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Abstract. A general class of linear positive operators which generalizes Baskakov’s operator is
consrtucted. The operators of this type which preserve exactly two test functions from the set
fe0; e1; e2g are determined in each case, and for the operators obtained, we give their approxim-
ation theorem, convergence theorem and Voronovskaja-type theorem.
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1. INTRODUCTION

Let N be a set of positive integers and N0 DN[f0g.
In [6], J. P. King constructed and studied general operators which generalizes the

classical Berstein operators. Some King-type operators were studied in [3–6], [8, 9].
In 1957, V. A. Baskakov [2], form 2N has introduced the linear positive operator
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x 2 Œ0;C1/. He proved that if f 2 C2.Œ0;C1// then Vmf �! f uniform on any
compact Œa;b� � Œ0;C1/. Note that the operators (1.1) preserve the test functions
e0 and e1. Generalizations of the operators (1.1) were introduced by M.A. ROzarslan,
G.Duman and N.I.Mahmudov in [10] by the form
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for m 2 N;x 2 Œ0;C1/; and they show that if um.x/ �! x on a compact Œa;b� �
Œ0;C1/, then Tmf �! f uniform on Œa;b� for all f 2 C2.Œ0;C1//.
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A similar result was obtained in [9] by L. Rempulska and K. Tomczak for the case
in which the modified operators of Baskakov type preserve the test functions e0 and
e2.

In this paper, we introduce a general class of linear positive operators. We determ-
ine the operators of the general class which preserve only two test functions e0 and
e1 or e0 and e2 or e1 and e2.

In all these cases we give approximation properties, convergence theorems and
Voronovskaja-type theorems.

The paper is organized as follows. In Section 2 we recall some results obtained
by O.T.Pop in [7] which are essentially used for obtaining the main results of the
paper. Section 3 is devoted to the construction of the general class of linear and
positive operators defined by infinite sum, which we announced in the start. For
the constructed class we establish a convergence theorem and Voronovskaja type
theorem. In Section 4 we prove that in the general class constructed in Section 3
exists a unique operator which preserve the test functions e0 and e1, the classical
Baskakov operator. In Section 5 we obtain a King type operator, which is an operator
that preserves the test functions e0 and e2 defined on semiaxis Œ0;C1/. We find here
a result due the L. Rempulska and K. Tomczak [9].

Finally, in Section 6, we determine the operators from the general class which
preserve the test function e1 and e2.

2. PRELIMINARIES

In this section we recall some results from [7], which we shall use in the present
paper. Let I;J be real intervals with the property I \J is a nonempty interval. For
any m;k 2N0;m 6D 0, we consider the functions 'm;k W J �! R, with the property
that 'm;k.x/� 0, for any x 2 J and the linear positive functionalsAm;k WE.I /�!R.

For any m 2N we define the operator Lm WE.I / �! F.J /, by

.Lmf /.x/D

1X
kD0

'm;k.x/Am;k.f /; (2.1)

where E.I / is a linear space of real valued functions defined on I , for which the
operators (2.1) are convergent and F.J / is a subset of real valued functions defined
on J .

Remark 1. The operators .Lm/m2N are linear and positive on E.I \J /.

For m 2N and i 2N0, we define Tm;i by

.Tm;iLm/.x/Dm
i .Lm 

i
x/.x/Dm

i
1X
kD0

'm;k.x/Am;k. 
i
x/ (2.2)

for any x 2 I \J , where  x W I �! R; x.t/D t �x.
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In what follows s 2N0 is even and we assume that the following condition: there
exist the smallest ˛s;˛sC2 2 Œ0;C1/, so that

lim
m�!1

.Tm;jLm/.x/

m j̨
D Bj .x/ 2 R (2.3)

for any x 2 I \J and j 2 fs;sC2g,

˛sC2 < ˛sC2 (2.4)

hold.

Theorem 1 ([7]). Let f 2 E.I / be a function. If x 2 I \ J and f is s times
differentiable in a neighborhood of x, f .s/ is continuous on x, then

lim
m�!1

ms�˛s
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!
D 0: (2.5)

Assume that f is s times differentiable on I . LetK � I \J be a compact interval.
For there one we assume that exist m.s/ 2N and constant kj 2 R depending on K,
such that for m�m.s/ and x 2K the following relation

.Tm;jLm/.x/

m j̨
� kj ; j 2 fs;sC2g (2.6)

holds.
Following [7], the convergence expressed by (2.5) is uniform on K and
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for any x 2 K;m � m.s/, where !.f Iı/ denotes the modulus of continuity of the
function f .

In the following, we use the identity
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where x � 0 and m 2N.
By differentiating the relation (2.8) and multiplying with x

m
, we obtain
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Similarly, differentiating the relation (2.9) and multiplying with x
m

we get

x

m
.mx�1/.1Cx/�m�2 D
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; (2.10)

where x � 0 and m 2N.

3. THE CONSTRUCTION OF A GENERAL LINEAR AND POSITIVE OPERATORS
DEFINED BY INFINITE SUM

Let m0 2 N be given, N1 D fm 2 Njm � m0g, the functions ˛m W J �! R and
ˇm W J �!R such that ˛m.x/ > 0;ˇm.x/ > 0;ˇm.x/�˛m.x/ > 0 for any x 2 J and
any m 2N1.

We define the operators of the following form

.Pmf /.x/D
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kD0
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!
˛km.x/ˇ

�m�k
m .x/f

�
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�
; (3.1)

for any m 2 N1;x 2 J and f 2 E.Œ0;C1//, where E.Œ0;1// is a linear space of
real valued functions defined on Œ0;1/, for which the operators defined by (3.1) are
convergent.

If in (2.8)-(2.10), we substitute x by �˛m.x/
ˇm.x/

, we obtain
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;x 2 J;m 2N:

We impose the condition

.Pme0/.x/D 1Cum.x/; (3.5)

for any m 2N1 and any x 2 J , where um W J �! R;um.x/ > �1.
From (3.1), (3.2) and (3.5) follows the equality

ˇm.x/�˛m.x/D .1Cum.x//
� 1

m (3.6)

for any m 2N1 and any x 2 J .
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Let us to impose the condition

.Pme1/.x/D xCvm.x/; (3.7)

for any m 2N1 and any x 2 J , where vm W J �! R;vm.x/ > �x.
Taking (3.1), (3.3) and (3.7) into account, we get

˛m.x/.ˇm.x/�˛m.x//
�m�1

D xCvm.x/;m 2N1;x 2 J: (3.8)

From (3.6) and (3.8) it follows

˛m.x/D
xCvm.x/

1Cum.x/
.1Cum.x//

� 1
m (3.9)
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ˇm.x/D

�
1C
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1Cum.x/

�
.1Cum.x//

� 1
m ; (3.10)

m 2N1, x 2 J .
Taking (3.9) and (3.10) into account, the operator (3.1) becomes

.Pmf /.x/D .1Cum.x//
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;

m 2N1, x 2 J , f 2E.Œ0;C1//.
From (3.1) and (3.4), we have

.Pme2/.x/D
xCvm.x/

m

�
.mC1/

xCvm.x/

1Cum.x/
C1

�
; (3.12)

for any m 2N1 and any x 2 J .
Next .Pm 2x/.x/D .Pme2/.x/�2x.Pme1/.x/Cx

2.Pme0/.x/ and taking (3.5),
(3.7) and (3.12) into account we get

.Pm 
2
x/.x/D

m.vm.x/�xum.x//
2C .xCvm.x//

2C .1Cum.x//.xCvm.x//

m.1Cum.x//
(3.13)

for any m 2N1 and any x 2 J .
Coming back to Theorem 1, for the operators (3.1), we have I D Œ0;C1/,E.I /D

C2.Œ0;C1//
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for any m 2N1;x 2 J and f 2 C2.Œ0;C1//.
In the following, let K � I \J be a compact interval.
We suppose that there exists the sequences

�
am.K/

�
m2N1

;
�
bm.K/

�
m2N1

, so

that
lim

m�!1
am.K/D lim

m�!1
bm.K/D 0; (3.16)

jum.x/j � am.K/; (3.17)
jvm.x/j � bm.K/; (3.18)

for any m 2N1 and any x 2K.
In what follows, let us suppose that the following equality

lim
m�!1

m.vm.x/�xum.x//D l.x/ (3.19)

holds for any x 2 J , where l W J �! R is a bounded function on K.

Remark 2. From .3:16/� .3:18/ it results that if

lim
m�!1

um.x/D lim
m�!1

vm.x/D 0;x 2K;

then
lim

m�!1
m.vm.x/�xum.x//

2
D lim
m�!1

m.vm.x/�xum.x//�

� lim
m�!1

.vm.x/�xum.x//D 0:

This Remark 2 implies that there exist m1 2N such that

.m.vm.x/�xum.x//
2
� 1;m 2N1;m�m1;x 2K: (3.20)

Let us denote
M1.K/D supfam.K/jm 2N1g;

M2.K/D supfbm.K/jm 2N1g:

Now, let N2 D fm 2Njm�max.m0;m1/g.
According to Theorem 1 one obtains ˛0 D 0;˛2 D 1, .Tm;0Pm/.x/D .Pme0/.x/,

for any m 2N1 and any x 2K.
From (3.16) one arrives at

lim
m�!1

.Tm;0Pm/.x/D 1D B0.x/;x 2K: (3.21)

Consequently we get that exists m.0/ 2N such that

.Tm;0Pm/.x/D 1Cum.x/� 1CM1.K/D k0.K/ (3.22)

holds for any m�max.m0;m.0// and x 2K.
We have .Tm;2Pm/.x/ D m2.Pm 2x/.x/, m 2 N1, x 2 J . Taking (3.13), (3.19)

and (3.20) into account, we get

lim
m�!1

.Tm;2Pm/.x/

m
D x.1Cx/C l.x/D B2.x/;x 2K: (3.23)
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Also there exists m.2/ 2N such that
.Tm;2Pm/.x/

m
� b.1Cb/C2D k2.K/ (3.24)

for any m�max.m0;m.2/;m1/ and x 2K, where maxK D b.

Theorem 2. Let f 2 C2.Œ0;C1//. Then

lim
m�!1

Pmf D f (3.25)

uniformly on K. There exists m.0/ 2N;m.0/ depending on K, so that the following
inequalities

j.Pmf /.x/� .1Cum.x//f .x/j � .k0.K/Ck2.K//!

�
f I

1
p
m

�
; (3.26)

j.Pmf /.x/�f .x/j � jum.x/j � jf .x/jC .k0.K/Ck2.K//!

�
f I

1
p
m

�
(3.27)

and

j.Pmf /.x/�f .x/j � am.K/M.K/C .k0.K/Ck2.K//!

�
f I

1
p
m

�
(3.28)

hold for any m 2N2;m�m.0/ and x 2K, where

M.K/D supfjf .x/j j x 2Kg:

Proof of Theorem 2. Applying the Theorem 1 for ˛ D 0 yields (3.25) and (3.26).
Next, using the inequality ja�cj�jb�cj � ja�bj, (3.27) follows, and consequently
(3.28) holds. �

Remark 3. The equations (3.26)-(3.28) are asymptotic formula for a class of ap-
proximation processes of King’s type (see [1]).

Theorem 3. Let f 2 C2.Œ0;C1//. If x 2K, f is two times differentiable in x and
f .2/ is continuous in x, the following relations

lim
m�!1

m..Pmf /.x/� .1Cum.x//f .x//D l.x//f
.1/.x/C

x.1Cx/

2
f .2/.x/

(3.29)
holds.

Proof of Theorem 3. If m 2N1;x 2K, according Theorem 1 yields

.Tm;1Pm/.x/Dm.Pm x/.x/Dm..Pme1/.x/�x.Pme0/.x//:

Applying (3.1) and (3.5) it follows

.Tm;1Pm/.x/Dm.vm.x/�xum.x//: (3.30)

Using Theorem 1 for s D 2, (3.22), (3.23) and (3.30) one arrives at (3.29). �

Remark 4. The relation (3.29) is a Voronovskaja-type theorem (see [11]).
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4. .Pm/m�m0
OPERATORS PRESERVING TEST FUNCTIONS e0 AND e1

In the following, we consider K D Œa;b�, where b > 0. In this case J D Œ0;C1/
and m0 D 1, then N1 DN. If the operators, .Pm/m2N preserve e0 and e1, we have
Pme0 D e0 and Pme1 D e1, for any m 2 N. Taking (3.5) and (3.7) into account, it
results that um.x/D vm.x/D 0 and l.x/D 0 for any m 2N and any x 2 Œ0;C1/.

In this case, we get again the classical Baskakov operators. One has am.Œa;b�/
D bm.Œa;b�/D 0, for any m 2N, k0.Œa;b�/D 1 and k2.Œa;b�/D b.1Cb/C2. Our
statements turn into well known results.

Theorem 4 ([2]). Let f 2 C2.Œ0;C1// one has

lim
m�!1

Pmf D f (4.1)

uniformly on any compact interval Œa;b� � RC and then exists m.0/ 2N, m.0/ de-
pending on b so that

j.Pmf /.x/�f .x/j � .3CbCb
2/!

�
f I

1
p
m

�
;m 2N2;m�m.0/;x 2 Œa;b�:

(4.2)

Theorem 5 ([2]). Let f 2 C2.Œ0;C1//. If x 2 Œa;b�, f is two times differentiable
in x and f .2/ is continuous in x, then

lim
m�!1

m..Pmf /.x/�f .x//D
x.1Cx/

2
f .2/.x/: (4.3)

5. .Pm/m�m0
OPERATORS PRESERVING THE TEST FUNCTIONS e0 AND e2

In this case J D Œ0;C1/ and m0 D 1, then N1 D N. Because Pme0 D e0 and
Pme2 D e2 for any m 2N, taking (3.5) into account, it follows um.x/D 0, for any
m 2N and any x 2 Œ0;C1/.

By using (3.12) yields

.mC1/.xCvm.x//
2
C .xCvm.x//�mx

2
D 0 (5.1)

for any m 2N and any x 2 Œ0;C1/.

From (5.1) we get vm.x/ D
p
4m.mC1/x2C1�1

2.mC1/
�x, for any m 2 N and any x 2

Œ0;C1/, and then the operators from (3.8) become

.Pmf /.x/D

1X
kD0

 
mCk�1

k

! p
4m.mC1/x2C1�1

2.mC1/

!k
� (5.2)

�

 
1C

p
4m.mC1/x2C1�1

2.mC1/

!�m�k
f

�
k

m

�
;

m 2N;x 2 Œ0;C1/;f 2 C2.Œ0;C1//:
So we came across the results obtained by L. Rempulska and K. Tomczak in [9].
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Lemma 1. We have that

vm.x/�

p
4m.mC1/a2C1�1

2.mC1/
�a;m 2N;x 2K D Œa;b� (5.3)

and p
4m.mC1/a2C1�1

2.mC1/
�a �

r
1

2
a2C

1

16
�a;m 2N: (5.4)

Proof of Lemma 1. Since the function vm is decreasing on Œa;b�, it gets the max-
imum value in a and (5.3) follows. By direct computation, (5.4) is obtained. �

Lemma 2. The following relation

lim
m�!1

mvm.x/D�
1Cx

2
(5.5)

holds, where x 2K.

Proof of Lemma 2. We have

lim
m�!1

mvm.x/D lim
m�!1

m

2.mC1/

�
�1C

q
4m.mC1/x2C1�2.mC1/x

�
D

D
1

2

 
�1C lim

m�!1

�4mx2�4x2C1p
4m.mC1/x2C1C2.mC1/x

!
and (5.5) follows. �

According to the notations from Section 3, taking Lemma 1 and Lemma 2 into
account we have am.Œa;b�/D 0, for any m 2N, bm.Œa;b�/

D

p
4m.mC1/a2C1�1

2.mC1/
�a, l.x/D�1Cx

2
, for any m 2N, any x 2 Œa;b�, bm.Œa;b�/�q

1
2
a2C 1

16
�aDM2.Œa;b�/, for anym2N and thenM1.Œa;b�/D 0, k0.Œa;b�/D 1,

k2.Œa;b�/D b.1Cb/C2.
As consequences of Theorem 2 we get

Theorem 6. For any f 2 C2.Œ0;C1// it follows

lim
m�!1

Pmf D f (5.6)

uniformly on compact Œa;b� and there exists m.0/ 2N, m.0/ depending on b, so that

j.Pmf /.x/�f .x/j � .3Cb.1Cb//!

�
f I

1
p
m

�
;m 2N2;m�m.0/;x 2 Œa;b�:

(5.7)

Theorem 7. Let f 2 C2.Œ0;C1//. If x 2 Œa;b�, f is two times differentiable in x
and f .2/ is continuous in x, then

lim
m�!1

m..Pmf /.x/�f .x//D�
1Cx

2
f .1/.x/C

x.1Cx/

2
f .2/.x/: (5.8)
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Proof of Theorem 7. Taking Lemma 2 into account and applying (3.29), (5.8) is
obtained. �

6. .Pm/m�m0
OPERATORS PRESERVING THE TEST FUNCTIONS e1 AND e2

In this case m0 2N, m0 � 2 is a fixed number and J D
h

1
m0�1

;C1
�

. If Pme1 D

e1, for any m 2N1, yields vm.x/D 0, for any m 2N1 and any x 2
h

1
m0�1

;C1
�

.

For x � 1
m0�1

, we have mx�1
xC1

�
m�m0C1
m0

because the function xC1
mx�1

is decreasing

on
h

1
m0�1

;C1
�

, from where mx�1
xC1

> 0 for any m 2N1 and any x 2
h

1
m0�1

;C1
�

.
Taking (3.12) into account, from Pme1 D e1 and Pme2 D e2 for any m 2 N1, we
have mC1

m
x2

1Cum.x/
C

x
m
D x2, for any x 2

h
1

m0�1
;C1

�
, from where

um.x/D
xC1

mx�1
;m 2N1;x 2

�
1

m0�1
;C1

�
: (6.1)

Then the operators from (3.11) become

.Pmf /.x/ (6.2)

D
.mC1/x

mx�1

1X
kD0

 
mCk�1

k

!�
mx�1

mC1

�k�
1C

x�1

mC1

��m�k
f

�
k

m

�
for m 2N1, x 2

h
1

m0�1
;C1

�
and f 2 C2.Œ0;C1//.

According to the notations from Section 3, we have bm
�h

1
m0�1

;b
i�
D 0; l.x/D

�1�x, for any m 2N1, and because the function um.x/D xC1
mx�1

is decreasing onh
1

m0�1
;C1

�
, we get that

um.x/�
m0

m�m0C1
D am

��
1

m0�1
;b

��
for any x 2

h
1

m0�1
;b
�

and M2

�h
1

m0�1
;b
i�
D 0. Then k0 D 1Cm0, k2 D b.1C

b/C2 and M1

�h
1

m0�1
;b
i�
Dm0.

Theorem 8. For any f 2 C2.Œ0;C1// it follows

lim
m�!1

Pmf D f (6.3)

uniformly on the compact
h

1
m0�1

;b
i

and there existsm.0/ 2N depending on b, such
that

j.Pmf /.x/�f .x/j �
m0

m�m0C1
M

��
1

m0�1
;b

��
C (6.4)
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C.3Cm0Cb.1Cb//!

�
f I

1
p
m

�
for any m 2N2, m�m.0/ and x 2

h
1

m0�1
;b
i
, where

M

��
1

m0�1
;b

��
D sup

�
jf .x/j j x 2

�
1

m0�1
;b

��
:

Proof of Theorem 8. It results immediately from Theorem 2. �

Theorem 9. Let f 2 C2.Œ0;C1/. If x 2
h

1
m0�1

;b
i
, f is two times differentiable

in x and f .2/ is continuous in x, then

lim
m�!1

m..Pmf /.x/�f .x//D
1Cx

x
f .x/� .1Cx/f .1/.x/C

x.1Cx/

2
f .2/.x/:

(6.5)

Proof of Theorem 9. We have lim
m�!1

mum.x/ D
1Cx

x
; l.x/ D �1� x, for any

x 2
h

1
m0�1

;b
i

and taking (3.29) into account, follows (6.5). �
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