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Abstract. LetR be a commutative ring and letM be a finitely generatedR-module. Let’s denote
the cozero-divisor graph of R by K� .R/. In this paper, we introduce a certain subgraph K�R.M/

of K� .R/, called cozero-divisor graph relative to M , and obtain some related results.
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1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity. We denote
the set of maximal ideals of R by Max.R/.

A graph G is defined as the pair .V .G/;E.G//, where V.G/ is the set of vertices
ofG andE.G/ is the set of edges ofG. For two distinct vertices a and b of V.G/, the
notation a�b means that a and b are adjacent. A graph G is said to be complete if
a�b for all distinct a;b 2 V.G/, andG is said to be empty ifE.G/D¿. Note that by
this definition a graph may be empty even if V.G/ 6D¿. If jV.G/j � 2, a path from a

to b is a series of adjacent vertices a�v1�v2� :::�vn�b. The length of a path is the
number of edges it contains. A cycle is a path that begins and ends at the same vertex
in which no edge is repeated, and all vertices other than the starting and ending vertex
are distinct. If a graph G has a cycle, the girth of G (notated g.G/) is defined as the
length of the shortest cycle of G; otherwise, g.G/D1. A graph G is connected if
for every pair of distinct vertices a;b 2 V.G/, there exists a path from a to b. If there
is a path from a to b with a;b 2 V.G/, then the distance from a to b is the length of
the shortest path from a to b and is denoted d.a;b/. If there is not a path between a
and b, d.a;b/D1. The diameter of G is diam.G/D Supfd.a;b/ja;b 2 V.G/g.

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck
in 1988 [8]. He assumes that all elements of the ring are vertices of the graph and was
mainly interested in colorings and then this investigation of coloring of a commuta-
tive ring was continued by Anderson and Naseer in [4]. Anderson and Livingston
[7], studied the zero-divisor graph whose vertices are the nonzero zero-divisors.
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LetZ.R/ be the set of zero-divisors ofR. The zero-divisor graph ofR denoted by
� .R/, is a graph with verticesZ�.R/DZ.R/nf0g and for distinct x;y 2Z�.R/ the
vertices x and y are adjacent if and only if xy D 0. This graph turns out to exhibit
properties of the set of the zero-divisors of a commutative ring. The zero-divisor
graph helps us to study the algebraic properties of rings using graph theoretical tools.
We can translate some algebraic properties of a ring to graph theory language and
then the geometric properties of graphs help us explore some interesting results in
algebraic structures of rings. The zero-divisor graph of a commutative ring has also
been studied by several other authors (e.g., [5, 6, 10]).

In [2], Afkhami and Khashyarmanesh introduced the cozero-divisor graph K� .R/
ofR, in which the vertices are precisely the nonzero, non-unit elements of R, denoted
W �.R/, and two vertices x and y are adjacent if and only if x 62 yR and y 62 xR.

Now let M be a finitely generated R-module. The purpose of this paper is to int-
roduce a certain subgraph K�R.M/ of K� .R/, called the cozero-divisor graph relative
to M and obtain some results similar to those of [2] and [3]. This graph, with a
different point of view, can be regarded as a reduction of K� .R/, namely, we have
K�R.R/D K� .R/.

2. AUXILIARY RESULTS

Let M be an R-module. The support of M is denoted by Supp.M/ and it is
defined by

Supp.M/DfP 2Spec.R/jAnnR.N /�P for some cyclic submodule N of M g:

In the rest of this paper Max.Supp.M// (i.e., the set of all maximal elements in
Supp.M/) is denoted by Max.M/.

The Jacobson radical of M is denoted by J.M/ and it is the intersection of all
elements in Max.M/. Also, the union of all elements in Max.M/ is denoted by
NR.M/ [12].
M is said to be a local module if jMax.M/j D 1 [12].
The subset WR.M/ of R is defined by fr 2 RjrM 6DM g [12] and set W �R .M/D

WR.M/n f0g.
ZR.M/D fr 2 Rj the R-module endomorphism on M defined by multiplication

by r is not injective g.

Remark 1 (See [12]). Let M be an R-module. Then WR.M/ � NR.M/ and we
have equality if M is a finitely generated R-module.

Remark 2. Max.M/�Max.R/.

Proof. This follows immediately from the proof of [12, 1.4]. �
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3. MAIN RESULTS

In the rest of this paper M is a finitely generated R-module.

Definition 1. We define the cozero-divisor graph relative toM , denoted by K�R.M/

as a graph with vertices W �R .M/ D WR.M/ n f0g and two distinct vertices r and s
are adjacent if and only if r 62 .sM WR M/ and s 62 .rM WR M/.

Definition 2. We define the strongly cozero-divisor graph relative to M , denoted
by Q�R.M/ as a graph with verticesW �R .M/DWR.M/nf0g and two distinct vertices
r and s are adjacent if and only if r 62

p
.sM WR M/ and s 62

p
.rM WR M/.

The following example shows that K� .R/, K�R.M/, and Q�R.M/ are different.

Example 1. Set RDZ (here Z denotes the ring of integers) and M DZ12. Then
W �R .R/DZnf�1;1;0g andW �R .M/DZn.fm W .m;12/D 1g

S
f0g/, where .m;12/

denotes the greatest common divisor ofm and 12. The elements 8 and 12 are adjacent
in K� .R/ but they are not adjacent in K�R.M/. Also, 6 and 8 are adjacent in K�R.M/

but they are not adjacent in Q�R.M/. Moreover, 6 and 10 are adjacent in Q�R.R/ but
they are not adjacent in Q�R.M/.

An R-module L is said to be a multiplication module if for every submodule N of
L there exists an ideal I of R such that N D IL

Theorem 1. (a) K�R.M/ is a subgraph of K� .R/.
(b) Q�R.R/ is a subgraph of K� .R/.
(c) If M is a faithful R-module, then W �R .M/DW �.R/.
(d) If M is a faithful R-module, then Q�R.M/D Q�R.R/.
(e) If M is a faithful multiplication R-module, then K�R.M/D K� .R/.

Proof. Parts (a) and (b) are clear.
(c) By part (a), W �R .M/ �W �.R/. Now let r 2W �.R/ and r 62W �R .M/. Then

rM DM . Thus by Nakayama’ Lemma, 1C rt 2 AnnR.M/D 0. Hence Rr D R,
which is a contradiction.

(d) By part (c), W �R .M/ D W �.R/. Now let r and s be two distinct adjacent
vertices of Q�R.R/ and let r 2

p
.sM WR M/. Then rnM � sM for some n 2 N.

Thus by [11, Theorem 75], there exist t 2 R and k 2N such that .rknC st/M D 0.
Since M is faithful, rknC st D 0 and so r 2

p
sR. This contradiction shows that

E. Q�R.R//�E. K�RM/. The reverse inclusion is clear.
(e) By part (c), W �R .M/ D W �.R/. Now let r and s be two distinct adjacent

vertices of K� .R/ and let r 2 .sM WR M/. Then rM � sM . Thus by [1], Rr � sR,
which is a contradiction. Hence E. K� .R// � E. K�R.M//. The reverse inclusion is
clear. �

Remark 3. By using part (e) of Theorem 1, if M DR, then K�R.R/D K� .R/.
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We use the following lemma frequently.

Lemma 1. Let M be an R-module and P 2Max.M/. Then P D .PM WR M/.

Proof. Assume .PM WR M/DR so that PM DM . SinceM is finitely generated,
there exists x 2 P such that .1C x/M D 0. Thus 1C x 2 AnnR.M/ but by [12],
P �AnnR.M/. It follows that 1 2 P , a contradiction. Now the results follows from
P � .PM WR M/ and Remark 2. �

Proposition 1.
(a) The graph K�R.M/ is not complete if and only if there exists an element s 2
W �R .M/ such that j.sM WR M/j> 2.

(b) K�R.M/ is complete if and only if .sM WRM/Df0;sg for all elements s inW �R .M/.
(c) If R is an integral domain, then K�R.M/ is not complete.

Proof. Straightforward �

Theorem 2. K�R.M/ is complete if and only if Q�R.M/ is complete.

Proof. The sufficiency is clear. Conversely, we assume that K�R.M/ is complete
and r , s be arbitrary distinct elements inW �R .M/ and r 2

p
.sM WM/. Then rnM �

sM for some n 2N. Since K�R.M/ is complete, rn and s are adjacent. But this is a
contradiction by the above arguments. �

We use the notation K�R.M/nJ.M/ to denote a subgraph of K�R.M/ with vertices
W �R .M/nJ.M/.

Theorem 3. (a) The graph K�R.M/nJ.M/ is connected.
(b) If M is a non-local module, then diam. K�R.M/nJ.M//� 2.

Proof. (a) If M is a local module, then W �R .M/ n J.M/ is a empty set, which
is connected. So we assume that jMax.M/j > 1. Let r and s be arbitrary distinct
elements inW �R .M/nJ.M/. Suppose that r is not adjacent to s. We may assume that
r 2 .sM WR M/. Since r 62 J.M/, there exists P 2Max.M/ such that r 62 P . Thus
P 6� J.M/[ .sM WR M/, otherwise, P � J.M/ or P � .sM WR M/. In first case,
J.M/D P so that jMax.M/j D 1. In second case, P D .sM WR M/ by Lemma 1.
In either case we have a contradiction. Choose t in P n .J.M/[ .sM WR M//. Now
by using Lemma 1, we see that r � t � s is the required path.

(b) This follows from the proof of part (a). �

Corollary 1. Let M be a non-local R-module with J.M/ D 0. Then K�R.M/ is
connected and diam. K�R.M//� 2.

Theorem 4. Let M be a non-local module such that for every element r 2 J.M/,
there exist P 2Max.M/ and s 2 P nJ.M/ with r 62 .sM WR M/. Then K�R.M/ is
connected and diam. K�R.M//� 3.
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Proof. Suppose that r;s 2W �R .M/ and r is not adjacent to s. We may assume that
r 2 .sM WR M/. Then, we have the following cases:

Case 1. Suppose that s 2 J.M/. We claim that r 2 J.M/. Otherwise there exists
P 2Max.M/ such that r 62 P . Then rM � sM � PM . Thus by Lemma 1, r 2
.PM WR M/DP , a contradiction. Thus by hypothesis, there exists t 2P nJ.M/ for
some P 2Max.M/ with r 62 .tM WR M//. Also t 62 .rM WR M/; otherwise, we have
tM � rM � sM . Thus t 2 .sM WR M/� .PM WR M/D P for each P 2 J.M/ so
that t 2 J.M/, a contradiction. Thus r is adjacent to t . By similar arguments, we see
that t is adjacent to s. Hence r � t � s is the required path.

Case 2. Suppose that r;s 62 J.M/. Then r 62 P , for some P 2 Max.M/. If
P D .sM WR M/, then since r 2 .sM WR M/, we have a contradiction. Choose p
in P n .sM WR M/. By similar arguments as in part (a), we see that r �p� s is the
desired path.

Case 3. Assume that s 62 J.M/ and r 2 J.M/. By our assumption, there exists
q 2 P nJ.M/, for some P 2Max.M/ such that r 62 .qM WR M/. We claim that
q 62 .rM WR M/. Otherwise, qM � rM � PM for every P 2Max.M/. Thus by
Lemma 1, q 2 .PM WR M/ D P for every P 2Max.M/, a contradiction. Hence
r is adjacent to q. Further, s 62 .qM WR M/. If q 62 .sM WR M/, then we get the the
path r �q� s. Otherwise, we can apply case 2 for the elements q and s to get a path
q�u� s for some u 2W �R .M/. Hence we have r �q�u� s. �

Theorem 5. Let M be a non-local module. Then g. K�R.M/ n J.M// � 5 or
g. K�R.M/nJ.M//D1.

Proof. Use the technique of [2, 2.8] and apply Theorem 3. �

Theorem 6. Let jMax.M/j � 3. Then g. K�R.M//D 3.

Proof. Clearly, g. K�R.M//� 3. LetP1;P2; andP3 be distinct elements ofMax.M/.
By Remark 2,Max.M/�Max.R/. Choose ai 2Pi n[

3
jD1Pj , 1� i � 3 and j ¤ i .

Then by using 1, we see that a1�a2�a3�a1 is a cycle. Therefore g. K�R.M//D

3. �

For a graph G, let �.G/ denote the chromatic number of the graph G, i.e., the
minimal number of colors which can be assigned to the vertices of G in such a way
that every two adjacent vertices have different colors. A clique of a graph is its
complete subgraph and the number of vertices in the largest clique of G, denoted by
clique.G/, is called the clique number of G.

Theorem 7. (a) LetR not be a field. Then ifMax.M/ has an infinite number
of maximal ideals, then clique. K�R.M// is also infinite;
otherwise clique. K�R.M//� jMax.M/j.

(b) If �. K�R.M// <1, then jMax.M/j<1.

Proof. Use the technique of [2, 2.14]. �
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A graph is said to be planar if it can be drawn in the plane so that its edges intersect
only at their ends.

Theorem 8. Assume that jMax.M/j � 5. Then K�R.M/ is not planar.

Proof. Assume that jMax.M/j � 5. Choose ai 2 mi n [
5
jD1mj , where mi 2

Max.M/, 1� i � 5, and j ¤ i . Then ai 62 .ajM WR M/. Otherwise, ai 2 .ajM WR
M/ � .mjM WR M/ D mj by Lemma 1. Similarly, aj 62 .aiM WR M/. Hence
m1;m2;m3;m4;m5 forms a complete subgraph of K�R.M/ which is isomorphic to
K5. Thus by [9, p.153], K�R.M/ is not planar. �

For any vertex x of a connected graph G, the eccentricity of x, denoted by e.x/,
is the maximum of the distances from x to the other vertices of G, and the minimum
value of the eccentricity is the radius of G, which is denoted by r.G/.

Theorem 9. Let M be a non-local module with J.M/D 0. Then r. K�R.M//D 2

if and only if for each t 2W �R .M/, there exists s 2W �R .M/ such that t is not adjacent
to s.

Proof. The proof is similar to that of [2, 3.14]. �

Theorem 10. Let R be a Noetherian ring. If K�R.M/ is totally disconnected,
then M is a local module with maximal ideal of the from .xM WR M/ for some
x 2W �R .M/.

Proof. It is easy to see that M is a local module. Set Max.M/ D m. Assume
to contrary that m is not the form of .rM WR M/ for every r 2 W �R .M/. Set A D
f.rM WR M/;r 2 W �R .M/g. Then A has a maximal member, say . KrM WR M/ for
some Kr 2 W �R .M/. Choose s 2 m n . KrM WR M/. We claim that Kr 62 .sM WR M/.
Otherwise, we have . KrM WR M/ � .sM WR M/, so . KrM WR M/ D .sM WR M/ by
maximality. Hence s 2 . KrM WR M/ so that Kr is adjacent to s, a contradiction. �

Theorem 11. Assume that M is a non-local module. Then the following condi-
tions are equivalent.

(a) K�R.M/nJ.M/ is complete bipartite.
(b) K�R.M/nJ.M/ is bipartite.
(c) K�R.M/nJ.M/ contains no triangles.

Proof. Use the technique of [3, 2.13]. �

Proposition 2. If the graph K�R.M/nJ.M/ is n-partite for some positive integer
n, then jMax.M/j � n.

Proof. Assume to the contrary that jMax.M/j > n. Since K�R.M/ nJ.M/ is an
n-partite graph, there are maximal ideals P1 and P2 of MaxR.M/ with .rM WR
M/ � P1 nP2 and .sM WR M/ � P2 nP1, where r;s belong to the same part. But
this implies that r is adjacent to s which is a contradiction. �
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Theorem 12. LetM be anR-module withMax.M/D fm1;m2g. Then K�R.M/n

J.M/ is a complete bipartite graph with parts mi n J.M/, i D 1;2, if and only if
every pair of ideals .rM WR M/, .sM WR M/ contained in .m1 n J.M// or .m2 n

J.M//, where r;s 2R, are totally ordered.

Proof. Suppose that K�R.M/nJ.M/ is a complete bipartite graph with parts mi n

J.M/, i D 1;2. Further assume to the contrary that there exist ideals .rM WR M/,
.sM WR M/ � m1 nJ.M/ such that .rM WR M/ 6� .sM WR M/ and .sM WR M/ 6�

.rM WR M/. We claim that r is adjacent to s in m1 nJ.M/. Otherwise, without loss
of generality, we assume that r 2 .sM WR M/. Then r;s 2 m1 nJ.M/ and we have
rM � .sM WR M/M . Thus .rM WR M/ � ..sM WR M/M WR M/D .sM WR M/, a
contradiction. Hence r is adjacent to s in m1 nJ.M/, which is again a contradiction
by hypothesis. Conversely, assume that i 2 f1;2g and .rM WR M/;.sM WR M/ �

mi n J.M/. We may assume that .rM WR M/ � .sM WR M/. Then clearly, r;s 2
mi nJ.M/ and r is not adjacent. Now if r 2m1 nm2 and s 2m2 nm1, then by using
1, we see that r is adjacent to s. Therefore K�R.M/ nJ.M/ is a complete bipartite
graph with parts mi nJ.M/, i D 1;2. �

Theorem 13. LetM be a faithfulR-module andZR.M/¤WR.M/. Then K�R.M/

is finite if and only if R is finite.

Proof. Clearly if R is finite, then K�R.M/ is finite. So we assume that K�R.M/

is finite and show that R is finite. Suppose that R is infinite and look for a cont-
radiction. By Remark 1, we have ZR.M/ � WR.M/ D NR.M/. Choose x 2
WR.M/ nZR.M/. Since Rx is a finite R-module and R nWR.M/ is an infinite
set, there exist distinct elements r1; r2 2RnWR.M/ such that r1x D r2x. Therefore
.r1� r2/x D 0. Then we have x..r1� r2/M/D 0. Since x is a nonzero-divisor on
M , we have .r1� r2/M D 0 so that r1� r2 2AnnR.M/. Thus r1 D r2, a contradic-
tion. �

Corollary 2. Let R be a domain and let ZR.M/ D f0g. If K�R.M/ is a finite
graph, then R is a field.

Proof. If WR.M/¤ f0g, then by Theorem 13, R is finite so that R is a field. Ot-
herwise, ifWR.M/D f0g, then we haveWR.M/D[p2Max.M/P D f0g by Remark
1. This implies that the zero ideal of R is a maximal ideal and hence R is a field. �

Remark 4. One can see, by using the same technique, that the results about K�R.M/

in this section is also true for Q�R.M/.
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