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Abstract. In the present paper we introduce some new sequence spaces in the n-normed space.
We define here some new spaces of double sequences by using the notions of lacunary sequences,
difference sequences, almost convergence, sequence of Orlicz functions and statistical conver-
gence. We examine some topological properties of these spaces of double sequences, inclusion
relations between these newly defined sequence spaces and establish relation with lacunary stat-
istical convergence. The study of these new sequence spaces provides a tool to deal with conver-
gence problems of double sequences.
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1. INTRODUCTION AND PRELIMINARIES

The initial work on double sequences is found in Bromwich [5]. Later on, it
was studied by Hardy [14], Moricz [21], Moricz and Rhoades [22], Mursaleen [24],
[23], Basarir and Sonalcan [4], Altay and Basar [2], Basar and Sever [3], Mursaleen
and Mohiuddine [29, 30], Alotaibi et al [1] and many others. Mursaleen and Edely
[27] have recently introduced the statistical convergence and Cauchy convergence for
double sequences and given the relation between statistical convergent and strongly
Cesaro summable double sequences. Nextly, Mursaleen [24] and Mursaleen and
Edely [28] have defined the almost strong regularity of matrices for double sequences
and applied these matrices to establish a core theorem and introduced the M -core
for double sequences and determined those four dimensional matrices transforming
every bounded double sequences xD .xk;l/ into one whose core is a subset of theM -
core of x. More recently, Altay and Basar [2] have defined the spaces BS , BS.t/,
CSp, CSbp, CSr and BV of double sequences consisting of all double series whose
sequence of partial sums are in the spaces Mu, Mu.t/, Cp, Cbp, Cr and Lu, respect-
ively and also examined some properties of these sequence spaces and determined
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the ˛-duals of the spaces BS , BV , CSbp and the ˇ.v/-duals of the spaces CSbp
and CSr of double series. Now, recently Basar and Sever [3] have introduced the
Banach space Lq of double sequences corresponding to the well known classical se-
quence space `q and examined some properties of the space Lq . By the convergence
of a double sequence we mean the convergence in the Pringsheim sense i.e. a double
sequence x D .xk;l/ has Pringsheim limit L (denoted by P � limx D L) provided
that given � > 0 there exists n 2 N such that jxk;l �Lj < � whenever k; l > n see
[36]. We shall write more briefly as P -convergent. The double sequence x D .xk;l/
is bounded if there exists a positive number M such that jxk;l j<M for all k and l .
An Orlicz functionM is a function, which is continuous, non-decreasing and convex
with M.0/D 0, M.x/ > 0 for x > 0 and M.x/ �!1 as x �!1.
Lindenstrauss and Tzafriri [15] used the idea of Orlicz function to define the follow-
ing sequence space. Let w be the space of all real or complex sequences x D .xk/,
then

`M D
n
x 2 w W

1X
kD1

M
�
jxkj

�

�
<1

o
which is called as an Orlicz sequence space. The space `M is a Banach space with
the norm

jjxjj D inf
n
� > 0 W

1X
kD1

M
�
jxkj

�

�
� 1

o
:

It is shown in [15] that every Orlicz sequence space `M contains a subspace iso-
morphic to p̀.p � 1/. The �2-condition is equivalent to M.Lx/ � kLM.x/ for all
values of x � 0, and for L > 1. The notion of difference sequence spaces was intro-
duced by Kızmaz [17], who studied the difference sequence spaces l1.�/, c.�/ and
c0.�/. The notion was further generalized by Et and Çolak [7] by introducing the
spaces l1.�n/, c.�n/ and c0.�n/.
Let n be non-negative integers, then for Z D c;c0 and l1, we have sequence spaces

Z.�n/D fx D .xk/ 2 w W .�
nxk/ 2Zg;

where �nx D .�nxk/D .�n�1xk ��n�1xk/ and �0xk D xk for all k 2N, which
is equivalent to the following binomial representation

�nxk D

nX
vD0

.�1/v
�
n

v

�
xkCv:

Taking nD 1, we get the spaces l1.�/, c.�/ and c0.�/ studied by Et and Çolak [7].
The concept of 2-normed spaces was initially developed by Gähler [10] in the mid of
1960’s, while that of n-normed spaces one can see in Misiak [20]. Since then, many
others have studied this concept and obtained various results, see Gunawan ([11,12])
and Gunawan and Mashadi [13] and many others. Let n 2N and X be a linear space
over the field K, where K is field of real or complex numbers of dimension d , where
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d � n � 2. A real valued function jj�; � � � ; �jj on Xn satisfying the following four
conditions:

(1) jjx1;x2; � � � ;xnjj D 0 if and only if x1;x2; � � � ;xn are linearly dependent inX ;
(2) jjx1;x2; � � � ;xnjj is invariant under permutation;
(3) jj˛x1;x2; � � � ;xnjj D j˛j jjx1;x2; � � � ;xnjj for any ˛ 2 K, and
(4) jjxCx0;x2; � � � ;xnjj � jjx;x2; � � � ;xnjjC jjx0;x2; � � � ;xnjj

is called a n-norm on X , and the pair .X; jj�; � � � ; �jj/ is called a n-normed space over
the field K.
For example, we may take X D Rn being equipped with the Euclidean n-norm
jjx1;x2; � � � ;xnjjE = the volume of the n-dimensional parallelopiped spanned by the
vectors x1;x2; � � � ;xn which may be given explicitly by the formula

jjx1;x2; � � � ;xnjjE D jdet.xij /j;

where xi D .xi1;xi2; � � � ;xin/ 2 Rn for each i D 1;2; � � � ;n. Let .X; jj�; � � � ; �jj/ be an
n-normed space of dimension d � n� 2 and fa1;a2; � � � ;ang be linearly independent
set in X . Then the following function jj�; � � � ; �jj1 on Xn�1 defined by

jjx1;x2; � � � ;xn�1jj1 Dmaxfjjx1;x2; � � � ;xn�1;ai jj W i D 1;2; � � � ;ng

defines an .n�1/-norm on X with respect to fa1;a2; � � � ;ang:
A sequence .xk/ in a n-normed space .X; jj�; � � � ; �jj/ is said to converge to some
L 2X if

lim
k!1

jjxk �L;´1; � � � ;´n�1jj D 0 for every ´1; � � � ;´n�1 2X:

A sequence .xk/ in a n-normed space .X; jj�; � � � ; �jj/ is said to be Cauchy if

lim
k;i!1

jjxk �xi ;´1; � � � ;´n�1jj D 0 for every ´1; � � � ;´n�1 2X:

If every Cauchy sequence in X converges to some L 2 X , then X is said to be com-
plete with respect to the n-norm. Any complete n-normed space is said to be n-
Banach space.
A double sequence x D .xk;l/ of real numbers is called almost convergent to a limit
L if

P � lim
p;q!1

sup
m;n�0

j
1

pq

mCp�1X
kDm

nCq�1X
lDn

xk;l �Lj D 0

i.e. the average value of .xk;l/ taken over any rectangle f.k; l/ W m � k � mCp�
1; n� l � nCq�1g tends to L as both p and q tends to1, and this P -convergence
is uniform in m and n.
By a lacunary sequence � D .ir/, r D 0;1;2; � � � , where i0 D 0, we shall mean an
increasing sequence of non-negative integers hr D .ir � ir�1/!1 .r !1/. The
intervals determined by � are denoted by Ir D .ir�1; ir � and the ratio ir=ir�1 will be
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denoted by qr . The space of lacunary strongly convergent sequences N� was defined
by Freedman [10] as follows:

N� D
n
x D .xk/ W lim

r!1

1

gr

X
k2Ir

jxk �Lj D 0 for some L
o
:

The double sequence �r;s D f.kr ; ls/g is called double lacunary if there exist two
increasing sequences of integers such that

k0 D 0; hr D kr �kr�1!1 as r!1

and
l0 D 0; Nhs D ls � ls�1!1 as s!1:

Let kr;s D kr ls , hr;s D hr Nhs and �r;s is determined by Ir;s D f.k; l/ W kr�1 < k �
kr and ls�1 < l � lsg, qr D kr

kr�1
, Nqs D ls

ls�1
and qr;s D qr Nqs .

Let M D .Mk;l/ be a sequence of Orlicz function and p D .pk;l/ be any factorable
double sequence of strictly positive real numbers. Then, we define the following
sequence spaces:h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�ipk;l
D 0; uniformly in m and n for some L and � > 0

o
h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
D 0; uniformly in m and n for some � > 0

o
:

If we take M.x/D x, we haveh
AC�r;s ;p;�

v; jj�; � � � ; �jj
i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�ipk;l
D 0; uniformly in m and n for some L and � > 0

o
h
AC�r;s ;p;�

v; jj�; � � � ; �jj
i
0
D

n
x D .xk;l/ 2 w.X/ W
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P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
D 0; uniformly in m and n for some � > 0

o
:

If we take p D .pk;l/D 1, we haveh
AC�r;s ;M;�v; jj�; � � � ; �jj

i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�i
D 0; uniformly in m and n for some L and � > 0

o
h
AC�r;s ;M;�v; jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�i
D 0; uniformly in m and n for some � > 0

o
:

If we take p D .pk;l/D 1 and M.x/D x, we haveh
AC�r;s ;�

v; jj�; � � � ; �jj
i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�
D 0; uniformly in m and n for some L and � > 0

o
h
AC�r;s ;�

v; jj�; � � � ; �jj
i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
r;s

1

hr;s

X
.k;l/2Ir;s

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�
D 0; uniformly in m and n for some � > 0

o
:

The following inequality will be used throughout the paper. If 0� pk;l � suppk;l D
H , D Dmax.1;2H�1/ then

jak;lCbk;l j
pk;l �Dfjak;l j

pk;l Cjbk;l j
pk;l g (1.1)

for all k; l and ak;l ;bk;l 2C. Also jajpk;l �max.1; jajH / for all a 2C.
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The main aim of this paper is to study some topological properties and inclusion re-
lation between the spaces

h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
and

h
AC�r;s ;M;p;�v;

jj�; � � � ; �jj
i
0

in the second section of the paper. In the third section of this paper

we defined sequence spaces
h
F ;M;p;�v; jj�; � � � ; �jj

i
and

h
F ;M;p;�v; jj�; � � � ; �jj

i
and proved very interesting inclusion relations between the spaces defined in this
section and spaces

h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
and

h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0
.

We also make an effort to study statistical convergence in the fourth section of this
paper.

2. SOME TOPOLOGICAL PROPERTIES

Theorem 1. Let MD .Mk;l/ be a sequence of Orlicz functions and pD .pk;l/ be
a factorable double sequence of positive real numbers, then the spacesh
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
and

h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0

are linear spaces
over the field of complex number C.

Proof. Let x D .xk;l/; y D .yk;l/2
h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0

and ˛;ˇ 2C:

Then there exist positive numbers �1 and �2 such that

lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�1
;´1; � � � ;´n�1jj

�ipk;l
D 0;

uniformly inm and n for some �1 > 0;

and

lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�2
;´1; � � � ;´n�1jj

�ipk;l
D 0;

uniformly inm and n for some �2 > 0:

Let �3 Dmax.2j˛j�1;2jˇj�2/: Since M D .Mk;l/ is non-decreasing convex func-
tion, by using inequality (1.1), we have

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.˛xkCm;lCnCˇykCm;lCn/

�3
;´1; � � � ;´n�1jj

�ipk;l
�D

1

hr;s

X
.k;l/2Ir;s

1

2pk;l

h
Mk;l

�
jj
�v.xkCm;lCn/

�1
;´1; � � � ;´n�1jj

�ipk;l
CD

1

hr;s

X
.k;l/2Ir;s

1

2pk;l

h
Mk;l

�
jj
�v.ykCm;lCn/

�2
;´1; � � � ;´n�1jj

�ipk;l
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�D
1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.xkCm;lCn/

�1
;´1; � � � ;´n�1jj

�ipk;l
CD

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.ykCm;lCn/

�2
;´1; � � � ;´n�1jj

�ipk;l
�! 0 as r �!1; uniformly inm and n:

Thus, we have ˛xCˇy 2
h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0
: Hence

h
AC�r;s ;M;p;�v;

jj�; � � � ; �jj
i
0

is a linear space. Similarly, we can prove that
h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
is a linear space. �

Theorem 2. For any sequence of Orlicz functions MD .Mk;l/ and pD .pk;l/ be
a factorable double sequence of positive real numbers, the spaceh
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0

is a topological linear space paranormed by g.x/D

inf
n
�
pr;s
K W

� 1

hr;s

X
k;l2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
;

where K Dmax.1;supk;l pk;l <1/.

Proof. Clearly g.x/� 0 for x D .xk;l/ 2
h
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0
. Since

Mk;l.0/D 0, we get g.0/D 0. Again, if g.x/D 0, then

inf
n
�
pr;s
K W

� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
D 0: This implies that for a given � > 0, there exists some ��.0 < �� < �/ such that� 1

hr;s

X
k;l2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

��
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1:

Thus � 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
�

� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

��
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;

for each r;s;m and n. Suppose that xk;l ¤ 0 for each k; l 2N . This implies that
�vxkCm;lCn ¤ 0; for each k; l;m;n 2N:
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Let �! 0; then
�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�
!1: It follows that� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
!1;

which is a contradiction. Therefore,�vxkCm;lCn D 0 for each k; l;m and n and thus
xk;l D 0 for each k; l 2N . Let �1 > 0 and �2 > 0 be such that� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�1
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1

and � 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�2
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1

for each r;s;m and n. Let �D �1C�2: Then, by Minkowski’s inequality, we have� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.xkCm;lCnCykCm;lCn/

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
�

� X
.k;l/2Ir;s

h �1

�1C�2
Mk;l

�
jj
�v.xkCm;lCn/

�1
;´1; � � � ;´n�1jj

�
C

�2

�1C�2
Mk;l

�
jj
�v.ykCm;lCn/

�2
;´1; � � � ;´n�1jj

�ipk;l� 1K
�

� �1

�1C�2

�� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.xkCm;lCn/

�1
;´1; � � � ;´n�1jj

�ipk;l� 1K
C

� �2

�1C�2

�� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.ykCm;lCn/

�2
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1:

Since �0s are non-negative, so we have

g.xCy/D inf
n
�
pr;s
K W� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.xkCm;lCnCykCm;lCn/

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
;

� inf
n
�
pr;s
K

1 W

� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.xkCm;lCn/

�1
;´1; � � � ;´n�1jj

�ipk;l� 1K
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� 1;r; s 2N
o

C inf
n
�
pr;s
K

2 W

� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v.ykCm;lCn/

�2
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
:

Therefore,
g.xCy/� g.x/Cg.y/:

Finally, we prove that the scalar multiplication is continuous. Let � be any complex
number. By definition,

g.�x/D inf
n
�
pr;s
K W� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�v�xkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
:

Then

g.�x/D inf
n
.j�jt /

pr;s
K W� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

t
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
;

where t D �
j�j
: Since j�jpr;s �max.1; j�jsuppr;s /; we have

g.�x/�max.1; j�jsuppr;s / inf
n
t
pr
K W� 1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

t
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1;r; s 2N

o
:

So, the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem. �

To prove the next theorem we need the following lemma.

Lemma 1. Let M be an Orlicz function which satisfies �2-condition and let 0 <
ı < 1. Then for each x � ı we have M.x/ < Kı�1M.2/ for some constant K > 0.

Theorem 3. For a sequence of Orlicz functions M D .Mk;l/ which satisfies �2-
condition, we have ŒAC�r;s ;�

v; jj�; � � � ; �jj�� ŒAC�r;sM;�v; jj�; � � � ; �jj�.

Proof. Let x D .xk;l/ 2 ŒAC�r;s ;�
vjj�; � � � ; �jj� so that for each m and n, we have

Dr;s D
n
x D .xk;l/ W P � lim

r;s

1

hr;s

X
.k;l/2Ir;s

jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj D 0;
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uniformly in m and n for some L
o
:

Let � > 0 and choose ı with 0< ı < 1 such thatMk;l.t/ < � for every t with 0� t � ı.
Now, we have

lim
r;s

1

hr;s

X
.k;l/2Ir;s

jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

D lim
r;s

1

hr;s

X
.k;l/2Ir;s

jj
�vxkCm;lCn�L

�
;´1;��� ;´n�1jj�ı

Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�

C lim
r;s

1

hr;s

X
.k;l/2Ir;s

jj
�vxkCm;lCn�L

�
;´1;��� ;´n�1jj>ı

Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�

�
1

hr;s
.hr;s�/C lim

r;s

1

hr;sX
.k;l/2Ir;s

jj
jj�vxkCm;lCn�L

�
;´1;��� ;´n�1jj>ı

Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�

<
1

hr;s
.hr;s�/C

1

hr;s
Kı�1Mk;l.2/hr;sDr;s:

Therefore by Lemma 1 as r and s goes to infinity in the Pringsheim sense, for each
m and n, we have x D .xk;l/ 2 ŒAC�r;sM;�vjj�; � � � ; �jj�. This completes the proof of
the theorem. �

Theorem 4. Let 0 < infpk;l D h� pk;l � suppk;l DH <1 and M D .Mk;l/,
M0D .M 0

k;l
/ be two sequences of Orlicz functions which satisfying�2-condition, we

have
(i)
h
AC�r;s ;M

0;p;�vjj�; � � � ; �jj
i
�

h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
and

(ii)
h
AC�r;s ;M

0;p;�vjj�; � � � ; �jj
i
0
�

h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
0
.

Proof. Let x D .xk;l/ 2
h
AC�r;s ;M

0;p;�vjj�; � � � ; �jj
i
: Then we have

lim
r;s

1

hr;s

X
.k;l/2Ir;s

h
M 0k;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�ipk;l
D 0;

uniformly inm and n for some L and � > 0:
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Let � > 0 and choose ı with 0 < ı < 1 such that Mk;l.t/ < � for 0� t � ı: Let

yk;l DM
0
k;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�
for all k; l 2N:

We can write
1

hr;s

X
.k;l/2Ir;s

ŒMk;l.yk;l/�
pk;l D

1

hr;s

X
.k;l/2Ir;s ;yk;l�ı

ŒMk;l.yk;l/�
pk;l

C
1

hr;s

X
.k;l/2Ir;s ;yk;l>ı

ŒMk;l.yk;l/�
pk;l :

Since M D .Mk;l/ satisfies �2-condition, we have

1

hr;s

X
.k;l/2Ir;s ;yk;l�ı

ŒMk;l.yk;l/�
pk;l

� ŒMk;l.1/�
H 1

hr;s

X
.k;l/2Ir;s ;yk;l�ı

ŒMk;l.yk;l/�
pk;l

� ŒMk;l.2/�
H 1

hr;s

X
.k;l/2Ir;s ;yk;l�ı

ŒMk;l.yk;l/�
pk;l (2.1)

For yk;l > ı

yk;l <
yk;l

ı
< 1C

yk;l

ı
:

Since M D .Mk;l/ is non-decreasing and convex, it follows that

Mk;l.yk;l/ <Mk;l

�
1C

yk;l

ı

�
<
1

2
Mk;l.2/C

1

2
Mk;l

�2yk;l
ı

�
:

Also .Mk;l/ satisfies �2-condition, we can write

Mk;l.yk;l/ <
1

2
T
yk;l

ı
Mk;l.2/C

1

2
T
yk;l

ı
Mk;l.2/D T

yk;l

ı
Mk;l.2/:

Hence,
1

hr;s

X
.k;l/2Ir;s ;yk;l>ı

ŒMk;l.yk;l/�
pk;l

�max
�
1;
�TMk;l.2/

ı

�H� 1

hr;s

X
.k;l/2Ir;s ;yk;l>ı

Œ.yk;l/�
pk;l

(2.2)

From equations (2.1) and (2.2), we have

x D .xk;l/ 2
h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
:
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This completes the proof of (i). Similarly, we can prove thath
AC�r;s ;M

0;p;�vjj�; � � � ; �jj
i
0
�

h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
0
. �

Theorem 5. If 0 < pk;l � qk;l <1 for all k; l 2N and
�
qk;l
pk;l

�
be bounded, thenh

AC�r;s ;M ıM0;q;�vjj�; � � � ; �jj
i
�

h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
:

Proof. Let x D .xk;l/ 2
h
AC�r;s ;M ıM0;q;�vjj�; � � � ; �jj

i
. Write

tk;l D
h
Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�iqk;l
and �k;l D

pk;l
qk;l

for all k; l 2N. Then 0 < �k;l � 1 for k; l 2N: Take 0 < � < �k;l
for k; l 2 N: Define the sequences .uk;l/ and .vk;l/ as follows: For tk;l � 1; let
uk;l D tk;l and vk;l D 0 and for tk;l < 1; let uk;l D 0 and vk;l D tk;l : Then clearly
for all k; l 2N; we have

tk;l D uk;lCvk;l ; t
�k;l
k;l
D u

�k;l
k;l
Cv

�k;l
k;l

Now it follows that u�k;l
k;l
� uk;l � tk;l and v�k;l

k;l
� v

�

k;l
: Therefore,

1

hr;s

X
.k;l/2Ir;s

t
�k;l
k;l
D

1

hr;s

X
.k;l/2Ir;s

.u
�k;l
k;l
Cv

�k;l
k;l

/

�
1

hr;s

X
.k;l/2Ir;s

tk;lC
1

hr;s

X
.k;l/2Ir;s

v
�

k;l
:

Now for each k; l we have

1

hr;s

X
.k;l/2Ir;s

v
�

k;l
D

X
.k;l/2Ir;s

� 1

hr;s
vk;l

��� 1

hr;s

�1��
�

� X
.k;l/2Ir;s

h� 1

hr;s
vk;l

��i 1
�
��� X

.k;l/2Ir;s

h� 1

hr;s

�1��i 1
1��

�1��
D

� 1

hr;s

X
.k;l/2Ir;s

vk;l

��
and so

1

hr;s

X
.k;l/2Ir;s

t
�k;l
k;l
�

1

hr;s

X
.k;l/2Ir;s

tk;lC
� 1

hr;s

X
.k;l/2Ir;s

vk;l

��
:

Hence x D .xk;l/ 2
h
AC�r;s ;M ıM0;p;�vjj�; � � � ; �jj

i
. �
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3. INCLUSION RELATIONS

Let `1, c and c0 denotes the sequence spaces of bounded, convergent and null
sequences x D .xk/ respectively. A sequence x D .xk/ 2 `1 is said to be almost
convergent if all Banach limits of x D .xk/ coincide. In [19], it was shown that

f D
n
x D .xk/ W lim

n!1

1

n

nX
kD1

xkCs exists, uniformly in s
o
:

In [19] Maddox defined strongly almost convergent sequences. Recall that a sequence
x D .xk/ is strongly almost convergent if there is a number L such that

lim
n!1

1

n

nX
kD1

jxkCs �Lj D 0; uniformly in s:

Let M D .Mk;l/ be a sequence of Orlicz functions and p D .pk;l/ be any factorable
double sequence of strictly positive real numbers. Then we define the following
sequence spaces:h

F ;M;p;�v; jj�; � � � ; �jj
i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

h
Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�ipk;l
D 0;

uniformly inm and n; for some L and � > 0
o

andh
F ;M;p;�v;jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
D 0;

uniformly inm and n; for some � > 0
o
:

If we take M.x/D x, we haveh
F ;p;�v;jj�; � � � ; �jj

i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�pk;l
D 0;

uniformly inm and n; for some L and � > 0
o

and h
F ;p;�v;jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W
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P � lim
p;q

1

pq

p;qX
k;lD1;1

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�pk;l
D 0;

uniformly inm and n; for some � > 0
o
:

If we take p D .pk;l/D 1, we geth
F ;M;�v;jj�; � � � ; �jj

i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

Mk;l

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�
D 0;

uniformly inm and n; for some L and � > 0
o

and h
F ;M;�v;jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�
D 0;

uniformly inm and n; for some � > 0
o
:

If we take M.x/D x and p D .pk;l/D 1, we geth
F ;�v;jj�; � � � ; �jj

i
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

�
jj
�vxkCm;lCn�L

�
;´1; � � � ;´n�1jj

�
D 0;

uniformly inm and n; for some L and � > 0
o

and h
F ;�v;jj�; � � � ; �jj

i
0
D

n
x D .xk;l/ 2 w.X/ W

P � lim
p;q

1

pq

p;qX
k;lD1;1

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�
D 0;

uniformly inm and n; for some � > 0
o
:

In this section of the paper we study inclusion relations between the spacesh
AC�r;s ;M;p;�v; jj�; � � � ; �jj

i
0
,
h
F ;M;p;�v; jj�; � � � ; �jj

i
and

h
F ;M;p;�v; jj�; � � � ; �jj

i
.
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Theorem 6. Let M = .Mk;l/ be a sequence of Orlicz functions and p D .pk;l/
be a factorable double sequence of strictly positive real numbers, then the spacesh
F ;M;�v;p; jj�; � � � ; �jj

i
and

h
F ;M;�v;p; jj�; � � � ; �jj

i
0

are linear spaces over the
field of complex number C.

Proof. It is easy to prove. �

Theorem 7. For any sequence of Orlicz functions MD .Mk;l/ and pD .pk;l/ be
a factorable double sequence of positive real numbers, the spaceh
F ;M;�v;p; jj�; � � � ; �jj

i
is a topological linear space paranormed by

g.x/D inf
n
�
pp;q
K W

�
1
pq

p;qX
k;lD1;1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l� 1K
� 1

o
;

where K Dmax.1;supk;l pk;l <1/.

Proof. It is easy to prove in view of Theorem 2, so we omit the details. �

Theorem 8. Let M = .Mk;l/ be a sequence of Orlicz functions and �r;s D fkr ; lsg
be a double lacunary sequence with liminfr qr > 1 and liminfs Nqs > 1, we have
(i)
h
F ;M;�v;p; jj�; � � � ; �jj

i
0
�

h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
0
,

(ii)
h
F ;M;�v;p; jj�; � � � ; �jj

i
�

h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
:

Proof. Let liminf
r
qr > 1 and liminf

s
Nqs > 1, then there exists ı > 0 such that qr >

1C ı and Nqs > 1C ı. This implies hr
kr
�

ı
1Cı

and
Nhs
ls
�

ı
1Cı

. Then for x D .xk;l/ 2h
F ;M;�v;p; jj�; � � � ; �jj

i
0
, we can write for each m and n

Br;s D
1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
D

1

hr;s

krX
kD1

lsX
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

hr;s

kr�1X
kD1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

hr;s

krX
kDkr�1C1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

hr;s

kr�1X
kD1

lsX
lDls�1C1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
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D
krks

hrs

� 1

kr ls

krX
kD1

lsX
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l�

�
kr�1ls�1

hr;s

� 1

kr�1ls�1

kr�1X
kD1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l�

�
1

hr

krX
kDkr�1C1

ls�1

hs

1

ls�1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�
1

hs

lsX
lDls�1C1

kr�1

hr

1

kr�1

kr�1X
kD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
:

Since x D .xk;l/ 2
h
F ;M;�v;p; jj�; � � � ; �jj

i
the last two terms tends to zero uni-

formly in m;n in the Pringsheim sense, thus for each m and n, we have

Br;s D
krks

hrs

� 1

kr ls

krX
kD1

ksX
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l�

�
kr�1ls�1

hrs

� 1

kr�1ls�1

kr�1X
kD1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l�
Co.1/:

Since hrs D kr ls �kr�1ls�1 we are granted for each m and n the following:
kr ls

hrs
�
1C ı

ı
and

kr�1ls�1

hrs
�
1

ı
:

The terms

1

kr ls

krX
kD1

lsX
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
and

1

kr�1ls�1

kr�1X
kD1

ls�1X
lD1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
are both Pringsheim null sequences for all m and n. Thus Br;s is a Pringsheim null

sequence for each m and n. Therefore x D .xk;l/ 2
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
0
.

This completes the proof of (i). Similarly, we can prove (ii). �
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Theorem 9. Let M = .Mk;l/ be a sequence of Orlicz functions and �r;s D fkr ; lsg
be a double lacunary sequence with limsup

r
qr <1 and limsup

s
Nqs <1, we have

(i)
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
0
�

h
F ;M;�v;p; jj�; � � � ; �jj

i
0
,

(ii)
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
�

h
F ;M;�v;p; jj�; � � � ; �jj

i
:

Proof. Since limsupr qr <1 and limsups Nqs <1 there exists H > 0 such that
qr <H and Nqs <H for all r and s. Let x D .xk;l/ 2

h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
0

and � > 0. Also there exist r0 > 0 and s0 > 0 such that for every i � r0 and j � s0
and all m and n, we have

A0i;j D
1

hij

X
.k;l/2Ii;j

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
< �:

Let N DmaxfA0ij W 1� i � r0 and 1� j � s0g, p and q be such that kr�1 < p � kr
and ls�1 < q � ls . Thus we obtain the following:

1

pq

p;qX
k;lD1;1

h
Mk;l

�
jj
�vxkm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

kr�1ls�1

kr lsX
k;lD1;1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

kr�1ls�1

r;sX
t;uD1;1

� X
k;l2It;u

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l�

D
1

kr�1ls�1

r0;s0X
t;u1;1

ht;uA
0
t;uC

1

kr�1ls�1

X
.r0<t�r/[.s0<u�s/

ht;uA
0
t;u

�
N

kr�1ls�1

r0;s0X
t;uD1;1

ht;uC
1

kr�1ls�1

X
.r0<t�r/[.s0<u�s/

ht;uA
0
t;u

�
Nkr0ls0r0s0

kr�1ls�1
C

1

kr�1ls�1

X
.r0<t�r/[.s0<u�s/

ht;uA
0
t;u

�
Nkr0ls0r0s0

kr�1ls�1
C

�
sup

t�r0[u�s0

A0t;u
1

kr�1ls�1

X
.r0<t�r/[.s0<u�s/

ht;u

�
Nkr0ls0r0s0

kr�1ls�1
C

1

kr�1ls�1
�

X
.r0<t�r/[.s0<u�s/

ht;u
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�
Nkr0ls0r0s0

kr�1ls�1
C �H 2:

Since kr and ls both approaches infinity as both p and q approaches infinity, it fol-
lows that

1

pq

p;qX
k;lD1;1

h
Mk;l

�
jj
�vxkCm;lCn

�
;´1; � � � ;´n�1jj

�ipk;l
! 0; uniformly inm and n:

Therefore x D .xk;l/ 2
h
F ;M;�v;p; jj�; � � � ; �jj

i
. This completes the proof of (i).

Similarly, we can prove (ii). �

Theorem 10. Let M = .Mk;l/ be a sequence of Orlicz functions and �r;sDfkr ; lsg
be a double lacunary sequence with 1 < liminf

r;s
qr;s � limsup

r;s
qr;s <1, we have

(i)
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
0
D

h
F ;M;�v;p; jj�; � � � ; �jj

i
0

(ii)
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
D

h
F ;M;�v;p; jj�; � � � ; �jj

i
:

Proof. The proof directly follows from Theorem 8 and Theorem 9. �

4. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [8] and Schoenberg
[34] independently. Over the years and under different names, statistical convergence
has been discussed in the theory of Fourier analysis, ergodic theory and number the-
ory. Later on, it was further investigated from the sequence space point of view and
linked with summability theory by Fridy [9], Connor [6], Salat [32], Mursaleen et al
[25], Mursaleen and Edely [27], Mursaleen and Mohiuddine [31], Isık [16], Savas
[33], Kolk [18], Maddox [19], Mursaleen et al [26] and many others. In recent years,
generalizations of statistical convergence have appeared in the study of strong integral
summability and the structure of ideals of bounded continuous functions on locally
compact spaces. Statistical convergence and its generalizations are also connected
with subsets of the Stone-Cech compactification of natural numbers. Moreover, stat-
istical convergence is closely related to the concept of convergence in probability.
The notion depends on the density of subsets of the set N of natural numbers.
A subset E of N is said to have the natural density ı.E/ if the following limit exists:
ı.E/D limn!1 1

n

Pn
kD1�E .k/; where �E is the characteristic function of E. It is

clear that any finite subset of N has zero natural density and ı.Ec/D 1� ı.E/.
A sequence x D .xk;l/ is said to be lacunary �v-statistically convergent to L, if for
every � > 0

lim
r;s

1

hr;s

ˇ̌̌n
.k; l/ 2 Ir;s W jj.�

vxk;l �L/;´1; � � � ;´n�1jj � �
oˇ̌̌
D 0:



SOME SPACES OF DIFFERENCE SEQUENCES 301

In this case we write xk;l ! L
�
S�r;s

�
�v
��

. The set of all lacunary �v-statistically

convergent sequences is denoted by S�r;s
�
�v
�
.

Theorem 11. Let M D .Mk;l/ be a sequence of Orlicz functions and 0 < h D

infk;l pk;l � pk;l � supk;l pk;l D H < 1: Then
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
� S�r;s .�

v/:

Proof. Let x D .xk;l/ 2
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
and � > 0 be given. Then

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxk;l �L

�
;´1; � � � ;´n�1jj

�ipk;l
�

1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
��

h
Mk;l

�
jj

�
�vxk;l �L

�
�

;´1; � � � ;´n�1jj
�ipk;l

�
1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
��

�
Mk;l.�/

�pk;l
�

1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
��

min
��
Mk;l.�/

�h
;
�
Mk;l.�/

�H�

�
1

hr;s

ˇ̌̌
f.k; l/ 2 Ir;s W

�
jj.�vxk;l �L/;´1; � � � ;´n�1jj

�
� �g

ˇ̌̌
min

��
Mk;l.�/

�h
;
�
Mk;l.�/

�H�
:

Hence x D .xk;l/ 2 S�r;s .�
v/. �

Theorem 12. Let MD .Mk;l/ be a bounded sequence of Orlicz functions and 0 <
h D infk;l pk;l � pk;l � supk;l pk;l D H < 1: Then S�r;s .�

v/

�

h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
:

Proof. Since M D .Mk;l/ is bounded, so there exists an integer K such that
Mk;l.t/ < K; for all t � 0: Then

1

hr;s

X
.k;l/2Ir;s

h
Mk;l

�
jj
�vxk;l �L

�
;´1; � � � ;´n�1jj

�ipk;l
D

1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
��

h
Mk;l

�
jj
�vxk;l �L

�
;´1; � � � ;´n�1jj

�ipk;l
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C
1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
<�

h
Mk;l

�
jj
�vxk;l �L

�
;´1; � � � ;´n�1jj

�ipk;l

�
1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
��

max.Kh;KH /

C
1

hr;s

X
.k;l/2Ir;s ;

�
jj
�vxk;l�L

�
;´1;��� ;´n�1jj

�
<�

ŒMk;l.�/�
pk;l

�max.Kh;KH /
1

hr;s

ˇ̌̌
f.k; l/ 2 Ir;s W

�
jj
�vxk;l �L

�
;´1; � � � ;´n�1jj

�
� �g

ˇ̌̌
Cmax

��
Mk;l.�/

�h
;
�
Mk;l.�/

�H�
:

Hence x D .xk;l/ 2
h
AC�r;s ;M;�v;p; jj�; � � � ; �jj

i
: �
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[33] E. Savaş, “Some new double sequence spaces defined by Orlicz function in n-normed space,” Jour.
Ineq. Appl., vol. ID 592840, pp. 1–9, 2011.

[34] I. J. Schoenberg, “The integrability of certain functions and related summability methods,” Amer.
Math. Monthly, vol. 66, pp. 361–375, 1969.

Authors’ addresses

M. Mursaleen
Department of Mathematics,, Aligarh Muslim University, Aligarh-202002, India
E-mail address: mursaleenm@gmail.com

Kuldip Raj
School of Mathematics,, Shri Mata Vaishno Devi University, Katra - 182320, J&K, INDIA
E-mail address: kuldipraj68@gmail.com



304 M. MURSALEEN, KULDIP RAJ, AND SUNIL K. SHARMA

Sunil K. Sharma
Department of mathematics, Model Institute of Engineering & Technology, Kot Bhalwal-181122,

J&K, INDIA
E-mail address: sunilksharma42@gmail.com


