

Fixed point theorems for some generalized nonexpansive mappings in Banach spaces

A. Amini-Harandi

FIXED POINT THEOREMS FOR SOME GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES

A. AMINI-HARANDI

Received 24 September, 2013

Abstract. In this paper, we first introduce the class of generalized nonexpansive mappings in Banach spaces. This class contains both the classes of nonexpansive and α -nonexpansive mappings. In addition, we obtain some fixed point and coincidence point theorems for generalized nonexpansive mappings in uniformly convex Banach spaces. Our results extend some well-known results in literature.

2010 Mathematics Subject Classification: 47H10

Keywords: fixed point, coincidence point, nonexpansive map, uniformly convex space

1. Introduction and preliminaries.

Recently, Aoyama and Kohsaka [2] introduced the class of α -nonexpansive mappings in Banach spaces and obtained a fixed point theorem for α -nonexpansive mappings in uniformly convex Banach spaces. The class of α -nonexpansive mappings contains the class of nonexpansive mappings and is related to the classes of firmly nonexpansive mappings and λ -hybrid mappings in Banach spaces, for more information on firmly nonexpansive mappings and λ -hybrid mappings see [3], [4], [5], [8], [1] and references therein.

In this paper, we introduce the class of generalized nonexpansive mappings in Banach spaces. This class contains the class of α -nonexpansive mappings. In addition, we obtain some fixed point and coincidence point theorems for generalized nonexpansive mappings in uniformly convex and p-uniformly convex Banach spaces. Our fixed point theorems generalize some of the results obtained in [2].

In the rest of this section, we recall some definitions and facts which will be used in the next section.

Throughout this paper, every Banach space is real. Let E be a Banach space and let C be a nonempty subset of E. We denote the fixed point set of E by E by E be a Banach space E, the norm of E is denoted by $\|.\|$. Strong convergence of a sequence

The author was partially supported by a grant from IPM (No. 93470412) and by the Center of Excellence for Mathematics, University of Shahrekord, Iran.

 $\{x_n\}$ in E to $x \in E$ is denoted by $x_n \to x$. For a Banach space E, we denote the unit sphere and the closed unit ball centered at the origin of E by S_E and B_E , respectively. We also denote the closed ball with radius r > 0 centered at the origin of E by rB_E . Let E be a Banach space with dimension $E \ge 2$. The modulus of convexity of E is the function $S_E : (0,2] \to [0,1]$ defined by

$$\delta_E(\epsilon) = \inf\{1 - \|\frac{x+y}{2}\| : \|x\| = 1, \|y\| = 1, \|x-y\| \ge \epsilon\}.$$

A Banach space E is said to be uniformly convex if for each $\epsilon \in (0,2]$, there exists $\delta > 0$ such that $\|\frac{(x+y)}{2}\| \le 1-\delta$ whenever $x, y \in S_E$ and $\|x-y\| \ge \epsilon$. In other words, E is uniformly convex if and only if $\delta_E(\epsilon) > 0$ for each $\epsilon \in (0,2]$. Every uniformly convex Banach space is reflexive [9].

A Banach space E is called *p-uniformly convex* if there exists a constant c > 0 such that $\delta_E(\epsilon) \ge c\epsilon^p$ for all $\epsilon \in (0,2]$. Notice that there is no *p*-uniformly convex Banach space for p > 2; see, for example [10].

In the sequel we will need the following lemmas.

Lemma 1 ([12]). The Banach space E is uniformly convex if and only if $\|.\|^2$ is uniformly convex on bounded convex sets, i.e., for each r > 0 and $\epsilon \in (0, 2r]$, there exists $\delta > 0$ such that

$$||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2 - t(1-t)\delta,$$

for all $t \in (0,1)$ and for all $x, y \in rB_E$ with $||x - y|| \ge \epsilon$.

Lemma 2 ([11]). Let 1 be a given real number. Let E be a p-uniformly convex Banach space. Then, there exists a constant <math>d > 0 such that

$$||tx + (1-t)y||^p \le t||x||^p + (1-t)||y||^p - (t^p(1-t) + t(1-t)^p)d||x-y||^p,$$

for all $t \in (0,1)$ and for all $x, y \in E$.

A function g of a nonempty subset C of a Banach space E into \mathbb{R} is said to be coercive if $g(z_n) \to \infty$ whenever $\{z_n\}$ is a sequence in C such that $\|z_n\| \to \infty$. Let l^{∞} denotes the Banach space of bounded real sequences with the supremum norm. It is known that there exists a bounded linear functional μ on l^{∞} such that the following three conditions hold:

- (1) If $\{t_n\} \in l^{\infty}$ and $t_n \ge 0$ for every $n \in \mathbb{N}$, then $\mu(\{t_n\}) \ge 0$;
- (2) If $t_n = 1$ for every $n \in \mathbb{N}$, then $\mu(\{t_n\}) = 1$;
- (3) $\mu(\{t_{n+1}\}) = \mu(\{t_n\})$ for all $\{t_n\} \in l^{\infty}$.

Such a functional μ is called a Banach limit and the value of μ at $\{t_n\} \in l^{\infty}$ is denoted by $\mu_n t_n$ [9]. Let μ be a Banach limit and let $\{t_n\} \in l^{\infty}$ be such that $\lim_{n \to \infty} t_n = t$, then the Banach limit of $\{t_n\}$ is also t. It is known that the reflexivity of the Banach space E implies the following.

Lemma 3 ([9]). Let E be a reflexive Banach space, let C be a nonempty, closed, and convex subset of E, and let $g: C \to \mathbb{R}$ be a convex, continuous, and coercive function. Then there exists $u \in C$ such that $g(u) = \inf g(C)$.

Definition 1 ([2]). Let E be a Banach space, let C be a nonempty subset of E, and let α be a real number such that $0 \le \alpha < 1$. A mapping $T : C \to E$ is said to be α -nonexpansive if

$$||Tx - Ty||^2 \le \alpha ||Tx - y||^2 + \alpha ||Ty - x||^2 + (1 - 2\alpha)||x - y||^2$$

for all $x, y \in C$.

The following is the main result of Aoyama and Kohsaka [2].

Theorem 1. Let E be a uniformly convex Banach space, let C be a nonempty, closed and convex subset of E, and let $T: C \to C$ be an α -nonexpansive mapping for some real number α such that $\alpha < 1$. Then F(T) is nonempty if and only if there exists $x \in C$ such that $\{T^n x\}$ is bounded.

2. FIXED POINT THEORY

We first give the definition of generalized nonexpansive mappings.

Definition 2. Let E be a Banach space, and let C be a nonempty subset of E. Let p > 1, $\alpha_1 \ge 0,...,\alpha_m \ge 0$ with $\sum_{i=1}^m \alpha_i = 1$, and let $a,b,c,d \in \mathbb{R}$ with $b < \alpha_1$ for m = 1 and $b \le \alpha_1$ for m > 1, a + c > 0 and $a + b + c \le 1$. A mapping $T : C \to C$ is said to be generalized nonexpansive if

$$\sum_{i=1}^{m} \alpha_i \|T^i x - T^i y\|^p \le a \|x - y\|^p + b \|Ty - x\|^p + c \|y - Tx\|^p + d \|x - Tx\|^p$$
 for all $x, y \in C$.

In the following, we give an example of a generalized nonexpansive mapping which is not an α -nonexpansive mapping.

Example 1. Let $E = \mathbb{R}$, $C = [\sqrt{2}, \sqrt{3}]$ and let Q denotes the set of rational numbers. Let $T: C \to C$ be defined as

$$Tx = \begin{cases} \sqrt{2}, & x \in Q \\ \sqrt{3}. & x \notin Q \end{cases}$$

Then $T^2x = \sqrt{3}$ for each $x \in C$ and so

$$|T^2x - T^2y|^2 = 0 \le |x - y|^2$$
, for each $x, y \in [\sqrt{2}, \sqrt{3}]$.

Thus T is a generalized nonexpansive map. Now, we show that T is not α -nonexpansive. On the contrary, assume that there exists $0 \le \alpha < 1$ such that

$$|Tx - Ty|^2 \le \alpha |Tx - y|^2 + \alpha |Ty - x|^2 + (1 - 2\alpha)|x - y|^2$$
, for each $x, y \in [\sqrt{2}, \sqrt{3}]$.

Let $x \in Q$ and $y \notin Q$ with $\sqrt{2} < x < y < \sqrt{3}$. Then from the above we would have

$$(\sqrt{3} - \sqrt{2})^2 \le \alpha |\sqrt{2} - y|^2 + \alpha |\sqrt{3} - x|^2 + (1 - 2\alpha)|x - y|^2$$

$$< \alpha (\sqrt{3} - \sqrt{2})^2 + \alpha (\sqrt{3} - \sqrt{2})^2 + (1 - 2\alpha)(\sqrt{3} - \sqrt{2})^2 = (\sqrt{3} - \sqrt{2})^2,$$

a contradiction.

Now, we are ready to state our first main result.

Theorem 2. Let E be a Banach space, let C be a nonempty, closed, and convex subset of E, and let $T: C \to C$ be a generalized nonexpansive mapping. Assume that E is uniformly convex if p=2 and assume that E is p-uniformly convex for $1 . Then <math>\bigcup_{i=1}^m F(T^i) \neq \emptyset$ if there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded and either d=0 or $\lim_{n\to\infty} \|T^n x_0 - T^{n+1} x_0\| = 0$. Moreover, if $\bigcup_{i=1}^m F(T^i) \neq \emptyset$ then there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded.

Proof. Notice first that if $x_0 \in \bigcup_{i=1}^m F(T^i)$ then there exists $1 \le j \le m$ such that $T^j x_0 = x_0$ and so $\{T^n x_0 : n \in \mathbb{N}\} = \{Tx_0, ..., T^j x_0\}$. Thus the sequence $\{T^n x_0\}$ is bounded. Now assume that there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded. Let μ be a Banach limit and let $y \in C$ be given. For each bounded sequence $\{t_n\} \in l^\infty$ the value of μ at $\{t_n\} \in l^\infty$ is denoted by $\mu_n t_n$. Since T is generalized nonexpansive, we have

$$\begin{split} \Sigma_{i=1}^{m} \alpha_{i} \| T^{n+i} x_{0} - T^{i} y \|^{p} \\ & \leq a \| T^{n} x_{0} - y \|^{p} + b \| T y - T^{n} x_{0} \|^{p} \\ & + c \| y - T^{n+1} x_{0} \|^{p} + d \| T^{n} x_{0} - T^{n+1} x_{0} \|^{p}, \end{split}$$

for all $n \in \mathbb{N}$, where p > 1, $\alpha_i \ge 0$, $\sum_{i=1}^m \alpha_i = 1$, $b < \alpha_1$, a + c > 0 and $a + b + c \le 1$. Since μ is a Banach limit, we have

$$\begin{split} \Sigma_{i=1}^{m} \alpha_{i} \mu_{n} \| T^{n+i} x_{0} - T^{i} y \|^{p} \\ & \leq a \mu_{n} \| T^{n} x_{0} - y \|^{p} + b \mu_{n} \| T y - T^{n} x_{0} \|^{p} \\ & + c \mu_{n} \| y - T^{n+1} x_{0} \|^{p} + d \mu_{n} \| T^{n} x_{0} - T^{n+1} x_{0} \|^{p}. \end{split}$$

Thus by our assumptions

$$\left(\frac{\alpha_{1}-b}{a+c}\right)\mu_{n}\|T^{n}x_{0}-Ty\|^{p}+\sum_{i=2}^{m}\frac{\alpha_{i}}{a+c}\mu_{n}\|T^{n}x_{0}-T^{i}y\|^{p}\leq\mu_{n}\|T^{n}x_{0}-y\|^{p}$$
(2.1)

Let $g: C \to \mathbb{R}$ be a function defined by $g(y) = \mu_n \|T^n x_0 - y\|^p$ for all $y \in C$. Now we assert that g is a convex, continuous, and coercive function. The convexity of g follows immediately from Lemmas 1 and 2. We show that g is continuous. Let $\{y_m\}$ be a sequence in C such that $y_m \to y$. Then by the mean value theorem, we have

$$|||T^{n}x_{0} - y_{m}||^{p} - ||T^{n}x_{0} - y||^{p}| = |||T^{n}x_{0} - y_{m}|| - ||T^{n}x_{0} - y||||pc_{m,n}^{p-1}|,$$

for all $m, n \in \mathbb{N}$, where

$$\min\{\|T^n x_0 - y_m\|, \|T^n x_0 - y\|\} \le c_{m,n} \le \max\{\|T^n x_0 - y_m\|, \|T^n x_0 - y\|\}.$$

Hence

$$|||T^{n}x_{0} - y_{m}||^{p} - ||T^{n}x_{0} - y||^{p}|$$

$$\leq |||T^{n}x_{0} - y_{m}|| - ||T^{n}x_{0} - y|||p(||T^{n}x_{0} - y_{m}|| + ||T^{n}x_{0} - y||)^{p-1}$$

$$\leq ||y_{m} - y|| \sup\{p(||T^{n}x_{0} - y_{m}|| + ||T^{n}x_{0} - y||)^{p-1} : m, n \in \mathbb{N}\},$$

for all $m, n \in \mathbb{N}$. This shows that the function $h: C \to l^{\infty}$ defined by

$$h(z) = \{ \|T^n x_0 - z\|^p \}_n, \ z \in C$$

is continuous. Thus $g = \mu \circ h$ is also continuous. We next show that g is coercive. If $\{z_m\}$ is a sequence in C such that $\|z_m\| \to \infty$, then we have

$$||T^n x_0 - z_m||^p \ge (|||z_m|| - ||T^n x_0|||)^p$$

and hence $g(z_m) \to \infty$.

It follows from Lemma 3 that there exists $u \in C$ such that $g(u) = \inf g(C)$. Now, we prove that such a point u is unique. Suppose that there exist $u_1, u_2 \in C$ such that $u_1 \neq u_2$ and $g(u_1) = g(u_2) = \inf g(C)$. If p = 2 then from Lemma 1 for $\epsilon = ||u_1 - u_2|| > 0$, we have $\delta > 0$ such that

$$\left\|\frac{1}{2}(T^n x_0 - u_1) + \frac{1}{2}(T^n x_0 - u_2)\right\|^2 \le \frac{1}{2}\|T^n x_0 - u_1\|^2 + \frac{1}{2}\|T^n x_0 - u_2)\|^2 - \delta,$$

for all $n \in \mathbb{N}$. If $2 \neq p > 1$ then from Lemma 2, we get

$$\begin{split} \|\frac{1}{2}(T^{n}x_{0}-u_{1}) + \frac{1}{2}(T^{n}x_{0}-u_{2})\|^{p} \\ & \leq \frac{1}{2}\|T^{n}x_{0}-u_{1}\|^{p} + \frac{1}{2}\|T^{n}x_{0}-u_{2})\|^{p} - (\frac{1}{2})^{p}d\|u_{1}-u_{2}\|, \end{split}$$

for all $n \in \mathbb{N}$. The above inequalities imply that $g(\frac{u_1+u_2}{2}) < \inf g(C)$. On the other hand, since $\frac{u_1+u_2}{2} \in C$, we have $\inf g(C) \leq g(\frac{u_1+u_2}{2})$, a contradiction. Hence there exists a unique $u \in C$ such that $g(u) = \inf g(C)$. Now we show that there exists $j \in \{1,2,...,m\}$ such that $g(T^ju) \leq g(u)$. On the contrary, assume that $g(u) < g(T^iu)$, for each $1 \leq i \leq m$. Since by our assumptions $\frac{\alpha_1-b}{a+c} + \sum_{i=2}^m \frac{\alpha_i}{a+c} \geq 1$ then, we get

$$g(u) < \frac{\alpha_1 - b}{a + c}g(Tu) + \sum_{i=2}^{m} \frac{\alpha_i}{a + c}g(T^i)$$

which contradicts (2.1). Hence there exists $j \in \{1, 2, ..., m\}$ such that $g(T^j u) \le g(u)$. By the assumption on T, we also know that $T^j u \in C$, and so $T^j u = u$ for some $j \in \{1, 2, ..., m\}$.

Theorem 2 immediately implies the following corollary.

Corollary 1. Let E be a uniformly convex Banach space, and let C be a nonempty, closed, and convex subset of E. Let $T: C \to C$ be a mapping satisfying

$$||Tx - Ty||^2 \le a||x - y||^2 + b||Tx - y||^2 + c||x - Ty||^2 + d||x - Tx||^2$$

for all $x, y \in C$, where b < 1, a + c > 0 and $a + b + c \le 1$. Then F(T) is nonempty if there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded and either d = 0 or $\lim_{n \to \infty} \|T^n x_0 - T^{n+1} x_0\| = 0$.

The following corollary is a new coincident point result.

Corollary 2. Let E be a uniformly convex Banach space, and let C be a nonempty, closed, bounded and convex subset of E. Let $T: C \to C$ and $S: C \to C$ be mappings such that $T(C) \subseteq S(C)$ and S(C) is convex and closed. Assume that T and S satisfying

$$||Tx - Ty||^2 \le (1 - 2\alpha)||Sx - Sy||^2 + \alpha||Tx - Sy||^2 + \alpha||Sx - Ty||^2$$

for all $x, y \in C$, where $0 \le \alpha < 1$. Then T and S have a coincidence point, that is, there exists $u \in C$ such that Tu = Su.

Proof. We use the technique in [6]. There exists $D \subseteq C$ such that S(D) = S(C) and $S: D \to C$ is one-to-one. Now, define a map $R: S(D) \to S(D)$ by R(Sx) = Tx. Since S is one-to-one on D and $T(C) \subseteq S(C)$, R is well-defined. Note that

$$||R(Sx) - R(Sy)||^{2} = ||Tx - Ty||^{2}$$

$$\leq (1 - 2\alpha)||Sx - Sy||^{2} + \alpha||Tx - Sy||^{2} + \alpha||Sx - Ty||^{2}$$

$$= (1 - 2\alpha)||Sx - Sy||^{2} + \alpha||R(Sx) - Sy||^{2} + \alpha||Sx - R(Sy)||^{2}$$

for all $Sx, Sy \in S(D)$. Since S(D) = S(C) is convex, closed and bounded, by using Corollary 1, R has a fixed point in S(C), that is, there exists $u \in C$ such that R(Su) = Su, and so Tu = Su.

Corollary 3. Let 1 , <math>E be a p-uniformly convex Banach space, and let C be a nonempty, closed, and convex subset of E. Let $T: C \to C$ be a mapping satisfying

$$||Tx - Ty||^p < (1 - 2\alpha)||x - y||^p + \alpha ||Tx - y||^p + \alpha ||x - Ty||^p$$

for all $x, y \in C$, where $0 \le \alpha < 1$. Then F(T) is nonempty if and only if there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded.

Corollary 4. Let 1 , <math>E be a p-uniformly convex Banach space, and let C be a nonempty, closed, and convex subset of E. Let $T: C \to C$ be a mapping satisfying

$$||Tx - Ty||^p \le (1 - 2\alpha)||x - y||^p + \alpha ||Tx - y||^p + \alpha ||x - Ty||^p,$$

for all $x, y \in C$, where $0 \le \alpha < 1$. Then F(T) is nonempty if and only if there exists $x_0 \in C$ such that $\{T^n x_0\}$ is bounded.

By the same technique as in the proof of Corollary 2, we can deduce the following coincidence point result from Corollary 4. For some previous studies of coincident point theory, see [7].

Corollary 5. Let 1 , <math>E be a p-uniformly convex Banach space, and let C be a nonempty, closed, bounded and convex subset of E. Let $T: C \to C$ and $S: C \to C$ be mappings such that $T(C) \subseteq S(C)$ and S(C) is convex and closed. Assume that T and S satisfying

$$||Tx - Ty||^p \le (1 - 2\alpha)||Sx - Sy||^p + \alpha||Tx - Sy||^p + \alpha||Sx - Ty||^p$$

for all $x, y \in C$, where $0 \le \alpha < 1$. Then T and S have a coincidence point, that is, there exists $u \in C$ such that Tu = Su.

REFERENCES

- K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi, "Fixed point and ergodic theorems for λ-hybrid mappings in hilbert spaces," J. Nonlinear Convex Anal., vol. 11, pp. 335–343, 2010.
- [2] K. Aoyama and F. Kohsaka, "Fixed point theorem for α-nonexpansive mappings in banach spaces," *Nonlinear Anal.*, vol. 74, pp. 4387–4391, 2011.
- [3] R. E. Bruck and S. Reich, "Nonexpansive projections and resolvents of accretive operators in banach spaces," *Houston J. Math.*, vol. 3, pp. 459–470, 1977.
- [4] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, ser. in: Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1990, vol. 28.
- [5] K. Goebel and S. Reich, *Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings*, ser. in: Monographs and Textbooks in Pure and Applied Mathematics. New York: Marcel Dekker Inc., 1984, vol. 83.
- [6] R. H. Haghi, S. Rezapour, and N. Shahzad, "Some fixed point generalizations are not real generalizations," *Nonlinear Anal.*, vol. 74, pp. 1799–1803, 2011.
- [7] S. L. Singh and S. N. Mishra, "On a ljubomir Ĉirić fixed point theorem for nonexpansive type maps with applications," *Indian J. Pure Appl. Math.*, vol. 33, pp. 531–542, 2002.
- [8] R. Smarzewski, "On firmly nonexpansive mappings," Proc. Amer. Math. Soc., vol. 113, pp. 723–725, 1991.
- [9] W. Takahashi, Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000.
- [10] Y. Takahashi, H. K., and M. Kato, "On sharp uniform convexity," *J. Nonlinear and Convex Analysis*, vol. 3, pp. 267–281, 2002.
- [11] H. K. Xu, "Inequalities in banach spaces with applications," *Nonlinear Anal.*, vol. 16, pp. 1127–1138, 1991.
- [12] Z. Zălinescu, Convex Analysis in General Vector Spaces. River Edge, NJ: World Scientific Publishing Co. Inc., 2002.

Author's address

A. Amini-Harandi

Department of Mathematic, University of Isfahan, Isfahan, Iran

Current address: School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

E-mail address: aminih_a@yahoo.com