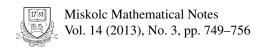


The cozero-divisor graph relative to finitely generated modules

H. Ansari-Toroghy, F. Farshadifar, and Sh. Habibi



THE COZERO-DIVISOR GRAPH RELATIVE TO FINITELY GENERATED MODULES

H. ANSARI-TOROGHY, F. FARSHADIFAR, AND SH.HABIBI

Abstract. Let R be a commutative ring and let M be a finitely generated R-module. Let's denote the cozero-divisor graph of R by $\Gamma(R)$. In this paper, we introduce a certain subgraph $\Gamma(R)$ of $\Gamma(R)$, called cozero-divisor graph relative to M, and obtain some related results.

2010 Mathematics Subject Classification: 05C75; 13A99; 05C99 Keywords: cozero-divisor, complete graph, finitely generated

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. We denote the set of maximal ideals of R by Max(R).

A graph G is defined as the pair (V(G), E(G)), where V(G) is the set of vertices of G and E(G) is the set of edges of G. For two distinct vertices a and b of V(G), the notation a-b means that a and b are adjacent. A graph G is said to be *complete* if a-b for all distinct $a,b \in V(G)$, and G is said to be *empty* if $E(G) = \emptyset$. Note that by this definition a graph may be empty even if $V(G) \neq \emptyset$. If $|V(G)| \geq 2$, a path from a to b is a series of adjacent vertices $a-v_1-v_2-...-v_n-b$. The length of a path is the number of edges it contains. A cycle is a path that begins and ends at the same vertex in which no edge is repeated, and all vertices other than the starting and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated g(G)) is defined as the length of the shortest cycle of G; otherwise, $g(G) = \infty$. A graph G is connected if for every pair of distinct vertices $a,b \in V(G)$, there exists a path from a to b. If there is a path from a to b with $a,b \in V(G)$, then the distance from a to b is the length of the shortest path from a to b and is denoted d(a,b). If there is not a path between a and b, $d(a,b) = \infty$. The diameter of G is $diam(G) = Sup\{d(a,b)|a,b \in V(G)\}$.

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [8]. He assumes that all elements of the ring are vertices of the graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [4]. Anderson and Livingston [7], studied the zero-divisor graph whose vertices are the nonzero zero-divisors.

Let Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z^*(R) = Z(R) \setminus \{0\}$ and for distinct $x, y \in Z^*(R)$ the vertices x and y are adjacent if and only if xy = 0. This graph turns out to exhibit properties of the set of the zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings. The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., [5, 6, 10]).

In [2], Afkhami and Khashyarmanesh introduced the *cozero-divisor graph* $\Gamma(R)$ of R, in which the vertices are precisely the nonzero, non-unit elements of R, denoted $W^*(R)$, and two vertices x and y are adjacent if and only if $x \notin yR$ and $y \notin xR$.

Now let M be a finitely generated R-module. The purpose of this paper is to introduce a certain subgraph $\Gamma_R(M)$ of $\Gamma(R)$, called the cozero-divisor graph relative to M and obtain some results similar to those of [2] and [3]. This graph, with a different point of view, can be regarded as a reduction of $\Gamma(R)$, namely, we have $\Gamma_R(R) = \Gamma(R)$.

2. AUXILIARY RESULTS

Let M be an R-module. The *support* of M is denoted by Supp(M) and it is defined by

 $Supp(M) = \{P \in Spec(R) | Ann_R(N) \subseteq P \text{ for some cyclic submodule } N \text{ of } M\}.$

In the rest of this paper Max(Supp(M)) (i.e., the set of all maximal elements in Supp(M)) is denoted by Max(M).

The *Jacobson radical* of M is denoted by J(M) and it is the intersection of all elements in Max(M). Also, the union of all elements in Max(M) is denoted by $N_R(M)$ [12].

M is said to be a *local module* if |Max(M)| = 1 [12].

The subset $W_R(M)$ of R is defined by $\{r \in R | rM \neq M\}$ [12] and set $W_R^*(M) = W_R(M) \setminus \{0\}$.

 $Z_R(M) = \{r \in R | \text{ the } R\text{-module endomorphism on } M \text{ defined by multiplication by } r \text{ is not injective } \}.$

Remark 1 (See [12]). Let M be an R-module. Then $W_R(M) \subseteq N_R(M)$ and we have equality if M is a finitely generated R-module.

Remark 2. $Max(M) \subseteq Max(R)$.

Proof. This follows immediately from the proof of [12, 1.4].

3. Main results

In the rest of this paper M is a finitely generated R-module.

Definition 1. We define the *cozero-divisor graph relative to M*, denoted by $\Gamma_R(M)$ as a graph with vertices $W_R^*(M) = W_R(M) \setminus \{0\}$ and two distinct vertices r and s are adjacent if and only if $r \notin (sM :_R M)$ and $s \notin (rM :_R M)$.

Definition 2. We define the *strongly cozero-divisor graph relative to M*, denoted by $\tilde{\Gamma}_R(M)$ as a graph with vertices $W_R^*(M) = W_R(M) \setminus \{0\}$ and two distinct vertices r and s are adjacent if and only if $r \notin \sqrt{(sM:_R M)}$ and $s \notin \sqrt{(rM:_R M)}$.

The following example shows that $\Gamma(R)$, $\Gamma(R)$, and $\Gamma(R)$ are different.

Example 1. Set $R = \mathbb{Z}$ (here \mathbb{Z} denotes the ring of integers) and $M = \mathbb{Z}_{12}$. Then $W_R^*(R) = \mathbb{Z} \setminus \{-1, 1, 0\}$ and $W_R^*(M) = \mathbb{Z} \setminus (\{m : (m, 12) = 1\} \bigcup \{0\})$, where (m, 12) denotes the greatest common divisor of m and 12. The elements 8 and 12 are adjacent in $\hat{\Gamma}(R)$ but they are not adjacent in $\hat{\Gamma}_R(M)$. Also, 6 and 8 are adjacent in $\hat{\Gamma}_R(M)$ but they are not adjacent in $\hat{\Gamma}_R(M)$. Moreover, 6 and 10 are adjacent in $\hat{\Gamma}_R(R)$ but they are not adjacent in $\hat{\Gamma}_R(M)$.

An R-module L is said to be a *multiplication module* if for every submodule N of L there exists an ideal I of R such that N = IL

Theorem 1. (a) $\hat{\Gamma}_R(M)$ is a subgraph of $\hat{\Gamma}(R)$.

- (b) $\tilde{\Gamma}_R(R)$ is a subgraph of $\hat{\Gamma}(R)$.
- (c) If M is a faithful R-module, then $W_R^*(M) = W^*(R)$.
- (d) If M is a faithful R-module, then $\Gamma_R(M) = \Gamma_R(R)$.
- (e) If M is a faithful multiplication R-module, then $\Gamma_R(M) = \Gamma(R)$.

Proof. Parts (a) and (b) are clear.

- (c) By part (a), $W_R^*(M) \subseteq W^*(R)$. Now let $r \in W^*(R)$ and $r \notin W_R^*(M)$. Then rM = M. Thus by Nakayama' Lemma, $1 + rt \in Ann_R(M) = 0$. Hence Rr = R, which is a contradiction.
- (d) By part (c), $W_R^*(M) = W^*(R)$. Now let r and s be two distinct adjacent vertices of $\tilde{\Gamma}_R(R)$ and let $r \in \sqrt{(sM:_R M)}$. Then $r^nM \subseteq sM$ for some $n \in \mathbb{N}$. Thus by [11, Theorem 75], there exist $t \in R$ and $k \in \mathbb{N}$ such that $(r^{kn} + st)M = 0$. Since M is faithful, $r^{kn} + st = 0$ and so $r \in \sqrt{sR}$. This contradiction shows that $E(\tilde{\Gamma}_R(R)) \subseteq E(\hat{\Gamma}_R M)$. The reverse inclusion is clear.
- (e) By part (c), $W_R^*(M) = W^*(R)$. Now let r and s be two distinct adjacent vertices of $\dot{\Gamma}(R)$ and let $r \in (sM :_R M)$. Then $rM \subseteq sM$. Thus by [1], $Rr \subseteq sR$, which is a contradiction. Hence $E(\dot{\Gamma}(R)) \subseteq E(\dot{\Gamma}_R(M))$. The reverse inclusion is clear.

Remark 3. By using part (e) of Theorem 1, if M = R, then $\acute{\Gamma}_R(R) = \acute{\Gamma}(R)$.

We use the following lemma frequently.

Lemma 1. Let M be an R-module and $P \in Max(M)$. Then $P = (PM :_R M)$.

Proof. Assume $(PM :_R M) = R$ so that PM = M. Since M is finitely generated, there exists $x \in P$ such that (1+x)M = 0. Thus $1+x \in Ann_R(M)$ but by [12], $P \supseteq Ann_R(M)$. It follows that $1 \in P$, a contradiction. Now the results follows from $P \subseteq (PM :_R M)$ and Remark 2.

Proposition 1.

- (a) The graph $\Gamma_R(M)$ is not complete if and only if there exists an element $s \in W_R^*(M)$ such that $|(sM:_R M)| > 2$.
- (b) $\Gamma_R(M)$ is complete if and only if $(sM :_R M) = \{0, s\}$ for all elements s in $W_R^*(M)$.
- (c) If R is an integral domain, then $\Gamma_R(M)$ is not complete.

Proof. Straightforward

Theorem 2. $\Gamma_R(M)$ is complete if and only if $\tilde{\Gamma}_R(M)$ is complete.

Proof. The sufficiency is clear. Conversely, we assume that $f_R(M)$ is complete and r, s be arbitrary distinct elements in $W_R^*(M)$ and $r \in \sqrt{(sM:M)}$. Then $r^nM \subseteq sM$ for some $n \in \mathbb{N}$. Since $f_R(M)$ is complete, r^n and s are adjacent. But this is a contradiction by the above arguments.

We use the notation $\Gamma_R(M) \setminus J(M)$ to denote a subgraph of $\Gamma_R(M)$ with vertices $W_R^*(M) \setminus J(M)$.

Theorem 3. (a) The graph $\hat{\Gamma}_R(M) \setminus J(M)$ is connected. (b) If M is a non-local module, then d i am $(\hat{\Gamma}_R(M) \setminus J(M)) \leq 2$.

Proof. (a) If M is a local module, then $W_R^*(M) \setminus J(M)$ is a empty set, which is connected. So we assume that |Max(M)| > 1. Let r and s be arbitrary distinct elements in $W_R^*(M) \setminus J(M)$. Suppose that r is not adjacent to s. We may assume that $r \in (sM:_R M)$. Since $r \not\in J(M)$, there exists $P \in Max(M)$ such that $r \not\in P$. Thus $P \not\subseteq J(M) \cup (sM:_R M)$, otherwise, $P \subseteq J(M)$ or $P \subseteq (sM:_R M)$. In first case, J(M) = P so that |Max(M)| = 1. In second case, $P = (sM:_R M)$ by Lemma 1. In either case we have a contradiction. Choose t in $P \setminus (J(M) \cup (sM:_R M))$. Now by using Lemma 1, we see that r - t - s is the required path.

(b) This follows from the proof of part (a).

Corollary 1. Let M be a non-local R-module with J(M) = 0. Then $\Gamma_R(M)$ is connected and $diam(\Gamma_R(M)) < 2$.

Theorem 4. Let M be a non-local module such that for every element $r \in J(M)$, there exist $P \in Max(M)$ and $s \in P \setminus J(M)$ with $r \notin (sM :_R M)$. Then $\Gamma_R(M)$ is connected and $diam(\Gamma_R(M)) \leq 3$.

Proof. Suppose that $r, s \in W_R^*(M)$ and r is not adjacent to s. We may assume that $r \in (sM :_R M)$. Then, we have the following cases:

Case 1. Suppose that $s \in J(M)$. We claim that $r \in J(M)$. Otherwise there exists $P \in Max(M)$ such that $r \notin P$. Then $rM \subseteq sM \subseteq PM$. Thus by Lemma 1, $r \in (PM:_R M) = P$, a contradiction. Thus by hypothesis, there exists $t \in P \setminus J(M)$ for some $P \in Max(M)$ with $r \notin (tM:_R M)$. Also $t \notin (rM:_R M)$; otherwise, we have $tM \subseteq rM \subseteq sM$. Thus $t \in (sM:_R M) \subseteq (PM:_R M) = P$ for each $P \in J(M)$ so that $t \in J(M)$, a contradiction. Thus r is adjacent to t. By similar arguments, we see that t is adjacent to s. Hence r - t - s is the required path.

Case 2. Suppose that $r, s \notin J(M)$. Then $r \notin P$, for some $P \in Max(M)$. If $P = (sM :_R M)$, then since $r \in (sM :_R M)$, we have a contradiction. Choose p in $P \setminus (sM :_R M)$. By similar arguments as in part (a), we see that r - p - s is the desired path.

Case 3. Assume that $s \notin J(M)$ and $r \in J(M)$. By our assumption, there exists $q \in P \setminus J(M)$, for some $P \in Max(M)$ such that $r \notin (qM :_R M)$. We claim that $q \notin (rM :_R M)$. Otherwise, $qM \subseteq rM \subseteq PM$ for every $P \in Max(M)$. Thus by Lemma 1, $q \in (PM :_R M) = P$ for every $P \in Max(M)$, a contradiction. Hence r is adjacent to q. Further, $s \notin (qM :_R M)$. If $q \notin (sM :_R M)$, then we get the the path r - q - s. Otherwise, we can apply case 2 for the elements q and s to get a path q - u - s for some $u \in W_R^*(M)$. Hence we have r - q - u - s.

Theorem 5. Let M be a non-local module. Then $g(\hat{\Gamma}_R(M) \setminus J(M)) \leq 5$ or $g(\hat{\Gamma}_R(M) \setminus J(M)) = \infty$.

Proof. Use the technique of [2, 2.8] and apply Theorem 3.

Theorem 6. Let $|Max(M)| \ge 3$. Then $g(\hat{\Gamma}_R(M)) = 3$.

Proof. Clearly, $g(\hat{\Gamma}_R(M)) \ge 3$. Let P_1, P_2 , and P_3 be distinct elements of Max(M). By Remark 2, $Max(M) \subseteq Max(R)$. Choose $a_i \in P_i \setminus \bigcup_{j=1}^3 P_j$, $1 \le i \le 3$ and $j \ne i$. Then by using 1, we see that $a_1 - a_2 - a_3 - a_1$ is a cycle. Therefore $g(\hat{\Gamma}_R(M)) = 3$

For a graph G, let $\chi(G)$ denote the *chromatic number of the graph* G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A *clique* of a graph is its complete subgraph and the number of vertices in the largest clique of G, denoted by clique(G), is called the clique number of G.

Theorem 7. (a) Let R not be a field. Then if Max(M) has an infinite number of maximal ideals, then $clique(\hat{\Gamma}_R(M))$ is also infinite; $otherwise\ clique(\hat{\Gamma}_R(M)) \ge |Max(M)|$.

(b) If $\chi(\Gamma_R(M)) < \infty$, then $|Max(M)| < \infty$.

Proof. Use the technique of [2, 2.14].

A graph is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends.

Theorem 8. Assume that $|Max(M)| \ge 5$. Then $\Gamma_R(M)$ is not planar.

Proof. Assume that $|Max(M)| \geq 5$. Choose $a_i \in m_i \setminus \bigcup_{j=1}^5 m_j$, where $m_i \in M_i \setminus \bigcup_{j=1}^5 m_j$ Max(M), $1 \le i \le 5$, and $j \ne i$. Then $a_i \notin (a_i M :_R M)$. Otherwise, $a_i \in (a_i M :_R M)$ $M \subseteq (m_i M :_R M) = m_i$ by Lemma 1. Similarly, $a_i \notin (a_i M :_R M)$. Hence m_1, m_2, m_3, m_4, m_5 forms a complete subgraph of $\Gamma_R(M)$ which is isomorphic to K_5 . Thus by [9, p.153], $\Gamma_R(M)$ is not planar.

For any vertex x of a connected graph G, the eccentricity of x, denoted by e(x), is the maximum of the distances from x to the other vertices of G, and the minimum value of the eccentricity is the *radius* of G, which is denoted by r(G).

Theorem 9. Let M be a non-local module with J(M) = 0. Then $r(\hat{\Gamma}_R(M)) = 2$ if and only if for each $t \in W_R^*(M)$, there exists $s \in W_R^*(M)$ such that t is not adjacent

Proof. The proof is similar to that of [2, 3.14].

Theorem 10. Let R be a Noetherian ring. If $\Gamma_R(M)$ is totally disconnected, then M is a local module with maximal ideal of the from $(xM :_R M)$ for some $x \in W_R^*(M)$.

Proof. It is easy to see that M is a local module. Set Max(M) = m. Assume to contrary that m is not the form of $(rM :_R M)$ for every $r \in W_R^*(M)$. Set A = $\{(rM:_R M), r \in W_R^*(M)\}$. Then A has a maximal member, say $(rM:_R M)$ for some $f \in W_R^*(M)$. Choose $s \in m \setminus (fM :_R M)$. We claim that $f \notin (sM :_R M)$. Otherwise, we have $(\acute{r}M:_R M)\subseteq (sM:_R M)$, so $(\acute{r}M:_R M)=(sM:_R M)$ by maximality. Hence $s \in (fM :_R M)$ so that f is adjacent to s, a contradiction.

Theorem 11. Assume that M is a non-local module. Then the following conditions are equivalent.

- (a) $\Gamma_R(M) \setminus J(M)$ is complete bipartite. (b) $\Gamma_R(M) \setminus J(M)$ is bipartite. (c) $\Gamma_R(M) \setminus J(M)$ contains no triangles.

Proof. Use the technique of [3, 2.13].

Proposition 2. If the graph $\Gamma_R(M) \setminus J(M)$ is n-partite for some positive integer n, then $|Max(M)| \leq n$.

Proof. Assume to the contrary that |Max(M)| > n. Since $\Gamma_R(M) \setminus J(M)$ is an *n*-partite graph, there are maximal ideals P_1 and P_2 of $Max_R(M)$ with $(rM:_R)$ $M) \subseteq P_1 \setminus P_2$ and $(sM :_R M) \subseteq P_2 \setminus P_1$, where r, s belong to the same part. But this implies that r is adjacent to s which is a contradiction.

Theorem 12. Let M be an R-module with $Max(M) = \{m_1, m_2\}$. Then $\Gamma_R(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, i = 1, 2, if and only if every pair of ideals $(rM :_R M)$, $(sM :_R M)$ contained in $(m_1 \setminus J(M))$ or $(m_2 \setminus J(M))$, where $r, s \in R$, are totally ordered.

Proof. Suppose that $\Gamma_R(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, i=1,2. Further assume to the contrary that there exist ideals $(rM:_R M)$, $(sM:_R M) \subseteq m_1 \setminus J(M)$ such that $(rM:_R M) \not\subseteq (sM:_R M)$ and $(sM:_R M) \not\subseteq (rM:_R M)$. We claim that r is adjacent to s in $m_1 \setminus J(M)$. Otherwise, without loss of generality, we assume that $r \in (sM:_R M)$. Then $r, s \in m_1 \setminus J(M)$ and we have $rM \subseteq (sM:_R M)M$. Thus $(rM:_R M) \subseteq ((sM:_R M)M:_R M) = (sM:_R M)$, a contradiction. Hence r is adjacent to s in $m_1 \setminus J(M)$, which is again a contradiction by hypothesis. Conversely, assume that $i \in \{1,2\}$ and $(rM:_R M), (sM:_R M) \subseteq m_i \setminus J(M)$. We may assume that $(rM:_R M) \subseteq (sM:_R M)$. Then clearly, $r, s \in m_i \setminus J(M)$ and r is not adjacent. Now if $r \in m_1 \setminus m_2$ and $s \in m_2 \setminus m_1$, then by using 1, we see that r is adjacent to s. Therefore $\Gamma_R(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, i = 1, 2. □

Theorem 13. Let M be a faithful R-module and $Z_R(M) \neq W_R(M)$. Then $\Gamma_R(M)$ is finite if and only if R is finite.

Proof. Clearly if R is finite, then $\Gamma_R(M)$ is finite. So we assume that $\Gamma_R(M)$ is finite and show that R is finite. Suppose that R is infinite and look for a contradiction. By Remark 1, we have $Z_R(M) \subset W_R(M) = N_R(M)$. Choose $x \in W_R(M) \setminus Z_R(M)$. Since Rx is a finite R-module and $R \setminus W_R(M)$ is an infinite set, there exist distinct elements $r_1, r_2 \in R \setminus W_R(M)$ such that $r_1x = r_2x$. Therefore $(r_1 - r_2)x = 0$. Then we have $x((r_1 - r_2)M) = 0$. Since x is a nonzero-divisor on M, we have $(r_1 - r_2)M = 0$ so that $r_1 - r_2 \in Ann_R(M)$. Thus $r_1 = r_2$, a contradiction.

Corollary 2. Let R be a domain and let $Z_R(M) = \{0\}$. If $\Gamma_R(M)$ is a finite graph, then R is a field.

Proof. If $W_R(M) \neq \{0\}$, then by Theorem 13, R is finite so that R is a field. Otherwise, if $W_R(M) = \{0\}$, then we have $W_R(M) = \bigcup_{p \in Max(M)} P = \{0\}$ by Remark 1. This implies that the zero ideal of R is a maximal ideal and hence R is a field. \square

Remark 4. One can see, by using the same technique, that the results about $\hat{\Gamma}_R(M)$ in this section is also true for $\tilde{\Gamma}_R(M)$.

REFERENCES

- [1] Z. Abd El-Bast and P. F. Smith, "Multiplication modules," *Commun. Algebra*, vol. 16, no. 4, pp. 755–779, 1988.
- [2] M. Afkhami and K. Khashyarmanesh, "The cozero-divisor graph of a commutative ring," *Southeast Asian Bull. Math.*, vol. 35, no. 5, pp. 753–762, 2011.

- [3] M. Afkhami and K. Khashyarmanesh, "On the cozero-divisor graphs of commutative rings and their complements," *Bull. Malays. Math. Sci. Soc.* (2), vol. 35, no. 4, pp. 935–944, 2012.
- [4] D. D. Anderson and M. Naseer, "Beck's coloring of a commutative ring," *J. Algebra*, vol. 159, no. 2, pp. 500–514, 1993.
- [5] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, "The zero-divisor graph of a commutative ring. II," in *Ideal theoretic methods in commutative algebra. Proceedings of the conference in honor of Professor James A. Huckaba's retirement, University of Missouri, Columbia, MO, USA*, ser. Lect. Notes Pure Appl. Math., D. D. Anderson, Ed. New York: Marcel Dekker, 2001, vol. 220, pp. 61–72.
- [6] D. F. Anderson, R. Levy, and J. Shapiro, "Zero-divisor graphs, von Neumann regular rings, and Boolean algebras," *J. Pure Appl. Algebra*, vol. 180, no. 3, pp. 221–241, 2003.
- [7] D. F. Anderson and P. S. Livingston, "The zero-divisor graph of a commutative ring," *J. Algebra*, vol. 217, no. 2, pp. 434–447, 1999.
- [8] I. Beck, "Coloring of commutative rings," J. Algebra, vol. 116, no. 1, pp. 208–226, 1988.
- [9] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*. New York: American Elsevier Publishing Co., 1976.
- [10] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, "Zero-divisor graphs of nearrings and semigroups," in *Nearrings and nearfields. Proceedings of the conference on nearrings and nearfields, Hamburg, Germany, July 27–August 3, 2003.*, H. Kiechle, Ed. Dordrecht: Springer, 2005, pp. 189–200
- [11] I. Kaplansky, Commutative rings. Chicago: University of Chicago Press, 1978.
- [12] S. Yassemi, "Maximal elements of support and cosupport," http://www.ictp.trieste.it/\$\sim\$puboff.

Authors' addresses

H. Ansari-Toroghy

Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

E-mail address: ansari@guilan.ac.ir

F. Farshadifar

University of Farhangian, Tehran, Iran.

E-mail address: f.farshadifar@gmail.com

Sh.Habibi

Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

E-mail address: sh.habibi@guilan.ac.ir