

DOI: 10.18514/MMN.2014.755

 ${\rm HU~e\text{-}ISSN~1787\text{-}2413}$

On Green's equivalences in Γ -groupoids

Kostaq Hila and Jani Dine

ON GREEN'S EQUIVALENCES IN Γ -GROUPOIDS

KOSTAQ HILA AND JANI DINE

Received 24 September, 2013

Abstract. This paper deals with Γ -groupoids which are generalizations of groupoids and Γ -semigroups. The main purpose of this paper is to extend Green's equivalences and Green's Lemma to suitably restricted Γ -groupoids. We study only Γ -groupoids satisfying some additional conditions and we show that these are sufficient for the statement of Green's equivalences in case of Γ -groupoids. Additional condition sufficient to prove Green's Lemma for Γ -groupoids is provided and some illustrative examples are presented.

2010 Mathematics Subject Classification: 20M10; 20M17 Keywords: Γ -groupoids, Γ -semigroup, Green's relations

1. Introduction and preliminaries

In 1964, N. Nobusawa [16] introduced the notion of a Γ -ring, more general than a ring. In 1966, W. E. Barnes [1] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa. Many fundamental results in ring theory have been extended to Γ -rings by different authors obtaining various generalization analogous to corresponding parts in ring theory. In 1981, M. K. Sen [19] and later in 1986, Sen and Saha [20] introduced the concept of the Γ -semigroup as a generalization of semigroup and ternary semigroup. Many classical notions and results of the theory of semigroups have been extended and generalized to Γ -semigroups by a lot of mathematicians. Green's relations for semigroups were introduced by J. A. Green in a paper of 1951 [7]. Green's relations for Γ -semigroups defined in [6, 18], play an important role in studying of the structure of Γ -semigroups as well as in case of the plain semigroups and become a familiar tool among Γ -semigroups. Several treatments and contributions concerning Green's relations for Γ -semigroups have been made by a lot of mathematicians, for instant [2-4, 6, 8-10, 12, 13, 15, 17, 18, 20]. Recently, in [11] we have introduced and studied the hyperversion of Green's relations in Γ -semihypergroups. The Green's equivalence relations, Green's Lemma and its corollaries are important tools in the theory of Γ -semigroups as well as in the case of the plain semigroups. The proof of those fundamental results depends on little more than the associativity of the Γ -operation defined in Γ -semigroups. However, when we remove this property, we find ourselves faced with the problem of obtaining

similar results in Γ -groupoids. For this, we will study only Γ -groupoids satisfying some additional conditions and we show that these are sufficient for the statement of Green's equivalences in case of Γ -groupoids. Additional condition sufficient to prove Green's Lemma for Γ -groupoids is provided and some illustrative examples are presented. The main purpose of this paper is to extend Green's equivalences and Green's Lemma to suitably restricted Γ -groupoids and to obtain some results which are parallel to those obtained for groupoids and semigroups [5, 14].

We introduce below necessary notions and present a few auxiliary results that will be used throughout the paper.

Definition 1. Let M and Γ be two non-empty sets. Any map from $M \times \Gamma \times M \to M$ will be called a Γ -multiplication in M and denoted by $(\cdot)_{\Gamma}$. The result of this multiplication for $a,b \in M$ and $\alpha \in \Gamma$ is denoted by $a\alpha b$. A Γ -groupoid M is an ordered pair $(M,(\cdot)_{\Gamma})$ where M and Γ are non-empty sets and $(\cdot)_{\Gamma}$ is a Γ -multiplication on M.

M is called a Γ -semigroup, if in addition, the following assertion is satisfied:

$$\forall (a, b, c, \alpha, \beta) \in M^3 \times \Gamma^2, (a\alpha b)\beta c = a\alpha(b\beta c).$$

Example 1. Let M be a semigroup and Γ be any nonempty set. If we define $a\gamma b=ab$ for all $a,b\in M$ and $\gamma\in\Gamma$. Then M is a Γ -semigroup.

Example 2. Let M be a set of all negative rational numbers. Obviously M is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime}\}$. Let $a,b,c \in M$ and $\alpha \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a,α,b , then $a\alpha b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence M is a Γ -semigroup.

Example 3. Let $M = \{-i, 0, i\}$ and $\Gamma = M$. Then M is a Γ -semigroup under the multiplication over complex numbers while M is not a semigroup under complex number multiplication.

Notice that every semigroup is a Γ -semigroup and Γ -semigroups are a generalization of semigroups. The same holds for Γ -groupoids.

A Γ -groupoid M is said to be *commutative* if for all $a, b \in M, \gamma \in \Gamma$, $a\gamma b = b\gamma a$.

2. On Green's relations in Γ -groupoids

Let M be a Γ -groupoid. If \mathcal{E} is any binary relation on the set M and $a,b \in M$, then let $a\mathcal{E}b$ mean that a is \mathcal{E} -related to b and, whenever \mathcal{E} is an equivalence relation on M, let the \mathcal{E} -equivalence class containing a be denoted by E_a , i.e., $E_a = \{x \in M | x\mathcal{E}a\}$. We define now two relations, the so-called Green's relations on a Γ -groupoid M.

Definition 2. Let M be a Γ -groupoid and $a, b \in M$. We define $a \mathcal{R} b$ if and only if either a = b or there exist $x, y \in M$ and $\alpha, \beta \in \Gamma$, such that $a\alpha x = b$ and $b\beta y = a$. Dually, we define $c \mathcal{L} d$ if and only if either c = d or there exist $u, v \in M$ and $\gamma, \delta \in \Gamma$ such that $u\gamma c = d$ and $v\delta d = c$.

When these are equivalence relations we will write R_a for the \mathcal{R} -class of a, and L_c for the \mathcal{L} -class of c.

When M is associative, that is, a Γ -semigroup, then it is known that the relations \mathcal{R} and \mathcal{L} are equivalence relations [6]. In this case we have $a\mathcal{R}b$ iff $a\Gamma M \cup \{a\} = b\Gamma M \cup \{b\}$.

For arbitrary Γ -groupoids, these two subsets of M need not have any particular relationship even though $a\mathcal{R}b$. For this, we give the following definition.

Definition 3. Let M be a Γ -groupoid. M is said to be *left consistent* if $H\gamma(x\alpha y) = (H\gamma x)\alpha y$ for any $x, y \in M$, $\gamma, \alpha \in \Gamma$ and any Γ -subgroupoid H of M. M is said to be *weakly left consistent* if the above holds just for H = M.

Definition 4. Let M be a Γ -groupoid. M is said to be *right consistent* if $(x\alpha y)\gamma H = x\alpha(y\gamma H)$ for any $x, y \in M$, $\alpha, \gamma \in \Gamma$ and any Γ -subgroupoid H of M. M is said to be *weakly right consistent* if the above holds just for H = M.

Definition 5. Let M be a Γ -groupoid. M is said to be [weakly]consistent if it is both [weakly] left and [weakly] right consistent.

Definition 6. Let M be a Γ -groupoid. M is said to be *intra-consistent* if $(x\gamma H)\alpha y = x\gamma(H\alpha y)$ for any $x, y \in M, \gamma, \alpha \in \Gamma$ and any Γ -subgroupoid H of M. M is said to be *weakly intra-consistent* if the above holds just for H = M.

Proposition 1. Let M be a weakly right consistent or a weakly intra-consistent Γ -groupoid. Then $a\mathcal{R}b$ if and only if $a\Gamma M \cup \{a\} = b\Gamma M \cup \{b\}$ for $a,b \in M$.

Proof. "\$\Rightarrow\$". Let M be weakly right consistent and assume $a\mathcal{R}b$. If a=b the result is evident. Otherwise there exist $x,y\in M$ and $\alpha,\beta\in\Gamma$ such that $a\alpha x=b$ and $b\beta y=a$. Let $\gamma\in\Gamma$ and so $a\gamma M\subseteq a\Gamma M$. Then we have: $a\gamma M=(b\beta y)\gamma M=b\beta(y\gamma M)\subseteq b\beta M\subseteq b\Gamma M$, that is, $a\Gamma M\subseteq b\Gamma M$. On the other side, we have: $b\gamma M=(a\alpha x)\gamma M=a\alpha(x\gamma M)\subseteq a\alpha M\subseteq a\Gamma M$, that is $b\Gamma M\subseteq a\Gamma M$. Hence $a\Gamma M=b\Gamma M$. Since $a\in b\Gamma M$ and $b\in a\Gamma M$, the requested result follows. If M is weakly intra-consistent and $a\mathcal{R}b$ and $a\neq b$ we can show in a similar way that $a\in a\Gamma M=b\Gamma M$, and $b\in b\Gamma M$, and the result follows immediately.

" \Leftarrow ". The converse is trivial.

An immediate corollary of the above proposition is the following.

Corollary 1. If M is either a weakly consistent or a weakly intra-consistent Γ -groupoids, \mathcal{R} and \mathcal{L} are equivalence relations. Indeed if M is weakly consistent, then \mathcal{R} is a left congruence and \mathcal{L} is a right congruence.

Problem 1. In general, \mathcal{R} need not be a left congruence on a weakly intraconsistent Γ -groupoid. Can one finds an example of a non-trivial weakly intraconsistent Γ -groupoid in which \mathcal{R} is not a left congruence?

Let we consider now the case M is a commutative Γ -groupoid.

Proposition 2. Let M be a commutative Γ -groupoid. Then M is [weakly] left consistent if and only if M is [weakly] right consistent and therefore [weakly] consistent.

Proof. Let $a,b \in M, \alpha, \beta \in \Gamma$ and H be any Γ -subgroupoid of M. By the commutativity of M we have $(a\alpha b)\beta H = H\beta(b\alpha a)$ and $a\alpha(b\beta H) = (b\beta H)\alpha a = (H\beta b)\alpha a$. The two equalities are linked if M is either [weakly] left or [weakly] right consistent and hence the conditions [with H = M] are equivalent.

Remark 1. For the commutative groupoids, if they are [weakly] right consistent and therefore [weakly] consistent, in either case they are [weakly] intra-consistent. When we pass to Γ -groupoids, this property does not hold. In fact, if M is [weakly] right (or left) consistent Γ -groupoid, by the commutativity of M, we have: $(a\alpha H)\beta b = b\beta(a\alpha H) = (b\beta a)\alpha H = (a\beta b)\alpha H = a\beta(b\alpha H) = a\beta(H\alpha b)$, for any $a,b \in M,\alpha,\beta\Gamma$ and H is any Γ -subgroupoid of M [with H=M], which shows that M is not [weakly] intra-consistent in general.

Example 4. Let $M = \{x, y, z, t\}$ and $\Gamma = \{\alpha, \beta\}$ with the Γ -multiplication defined by

α	x	y	z	t				z	
X	x	х	y	y	х	x	х	y	y
у	y	У	\boldsymbol{x}	$\boldsymbol{\mathcal{X}}$	y	y	y	\boldsymbol{x}	$\boldsymbol{\mathcal{X}}$
Z.	Z.	z	t	t	z	t	t	z	z
t	t	t	z.	z.				t	

It can be easily verified that M is weakly left consistent and weakly intra-consistent but not weakly right consistent.

Problem 2. Can one find an example of a non-trivial Γ -groupoid which is both weakly left and right consistent but not weakly intra-consistent or to prove that a weakly consistent Γ -groupoid is weakly intra-consistent?

In order to prove Green's Lemma for Γ -groupoids we will need the following result, whose proof is straightforward.

Lemma 1. Let M be a Γ -groupoid. If M is weakly right consistent, then for all $a \in M$ and $\rho \in \Gamma$, $a\rho M$ is a Γ -subgroupoid. Also, $a\Gamma M$ is a Γ -subgroupoid.

Corollary 2. Let M be a Γ -groupoid. If M is weakly right consistent, then for all $a \in M$, $\rho \in \Gamma$, $a\rho M \cup \{a\}$ is a Γ -subgroupoid. Also, $a\Gamma M \cup \{a\}$ is a Γ -subgroupoid.

Let M be a Γ -groupoid. The mapping $\lambda_{\alpha}^s: M \to M$ defined by $\lambda_{\alpha}^s a = s\alpha a$ for all $s, a \in M$ and $\alpha \in \Gamma$ is called *left translation* of Γ -semigroup M. The mapping $\rho_{s'}^\beta: M \to M$ defined by $b\rho_{s'}^\beta = b\beta s'$ for all $s', b \in M$ and $\beta \in \Gamma$ is called *right translation* of Γ -semigroup M.

Theorem 1. Let M be a consistent Γ -groupoid and suppose $c\mathcal{R}b$ for some $c \neq b$. Then there are $s, s' \in M, \alpha, \beta \in \Gamma$ such that $c\alpha s = b, b\beta s' = c$ and the right translations $\rho_s^{\alpha}, \rho_{s'}^{\beta}$, are, respectively, mappings from L_c into L_b and L_b into L_c , which are \mathcal{R} -class preserving, that is, for $x \in L_c, x\mathcal{R}x\rho_s^{\alpha}$ and for $y \in L_b, y\mathcal{R}y\rho_{s'}^{\beta}$.

Proof. Let $c\mathcal{R}b$ for some $c \neq b$. Since $c \neq b$, the existence of s,s' follows from the Definition 2. Now let $a\mathcal{L}c$ and $d\mathcal{L}b$. By Corollary 1, \mathcal{L} is a right congruence, thus we have $a\alpha s\mathcal{L}c\alpha s = b$ and $d\beta s'\mathcal{L}b\beta s' = c$. Thus we have $L_c\rho_s^{\alpha} \subseteq L_b$ and $L_b\rho_{s'}^{\beta} \subseteq L_c$.

 $L_b \rho_{s'}^{\beta} \subseteq L_c$. Now, if $a \neq c$, then for any $\rho \in \Gamma$, $a\Gamma M \supseteq a\alpha(s\rho M) = (t\gamma c)\alpha(s\rho M)$ where $t\gamma c = a$ for some $t \in M, \gamma \in \Gamma$ by the Definition 2. Since $s\rho M$ is a Γ -subgroupoid by Lemma 1, we have $(t\gamma c)\alpha(s\rho M) = t\gamma[c\alpha(s\rho M)] = t\gamma[(c\alpha s)\rho M] = t\gamma(b\rho M)$. Thus $a = t\gamma c = t\gamma(b\beta s') \in t\gamma(b\Gamma M) \subseteq a\Gamma M$. Continuing we have $a\Gamma M \supseteq (a\alpha s)\rho M = t\gamma(b\rho M) \supseteq t\gamma[b\beta(s'\rho M)] = t\gamma[(b\beta s')\rho M] = t\gamma(c\rho M) = (t\gamma c)\rho M = a\rho M$, whence $a\Gamma M = (a\alpha s)\Gamma M$. But $a \in a\Gamma M$ and $a\alpha s \in a\Gamma M = (a\alpha s)\Gamma M$ so that we can conclude by Proposition 1 that $a\Re a\alpha s$. If a = c, the preceding argument can be simplified to show that $c\Re c\alpha s$. In a similar way, it can be shown $d\Re d\beta s'$.

Corollary 3. If M is a consistent Γ -groupoid, then $\mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$ on M.

Proof. If $a\mathcal{L}c\mathcal{R}b$, then the above Theorem yields an $s \in M$ such that $a\mathcal{R}a\gamma s\mathcal{L}b$ for some $\gamma \in \Gamma$, and so $\mathcal{L} \circ \mathcal{R} \subseteq \mathcal{R} \circ \mathcal{L}$. The reverse inclusion is proven dually. \square

Now we give the following definition.

Definition 7. A Γ -groupoid M is said to be \mathcal{D} - Γ -groupoid if $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ on M.

In such cases we define $\mathcal{D}=\mathcal{L}\circ\mathcal{R}$ and \mathcal{D} is then clearly an equivalence relation. Note that the consistent Γ -groupoids are $\mathcal{D}-\Gamma$ -groupoid, while the converse is not necessarily true. The following example shows this.

Example 5. Let $M = \{x, y\}$ and $\Gamma = \{\alpha, \beta\}$ with the Γ -multiplication defined by

Here we have that $\mathcal{L} = \mathcal{R} = \omega$, the universal relation on M, so that M is certainly $\mathcal{D} - \Gamma$ -groupoid, while $M\alpha(x\beta x) = y \neq x = (M\alpha y)\beta y$, that is, M is not a consistent Γ -groupoid.

3. Green's Lemma for Γ -groupoids

Theorem 1 shows us that for a consistent Γ -groupoid M certain right translations define maps between two \mathcal{L} -classes which are \mathcal{R} -class preserving. In general, it is not known if ρ_s^{α} and $\rho_{s'}^{\beta}$ are mutually inverse maps between L_c and L_b , as is the case of Γ -semigroups [6].

In the following results are provided additional conditions which suffice to guarantee this result.

Definition 8. Let M be a \mathcal{D} - Γ -groupoid. A \mathcal{D} -class, D of M is said to be *regular* if there is an γ -idempotent element $(x\gamma x = x)$ in each \mathcal{L} and \mathcal{R} -class of D.

Lemma 2. Let M be a consistent Γ -groupoid. If $e\gamma e = e$ for some $\gamma \in \Gamma$, then $x\gamma e = x$ for all $x \in \mathcal{L}$ -class, L_e , and $e\gamma y = y$ for all $y \in \mathcal{R}$ -class R_e .

Proof. Let $x \in L_e$. Then $x = t\alpha e$ for some $t \in M$ and $\alpha \in \Gamma$. Now $x\gamma e = (t\alpha e)\gamma e = t\alpha(e\gamma e) = t\alpha e = x$ since $\{e\}$ is a Γ -subgroupoid of M. The other result is dual.

Proposition 3. Let D be a regular \mathcal{D} -class of a consistent Γ -groupoid M. Then for any $a \in D$, there exist $t, t' \in M$ and $\gamma, \gamma', \alpha, \beta \in \Gamma$ such that $a = a\gamma(t\alpha a) = (a\beta t')\gamma'a$.

Proof. Let $a \in D$. Since D is regular, there is an γ -idempotent $e \in L_a = L_e$. By Lemma 2, $a\gamma e = a$. Since $e \pounds a$, there is a $t \in M, \alpha \in \Gamma$ such that $t\alpha a = e$. Then $a = a\gamma e = a\gamma(t\alpha a)$. Dually one obtains $a = (a\beta t')\gamma'a$.

Remark 2. A converse of Proposition 3 is false: a Γ -groupoid M may be consistent, and for every $a \in M$ may have $t, t' \in M$ and $\gamma, \gamma', \alpha, \beta \in \Gamma$ such that $a = a\gamma(t\alpha a) = (a\beta t')\gamma'a$, and yet M may have no idempotents. We have the following example.

Example 6. Let $M = \{x, y\}$ and $\Gamma = \{\alpha, \beta\}$ with the Γ -multiplication defined by

In the Γ -groupoid M there no idempotents and further, for example, $x = x\alpha(x\beta x) = (x\alpha x)\beta x$. Moreover, here we have $\mathcal{L} = \mathcal{R} = \omega$.

Definition 9. Let M be a Γ -groupoid. M is said to be *almost associative* if whenever H is a Γ -subgroupoid of M and $a,b,c \in M,\alpha,\beta,\gamma \in \Gamma$, we have $H\gamma[(a\alpha b)\beta c] = H\gamma[a\alpha(b\beta c)]$ and $[a\alpha(b\beta c)]\gamma H = [(a\alpha b)\beta c]\gamma H$.

Theorem 2. A regular, consistent, almost associative Γ -groupoid is associative.

Proof. Let $a,b,c \in M$. Then $(a\alpha b)\beta c = (a\alpha b)\beta (c\gamma e)$ for some $e\gamma e = e \in L_c, \gamma \in \Gamma$. But $(a\alpha b)\beta (c\gamma e) = [(a\alpha b)\beta c]\gamma e = [a\alpha (b\beta c)]\gamma e = a\alpha [(b\beta c)\gamma e] = a\alpha [b\beta (c\gamma e)] = a\alpha (b\beta c)$ since M is consistent and almost associative and $\{e\}$ is a Γ -subgroupoid. We thus have that $(a\alpha b)\beta c = a\alpha (b\beta c)$ for any $a,b,c \in M$ and $\alpha,\beta \in \Gamma$, i.e., M is associative. \square

Now, based on the above results, we are ready to state and to prove the so-called Green's Lemma for Γ -groupoids.

Corollary 4. (Green's Lemma). Let M be a consistent almost associative Γ -groupoid. If D is a regular D-class of M and $c\mathcal{R}b$ for $c,b\in D$, then there exist $s,s'\in M,\alpha,\beta\in\Gamma$ such that $c\alpha s=b,b\beta s'=c$ and the right translations $\rho_s^\alpha,\rho_{s'}^\beta$, are mutually inverse bijections between L_c and L_b and are \mathcal{R} -class preserving.

Proof. By Theorem 1 we need only to show that ρ_s^{α} and $\rho_{s'}^{\beta}$ are mutually inverse bijections. Let $f\gamma f = f \in R_c$ for some $\gamma \in \Gamma$, and $f\gamma u = c$ for some $u \in M$. Then $c = b\beta s' = (c\alpha s)\beta s' = ((f\gamma u)\alpha s)\beta s' = (f\gamma(u\alpha s))\beta s' = f\gamma((u\alpha s)\beta s') = f\gamma(u\alpha(s\beta s')) = (f\gamma u)\alpha(s\beta s') = c\alpha(s\beta s')$.

Now let $a \in L_c$ and $e\delta e = e \in L_c$ for some $\delta \in \Gamma$. There exist $t \in M$ and $\mu \in \Gamma$ such that $t\mu c = a$. Then $(a)\rho_s^{\alpha}\rho_{s'}^{\beta} = (a\alpha s)\beta s'$. Since $(a\alpha s)\beta s' \in L_a \cap R_a$ by Theorem 1, $(a\alpha s)\beta s' = [(a\alpha s)\beta s']\delta e = [a\alpha(s\beta s')]\delta e = [(t\mu c)\alpha(s\beta s')]\delta e = [t\mu(c\alpha(s\beta s'))]\delta e = [t\mu c]\delta e = a\delta e = a$ since $c = c\alpha(s\beta s')$ from above. Thus $\rho_s^{\alpha}\rho_{s'}^{\beta}$ is the identity map on L_c . Similarly $\rho_{s'}^{\beta}\rho_s^{\alpha}$ is the identity map on L_b . The result now follows.

It is clear that, as it is shown in this paper, a consistent, almost associative Γ -groupoid with every $(\mathcal{R} \circ \mathcal{L})$ -equivalence class regular is necessarily a Γ -semigroup and so the Green's Lemma takes its familiar form in Γ -semigroups [3,6].

From all the above, the following problems arise:

Problem 3. What we can say about the validation of Green's Lemma for infinite Γ -groupoids?

Problem 4. How necessary is the regularity in the Corollary 4?

Problem 5. Is there any natural condition for Γ -groupoids weaker than that of almost associativity which can replace it leaving Corollary 4 true but Theorem 2 false?

Problem 6. Is there a regular consistent Γ -groupoid in which the right translations of Theorem 1 are not mutually inverse?

ACKNOWLEDGEMENT

The authors would like to express their warmest thanks to the referee for his time to read the manuscript and his useful suggestions.

REFERENCES

- [1] W. E. Barnes, "On the Γ -rings of Nobusawa," Pac. J. Math., vol. 18, pp. 411–422, 1966.
- [2] R. Chinram and P. Siammai, "On Green's relations for Γ -semigroups and reductive Γ -semigroups," *Int. J. Algebra*, vol. 2, no. 1-4, pp. 187–195, 2008.
- [3] R. Chinram and P. Siammai, "Green's lemma and Green's theorem for Γ -semigroups," *Lobachevskii J. Math.*, vol. 30, no. 3, pp. 208–213, 2009.
- [4] N. Chunse and M. Siripitukdet, "The Natural partial order on regular Γ -semigroups," *Bull. Malaysian Math. Sci. Soc.*, accepted.
- [5] A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups. Vol. 1*. Providence, R.I., USA: American Mathematical Society, 1961.
- [6] T. K. Dutta and T. K. Chatterjee, "Green's equivalences on Γ-semigroup," Bull. Calcutta Math. Soc., vol. 80, no. 1, pp. 30–35, 1988.
- [7] J. A. Green, "On the structure of semigroups," Ann. of Math. (2), vol. 54, pp. 163–172, 1951.
- [8] D. Heidari and M. Amooshahi, "Transformation semigroups associated to Γ -semigroups," *Discuss. Math., Gen. Algebra Appl.*, vol. 33, no. 2, pp. 249–259, 2013.
- [9] D. Heidari and B. Davvaz, "n-ary Γ -semigroups, operators and Green's relations," Afr. Mat., vol. 25, no. 3, pp. 841–856, 2014.
- [10] K. Hila, "On regular, semiprime and quasi-reflexive Γ -semigroup and minimal quasi-ideals," *Lobachevskii J. Math.*, vol. 29, no. 3, pp. 141–152, 2008.
- [11] K. Hila, B. Davvaz, and J. Dine, "Study on the structure of Γ-semihypergroups," Commun. Algebra, vol. 40, no. 8, pp. 2932–2948, 2012.
- [12] K. Hila and J. Dine, "On Green's relations, 2^0 -regularity and quasi-ideals in Γ -semigroups," *Acta Math. Sin., Engl. Ser.*, vol. 29, no. 3, pp. 609–624, 2013.
- [13] K. Hila and J. Dine, "On the structure of Green's relations in *BQ-Γ*-semigroups," *An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat.*, vol. 60, no. 1, pp. 201–210, 2014.
- [14] K. M. Kapp, "Green's Lemma for groupoids," Rocky Mt. J. Math., vol. 1, pp. 551–559, 1971.
- [15] N. Kehayopulu, "Green's relations and the relation \mathcal{N} in Γ -semigroups," *Quasigroups Relat. Syst.*, vol. 22, pp. 89–96, 2014.
- [16] N. Nobusawa, "On a generalization of the ring theory," Osaka J. Math., vol. 1, pp. 81–89, 1964.
- [17] P. Petro and T. Xhillari, "Green's theorem and minimal quasi-ideals in Γ -semigroups," *Int. J. Algebra*, vol. 5, no. 9-12, pp. 461–470, 2011.
- [18] N. K. Saha, "On Γ-semigroup. II," Bull. Calcutta Math. Soc., vol. 79, no. 6, pp. 331–335, 1987.
- [19] M. K. Sen, "On Γ-semigroup," in Algebra and its applications. (International Symposium on Algebra and Its Applications, 1981, New Delhi, India)., H. Manocha and J. Srivastava, Eds. New York: Marcel Dekker Publication, 1984, pp. 301–308.
- [20] M. K. Sen and N. K. Saha, "On Γ-semigroup. I," Bull. Calcutta Math. Soc., vol. 78, pp. 180–186, 1986.

Authors' addresses

Kostaq Hila

Department of Mathematics & Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania

E-mail address: kostaq_hila@yahoo.com

Jani Dine

Department of Mathematics & Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania

E-mail address: jani_dine@yahoo.com