previous results.

2. PRELIMINARIES

Let us denote the commutator of vector fields X1,---, X, by

Xp = [Xﬁd’[Xﬂd—l""[Xﬂz’Xﬂl]”']]’
where 8 = (B1,---,B4), 1 < Bi <q,i=1,---,d, |B| =d, and recall that d is the
length of Xg.

Definition 3. If {X 8 (xo)}| B|<s SPans R” at every xo € £2 C R", then we say that
the system X = (X1,---, Xy) satisfies Hormander’s condition of step s.

Following [20], we can assume that Hormander’s vector fields Xq,---, X, are free
up to the order s.

Definition 4 (Carnot-Carathéodory distance). Let §2 be a bounded set in R”. An
absolutely continuous curve y : [0, T] — £2 is called a sub-unit curve with respect to
the system X = (X1,---, Xy), if y/(¢) exists for a.e. ¢ € [0, T'] and satisfies

q
<y'(1),& >2< Z < X;(y(t)),£ >*, forany& e R".
j=1

We denote the length of this curve by I (y) = T. Given any x,y € £2, let @(x,y)
be the collection of all sub-unit curves connecting x and y, and define the Carnot-
Carathéodory distance induced by X as follows

dx(x,y) =inf{ig(y) 1y € (x.y)j.
With this distance, we denote a metric ball of radius R centered at x by
Br(x) = B(x,R)={y € 2:d(x,y) <R}.

If one does not need to consider the center of the ball, then we also write Bg instead
of B(x, R).
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It is well known that the doubling property (see [16]) for metric balls holds true,
i.e., there exist positive constants cp and Rp, such that forany xg € 2,0 <2R < Rp,
B(x9,2R) C £2,

|B(x0,2R)| < cp | B(xo, R)|.
Furthermore, it follows that for any R < Rp and 7 € (0, 1),
|B:r| = cp't? | Bg|.

The number Q = log, cp is called a locally homogeneous dimension relative to §2.
Clearly, Q = n.
As in [20] we assume that for any small positive R there exist two positive cons-
tants ¢ and c¢5, such that
c1R? < |Br| < c2R?. 2.1)
Throughout this paper, we denote zo = (xg,%) € Q7 C R"*1. A parabolic cylinder
with vertex at z¢ is defined by

2 2
O Rr(zo) = Br(xo) x (fo - %,to + R7i|

In what follows, let us denote Ig (tg) = (to — RTZ, fo + RTz], and the parabolic bo-
undary of Q g by

2 2 2
IpOr(20) = (3BR(XO) X (lo—RT,to + %]) U Br(xo) X {zo—%} ,

We denote by |B(x, R)| the Lebesgue measure of B(x, R) in the n-dimensional
space, and the Lebesgue measure of Q g(z¢) in the (n + 1)-dimensional space by
|ORr(zo)|- To simplify the notations, in the sequel, Qr(zo), Br(x0), Ir(t0),

q
> |Xl-u|2 and (x,t) are written as Q g, Br, Igr, | Xu| and z, respectively.
i=1

Definition 5 (Morrey space L}I;’A(QT)). For 1 < p < 400, A > 0, we say that
f € L?(Qr) belongs to the Morrey space L)I}’A(QT) if

P >
2 T R R C— // f17dz) < oo,
Ly 20€071,0<p<do |QT N QP(Z0)| 01NQ,(z0)

where dj is the diameter of Q.
It is easy to prove as in [15] that the spaces LJI;’A(QT) are Banach spaces.

Definition 6 (parabolic Sobolev space me’k (O7)). Let m and k be non-negative
integers, 1 < p < 4o00. The set

WK (Or) = {u: Xqu,9ju € LP(Q7), 0< || <m, 0<r <k}
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is called a parabolic Sobolev space related to Hormander’s vector fields, with the
norm

Il opy = D 1Xattlloory + D 1X ullLr(g,):
loe|<m r<k
The space Wp"fo’k (Qr) is the closure of C§*° (QT) in_ me’k (Or), where Cg° (QT)
is the set of all infinitely differentiable functions in Q7 vanishing on the parabolic

boundary of Q7.

Lemma 1 (see [13]). Let H(p) be a non-negative increasing function. Suppose
that for any 0 < p < R < Rog = dist(xp,052),
a
H(p) < A [(%) —i—s] H(R)+ BR?,

where A,a and b are positive constants with a > b. Then there exist e = €1(A,a,b) >
Oandc =c(A,a,b) >0, such that if ¢ < &1, then one has

H(p)<c [(%)bH(R)—I-pr]

Lemma 2 (Sobolev-Poincaré inequality, see [9, 14]). For any open set 2/, 2’ CC
§2, there exist ﬂsitive constants Ry and c, such that for any 0 < R < Ry, BR C £2,
and u € C*°(BR), it holds

1 /
(— lu—ug|? dx)
|BR| /B

where 1l <p<Q,1<p < Qp—_Qp, UR = ﬁfBRu(x)dx, Ro and ¢ depend on £2

and $2'.

1

1
§CR(— |Xu|pdx)p,
|BR| /B

'%\‘ —

In particular, if p = p/, then

/ |u—uR|pdx$cRp/ | Xu|Pdx. (2.2)
Br BRr
Ifp=2,p = Qz—gz,then
1 20 % 1 5 2
(— |u—uR|Q—2dx) SCR(— | Xul dx) . 2.3)
|BR| /B |BR| /B

Foru € C(())O (BR), it follows

1
1 S\ 1
(— |u|de)p scR(— |Xu|pdx) . (2.4)

|Br| JBR |Br| JBg

N =
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We need to define a parabolic distance d), corresponding to dy. For (x,7),(y,
s)e Qr, set

dp ((x.0).(y.5) = \Jdx (x.9)% +11 —5].
Denote a ball under the distance d,:
By ((x0.10), R) = {(x.1) € O : dp ((x0,10), (x.1)) < R}.
Since Bj, ((xo,%0), R) is a homogeneous space ([ 1]) and it holds
ORr(2) C Bp(z,2R) C Q2r(2),

we immediately follow the following result, which is the generalization on Q71 of
results in [10].

Lemma 3 (reverse Holder inequality). Let g, f be nonnegative on QT and satisfy
ge€Li(Or)and f €L (Qr), 1<g<r.

Assume that there exist constants b > 0 and 0 € [0, 1) such that for any Q2r C QT

the following inequality holds
4 1
gdz | + —// fldz
|Q4ry3|

1 N 1
ol el
193 ORr ‘Q4R/3‘ O4ry/3 O4r/3

1 .
o Ll e
|Q4rys| o i

4R/3

then there exist positive constants g9 and 6y = 0o(q, Q1), such that if 6 < 6y, then
ge L} (Qr)forany p €1q.G+¢0), and

(ﬁffgfﬁdz)ﬁ“ (|Q12R|/LZR§%)&+<|Q12R| QZRfﬁdZ)ﬁ |

where ¢ and g9 depend on b,§,0 and Q.

Lemma 4 (Jensen inequality). For any bounded open subset U C R", suppose
that f : U — R is an integrable function and o : R — R is a concave function. Then

ol = )
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3. PARABOLIC CACCIOPPOLI INEQUALITY AND L? ESTIMATES

In this section, we first establish a parabolic Caccioppoli inequality (Theorem 2)
for the weak solution u to (1.1) with the help of the average u(¢) of u and then get a
L? estimates for the gradient of the weak solution (Theorem 3) by using Lemma 3.

Let two cut-off functions &(x) and n(¢f) satisfy that for any 0 < p < R,
B, C BR C $2,

£(r) € C°(BR), 0<§ <1, |XE| < 72— and§ = 1in B,
—p
2t—2(t— &2 2 >
n(0) = %JE(IO—RT,ZO—%)a

2 2
1, te[zo—%,toJr%].

and set ﬁfBR Szdx = N;p. Similarly to [5, 12], we denote the average on B of
u(x,t) by

-1
N 2 25 1 2
u) = (/BRé dx) /I;Rué dx = Ny 1Bzl BRuS dx.

Theorem 2 (parabolic Caccioppoli inequality). Let u € Wzl’1 (O7.RM)NL®(Q7r.RY)
be a weak solution of (1.1). Then for any 0 < p < R, Qr C Qr, one has

S}lp/B |u—12(z)|2dx+// | Xu|?dz
sﬁ/LR|u—a(z)|2dz+c//QR (Z

where the positive constant ¢ depends on Q,5,L .M and u(M),
2 2

i

4

2
+|f|2)dz, (3.1)

Proof. Noting B, C Bg C £2, multiplying both sides of (1.1) by (u—1i(t))&?2
(x)n(t), and integrating on Q' = BRr(xp) X (to — RTZ,S](S <ty+ RTz), we get

JJ,, Lot et (o = ) 2
R
= // [&i + X3 /7] (ui —ﬁi(t)) §ndz. 3.2)
Q%
By properties of £(x) and 7(), and the definition of u(¢), we have

- 2 _ 2 - 2 _
/BR(u—u(t))é ndx—/l;Rué ndx u(t)/BRE ndx =0,
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and
/f (0)e (u—i0(0)) E2ndz = / (t),di / (w— (1)) €2 = .
ORr Ir Bgr

It yields

f/ ut(u—a(z))szndzzf (e — (1)) (u —0(0)) E2dz
ORr ORr

= [ [(Glemaora) & 5u—iwpen] i

Since the left and right hand sides of (3.2) have the form

/f u+X Bxﬂu (u‘—ai(z))gzndz
[ [Gemo) -

+2a§xﬂ( —u (t)) SnXaéXﬁu] Z

f‘ﬂéanauiXﬂui

and

// gi+X*f-"‘ ui—ﬁi(t))ézndz
0%
// T (0) 20+ 40X + 280 (]~ (1)) S Kt ]dz.

respectively, it follows that (3.2) becomes

// [( u' i (’)‘ ) Szﬂ‘-””éznxau"xﬂuf]dz
// B‘u —u (Z)‘ £2n; — 248 ﬂ( ﬁi(t))EnXaéXﬂui}dz

i () €0+ f2E2nXe' |dz

/[Q/ 25;7 u —i (z)) fi"‘Xaé]dz. (3.3)

S
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By (H1), (H4), |u| < M and the Young inequality, it implies from (3.3) that

// ( lu—ii(t)| n) 2dz+8// | Xu|?£2ndz
s// 5|u—ﬁ(t)|2§2mdz+s//g | Xu|?€2ndz

a2 vE2 262
/[Q| a2 |Xé| ndZ+2u(M)M//Q/R|Xu| £2ndz

+ 1(M)ce

ndz + p(M)e //Q i) nd

Or i
+2€E//Q’R|f|2$2ndz+8//Q’R | Xul|®€2ndz.
/// (%|u_a(t)|2’7)t§2dz:/BR%W_Q(SNZSZWX,

it follows by (3.4) that

Using

/ =) E2ndx + (5 —2(e + u(M)M)) // | XuP £ndz

/f p M)l Eznfd”%ff ju—a(0) | X§[ ndz

+zcg//, IflzéznderM(M)e//Q/ ju— () £2ndz

+M(M)Cs[/Q

ndz.

R I

3.4)

3.5)

Because 2u(M)M < §, we can choose a small positive ¢ such that 2 (e + u(M)

M) < §, and by (3.5) we obtain (3.1). The proof is completed.

O

Theorem 3. Let u € WZI’I(QT, RY)YNL®(Q7,RN) be a weak solution of (1.1)
in Q. Then there exists a positive constants go such that Xu € loc(QT) D€

[2,24— Qz—gzé?o), and for any Qr C Q2r C Qr, it holds

(el |Xu|pdz)"’ ;
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ol (o )+ (s, (£l

where the positive constant ¢ depends on Q,8, L, M and u(M).

Proof. Denote 2* = Qz—%, q= Qz—gz Clearly,

[/Q lu—u(t)|?dz

4R/5

1
2
< sup / |u—ﬁ(t)|2dx) : / (/ |u—ﬁ(t)|2dx) dt
I4r/5 \YBarys I4r/5 \/Barys
=A-B.
In virtue of (2.2) and (3.1),

3.7)
v (] wemrna) e, (S ee)e)
sc(/fQRIXuIZdZ)5+C<//QR (Xi:‘gi 2+|f|2)dz)£‘ .

By (2.1), (2.2), (2.3) and the Holder inequality, we have

BS[ (/ |u—ﬁ(t)|‘7dx)2(?([ |u—a(z)|2*dx)2'2*dz
Ir Br Bgr
cRif (/ |Xu|qu)2q(/ |Xu|2dx)4dt
Ir Br Bgr
L \2 i
cR270 // | Xu|?dz // | Xu|?dz | . (3.9)
OR OR

Inserting (3.8) and (3.9) into (3.7) follows

I s ) (], e
(et (o), (5 )

=]/+11.

861

1

2+|f|2) dz)

(3.6)

D=

i

g

/A

/N
Qz"—‘

(3.10)
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To estimate I and /17, it uses the Young inequality to get

I$sR2// \Xu?dz +c.R™C (// |Xu|5dz) : (3.11)
ORr OR

2 2 -4 g
Il <¢R // | Xu|"dz +ecsR™ 2 (// | Xu| dz)
ORr ORr
v [ (S
Or \

Putting (3.11) and (3.12) into (3.10),

//Q lu—i(t)*dz < sRZ//Q |Xu|2dz+ceR—% (f/Q |Xu|r§dz)
o ff, (2l

Let us return (3.1) with (3.13), then

mffg |Xu|2dzs®//QR|Xu|2dz+ce (ﬁ//&wuﬁdz)

+|5;|//QR(Zg amz)dz

22
Denoting§=|Xu|‘7(c}=%=%>1),f=(Z‘g} +1f] ) , 0 =¢, the

above inequality is

Ot 05 (ﬁ //Qfdz) o ll,, 7
10kl //QR §idz (3.14)

By Lemma 3, we know that there exist positive constant ¢ and &g, such that for
b €14.q9+¢0),

QN

QN

i

2
+ |f|2)dz. (3.12)

QN

4R/5

i

2
+|f|2)dz. (3.13)

QN

3R/4

i

//\

1
(WlmfoR |Xu|1’qdz.)” <
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1
pq P
2 Q+2 1 12 2\ 2
s¢ (|Q2R| fo2R | Xul dz) Q2R fo2R (lZ ‘gl ‘ +1/ ) dz
Setting p = pg € [2,2 + Qz—_%ze()), the proof is finished. U
4. HOMOGENEOUS PARABOLIC SYSTEM
In this section, we study the following homogeneous parabolic system
wh+ X2 @ (zu)Xgu') = 0. 4.1

For convenience, we divide (4.1) into two parts. Concretely, let v € Wzl’1 NL* be a
weak solution of the following constant coefficients system:

vi 4 X ((a;"‘3 (-,a(z)))RXﬁvf) —0, in Og, W
v—ueWzl”OlﬂL"o, ond, OR, '
then w = u — v satisfies:
wi+ X5 ((af @) xpu')
=X (@ c.a0n) @) Xpu'),  in Q. (43)

w e Wzl,’o1 NL>®, on d,0OR,
B i S B at))d
where (a;" (-, u(t)) R |QR|foRai (z,u(r))dz.

Lemma 5 ([7]). Let v € W21’1(QT, RY)NL®(Qr1,RN) be a weak solution of
(4.2). Then forany0 < p< R, Qr CC QT, one has

f/ | Xv|? dz<c [/ | Xv|?dz.

Theorem 4. Let u € W2 ’ (QT, RY)YNL®(Q7.RN) be a weak solution of (4.1).
Then for any 0 < p < R, Qr CC Qr, there exists 9 > 0, such that for any p €

[2,24— Q_gzgo) P;z (0O +2) << Q+2 we have

o 2(Q+2)—1£(Q+2—M)
// |Xu|pdz$c<—) // | Xu|Pdz.
2, R Ox

Proof. When %R < p < R, the result is clearly true. Now it is enough to treat the
case p < %R .
Multiplying both sides of (4.3) by w’ and integrating on Q g, we obtain

//Q (wiw' + (a? .7@))  Xgw' Xou')dz
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=![7 ((07B(wﬁ(ﬂ))R——a?ﬂ(zﬂo)4Xﬂu?Xauﬁdz. 4.4)
ORr
Noting fo w widz = fBR dx fto-‘_RRZ//z2 ‘dw' = 0 and (H1), we get

5//QR|Xw|2dzs//QR((a;’ﬂ (-,ﬁ(z)))R—af‘ﬁ(z,ﬁ(t))‘|Xu||Xw|dz
I,

=7+1I. 4.5)

a?ﬂ (z,u(1)) —a?ﬁ(z,u)’ | Xu||Xw|dz

Because a;xﬂ (z,u) satisfies (H2), it follows
J| e oy (af caen) |z
Or R
< c//
ORr

By the Young inequality and the Holder inequality, we have

(//QR o @.a() - (a” . u(z))) ) (//QR|X”WZ)
+8//QR|Xw|de

<c8(|QR|nR (// |Xu|1’dz) +s//Q | Xw|?dz. (4.6)

By the Young inequality, (H3), Lemma 4 and the Holder inequality, it shows

11 $CS//Q
SCS//Q wz(lu—ﬁ(t)|2)|Xu|2dz+e//Q | Xw|?dz
(//QR lu— u(z)|) ) (//QR|XM|PdZ)
+8[/Q | Xw|?dz

ai? .1 (0) = (i 7)) |z <1 Qrlng (af).

2
i o) -l | XuPdz+e [[xwpPaz
ORr
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<ce <|QR|a)(ﬁ//QRlu—ﬁ(t)lzdz))p;z (//QR|Xu|pdz)i
+e //Q Xw|dz. @)

Inserting (4.6) and (4.7) into (4.5), we have

5//Q | Xw|?dz
weten| 0n() " ( f, w-ses))
(gl o) e

ORr

Let G(zo,R) = (17 ( )) ( (\QRIfoR |u—u(t)] a’z))p;2 and cho-

ose ¢ small enough such that § —2¢ > 0, then the above can be rewritten as

//QR|Xw|2dz<cG(zO,R>|QR|(l o //Q |Xu|”dz)

By the above, Lemma 5 and the Holder inequality, we know that for any p < %R,

0+2
// |Xu|2dz$c(£> // |Xv|2dz+c// | Xw|?dz
02 R Or Or
0+2
P // |Xu|2dz+c// | Xw|2dz
Or Or

$c|QR|[(§)Q+2+G(zo,R)}(ﬁ//g |XM|sz) . (4.8)

Due to Theorem 3 with g; = f = 0 and (4.8), it holds

[, wares<eted (g f, mers)
S¢ ((%)Qﬂ + G(zO,R))g ('é’:') /fQR | Xu|Pdz.

SIS
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TakingH(p)z(\Qp{ lo, IXul”dZ) H(R)—(IQRI foRlXul”dz) ,
a=Q+2, B=0.We have by Lemma | with b = 1 (252(Q +2) < < Q0 +2)

that
(\Qp L |Xu|f’dz)p<c(§ (|QR|"52f/QR|Xu|”dz)p

Inserting ||QR || <c(%) 272 into the above, we get the result. O

5. PROOFS OF THE MAIN RESULTS

In this section, we will prove Theorem 1. Let v € W21’1 N L be a weak solution
of the following system:

vj+ X5 (a8 () Xpv') =0, in O, .
v—ueWzl,’OlﬂLoo, on d,OR,
then w = u — v satisfies:
wi + X} (af‘ﬁ( a(:))Xﬂw") —gi+ X}/ in Qg 5
wEWZOﬂLOO on d,0r.

Lemma 6. Let w € Wzl”o (O1,RY)YNL®(Q7,RN) be a weak solution of (5.2)
in Q1. Then there exists a positive constant &g, such that Xw € Llpoc(QT)’ pE

2.2+ §%e0), and it holds
D
’ +|f|P)dz+c// XulPdz,
02r

[[ wwraz<c [] (
ORr Oor
forany Q,r CC Q.

Proof. Since w € Wzl,’o1 (07, RY)YNL®(Q7.RN), there exists a constant M > 0,
such that |w| < M. _

Multiplying both sides of (1.1) by w' and integrating on Q, g leads to

/f [wiwi +a?ﬂXﬂwiXawi]dz = /] [giwi +ﬁ“Xawi]dZ.
O2R O2R

Since

i



GRADIENT ESTIMATES IN MORREY SPACES 867

we have by (H1), (H4), the Young inequality and (2.4) that

8// | Xw|?dz < // w,wdz+8// | Xw|?dz
Q2R Q2R Q2R
<// ,U,(M)<|Xu|2+z gl‘}) lw|dz + ce / |f|2dz+e// | Xw|?dz
O2R i O2R O2Rr
12
< u(M)YM; // |Xu|2dz+c// (Z g” +|f|2)dZ+28// | Xw|?dz,
Q2R Q2R \ | Q2R

where ¢ is small enough such that § —2e > 0. It gets

// |Xw|2dz<c// |Xu|2dz+c// (Z
O2r O2r O2r \

Using the above estimate into (3.6) and the Holder inequality, it follows
1
L // Xw|Pdz
|Or| Mg,
< 1// XuPdz 4+ — /f S el 177 )a
<c ul“dz Z
|Q2r1 o, p |Q2r| M g, \ 5

il? 2\,
g'| +IfI7)dz.

[SIS]

i

4
+— [/ Zgip+|f|p dz
|Q2r| ) g, \ 5
c c | P
< f/ \Xu|Pdz + // Z(g’ AP dz.
Hence the conclusion is proved. U

Theorem 5. Suppose that assumptions (H1)-(H4) hold. Let u € Wzl’1 (0r.RY)N
L®(Q71.RY) be a weak solution of (1.1). Then there exists a positive constant €,

such that for any p € [2, 2+ Q2—_€280), we have

Xue L, (@78,

Moreover, there exists a constant Ry < do such that for any p and R, 0 < p < R < Ry,
QO>r CC Qr, one has

gi

D
Xul? <c||xul? ‘ P,
1Xul7 20 c{n ulle(QRﬁXij Lo TS
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Proof. By Lemma 6 and Theorem 4, it shows

// |Xu|pdz§c// |Xv|pdz+c// | Xw|Pdz
o 14 14

p\ 22ED=p@+2-w) ,

<c(2) [l praz e [ (5
R Oor \

—i—c/[ | Xu|Pdz

Q2R

2042)=p(Q+2-1)

< |:c (ﬁ) 2 +cj| // | Xu|?Pdz

R Oor

_ P
+ RO+ (Z &'+ ||f||§m).
. X X
1

Denote H(p) = fop | Xu|Pdz, H(R) = foR | XulPdz, a = 2(Q+2)_’2’(Q+2_“),

gl

'p+|f|1’)dz

b=0+2—-A,B=c (Z ”gi ”Ilj”"\ + ||f||:psl),0 < A < Q +2. Then there exists
i X X

U, Q+2—% << Q+2,suchthata > b. By Lemma I, we have

// | Xu|Pdz

<e [(%)Q+2—A //QzR Xu|Pdz + p@+2H (Z Hgi

4 p
Lo + ||f||L§.A .

This proof is completed. O]

Proof. (of Theorem 1) By Theorem 5 and the cutoff function technique, it is easy

to see that Theorem 1 is true. O
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