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Received 24 September, 2013

Abstract. In this note we suggest an improvement for a family of hp-adaptive finite element
methods. We point out the necessity of the new procedure by constructing model problems for
which certain standard hp-adaptive algorithms fail to work properly. It is verified also in the
corresponding simulations that the algorithm can terminate even though the numerical solution
still contains a sizable computational error.
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1. INTRODUCTION

There are several hp-adaptive finite element algorithms in the literature for the
numerical solution of PDE’s (see the collection [8] and the references therein). These
are based on the following scheme

Initialize: solve the initial problem with small polynomial degree p on a
coarse grid,
Repeat:
S1 estimate the error,
S2 if the error is small then stop,
S3 else determine on which elements in the grid and how to refine/derefine,
S4 compute the new solution and go to S1.

The main differences between the different methods are in the error estimation and
refinement procedures. Here we will focus on the method introduced by Demkowicz
et al. [2] and also used (with a small modification) by Šolı́n et al. [11]. In step
S1 this method uses the so called ”reference solution” to compute the error. This
reference solution is calculated using a uniform refinement in space and by increasing
the degree of polynomials on every element in order to calculate a finer solution that
will be considered as the reference solution. The error is defined as the difference
between the reference solution and original solution.
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Despite the fact that this method can be used for many different problems, such
as time dependent problems [4, 13], Maxwell’s equations [12, 14] or coupled highly
nonlinear problems [5], the efficiency of the error estimation has not been justified
rigorously. We illustrate this by the so-called antenna example [3, Section 15.3.]
where the convergence of the method seems to be broken because the estimated error
does not decrease during refinements. However, after further iteration steps it de-
creases again until the estimated error becomes small enough. In that case the error
estimator works properly because it forces the refinements until the estimated error
is small enough.

The aim of this paper is to give a counterexample where the reference solution
is the same as the original one, hence the computed error will be zero, whereas the
error between the exact solution and the approximate solution is large. Furthermore
we suggest a modification of the method that can be used to avoid these kinds of
difficulties.

2. NOTATIONS

We investigate the elliptic boundary-value problem

�div.Kru/CCuD f in˝; (2.1)
uD g on �; (2.2)

and its weak form. Find u 2H 1.˝/ such that uD uDC� where uD D g on @˝,
� 2H 1

0 .˝/

a.�;v/D

Z
˝

f v�a.uD;v/ 8v 2H
1
0 .˝/; (2.3)

a.�;v/ WD

Z
˝

Kr� �rvC

Z
˝

C�v;

where ˝ � Rd , d � 1, � D @˝, f 2 L2.˝/, C 2 L1.˝/, K D fki;j gdi;jD1 is a
continuous, matrix valued, symmetric function on ˝ and v 2H 1

0 .˝/ is a test func-
tion.

Let us denote by �h a tessallation of ˝ into elements. The discretization of (2.3)
takes the following form. Let us denote by Vh;p �H 1.˝/ a finite dimensional sub-
space. Find uh;p 2 Vh;p such that uh;p D uDh;p

C�h;p where uDh;p
2 Vh;p approx-

imates g on @˝, � 2 Vh;p

a.�h;p;vh;p/D

Z
˝

f vh;p�a.uDh;p
;vh;p/ 8v 2 Vh;p: (2.4)

Vh;p contains piecewise polynomials whose degrees can vary from element to ele-
ment.
Vh=2;pC1 denotes the approximation space where the mesh is refined and the de-

gree of the local polynomials is increased.
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The reference solution based methods described in [2] and [11] use the following
basic idea:

S1 compute uh;p 2 Vh;p by solving (2.4),
S2 compute the reference solution uh=2;pC1 2 Vh=2;pC1 by solving (2.4) in the

enriched space Vh=2;pC1,
S3 use uh=2;pC1 as a more accurate solution and define uh;p �uh=2;pC1 as an

error indicator,
S4 compute one of the following quantities on all T 2 �h

� �T D
juh;p�uh=2;pC1jH1.T /

juh=2;pC1jH1.T /

� �T D
kuh;p�uh=2;pC1kH1.T /

kuh=2;pC1kH1.T /

� �T D juh;p�uh=2;pC1jH1.T /

� �T D kuh;p�uh=2;pC1kH1.T /

S5 if
qP

T �
2
T < TOL stop, else refine where it is needed, and go to S1.

The difference between [2] and [11] lies in the choice of �T and [2] does a refine-
ment all over the edges not only all over the elements.

3. COUNTEREXAMPLE

The construction of the counterexample is based on the following simple idea. Let
us suppose that we can find a function f ¤ 0 such that

R
˝ f vh;p D 0, 8vh;p 2 Vh;p.

In this case (2.4) simplifies to a.�h;p;vh;p/D a.uDh;p
;vh;p/. Suppose that it has an

exact solution u0 2 Vh;p so uh;p D u0 (i.e. if g D 0 then uD D 0 yielding u0 D 0).
If
R
˝ f vh=2;pC1D 0, 8vh=2;pC1 2 Vh=2;pC1 then using the fact Vh;p � Vh=2;pC1

we have that
R
˝ f vh;p D 0 also holds. In this case uh;p D uh=2;pC1 D u0, and

therefore the computed error is zero.
Now we show how to create a function f satisfying the above assumptions. For

any T 2 �h we define uc W ˝ ! R such that supp.uc/ D T , uc.x;y/ D

D �T .x;y/b
2
T .x;y/p.x;y/, where �T is the characteristic function of T , bT W˝!

R is a bubble function on T , so bT D 0 on @T and

p.x;y/D

m�1X
kD0

ckx
akybk : (3.1)

Here ak;bk 2N[f0g and ck 2 R,m is a fixed integer (that will be determined later).
The polynomial p.x;y/ is chosen so thatZ

˝

.�div.Kruc/CCuc/v D 0 8v W v 2 Vh=2;pC1;supp.v/D T; (3.2)
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or, since supp.uc/D TZ
T

.�div.Kruc/CCuc/v D 0 8v W v 2 Vh=2;pC1: (3.3)

In order to compute the coefficient vector c D .c0; : : : ; cm�1/ we have to solve the
linear system Ac D 0 where the entries of A 2 Rn�m are given by

Ai;j D

Z
T

.�div.Krb2T cjx
aj ybj /CCb2T cjx

aj ybj /vi dT 8i 2 f1;2; : : : ;ng:

Here we have used the notation dimVh=2;pC1jT D n. To find a nonzero solution c, A
must have more columns than rows, som WD nC1. It is sufficient to find a submatrix
A2Rr.A/�r.A/C1 where r.A/ is the rank ofA, and solve the reduced systemAcD 0.

If we have such a solution then we have at least one free parameter to define c. We
set this parameter to an arbitrary number, i.e. 1. This can be used as coefficients c in
the definition of uc .

For any C0 2 R the test function u0CC0uc will give uh;p D uh=2;pC1 D u0 and
the algorithm will terminate, even though the error C0uc can be arbitrarily large.

Remark 1. If we use implicit a posteriori error estimation first we solve (2.4) which
gives uh;p D u0. Then a local Neumann problem is solved on every element eT

�div.Kre/CCe D f Cdiv.Kruh;p/�Cuh;p in eT ; (3.4)

@e

@�
D�

1

2

�
@uhp

@�

�
on @eT n@˝; (3.5)

e D 0 on @eT \@˝; (3.6)

where e is an estimator of u�uh;p,
h
@uhp

@�

i
is the jump of the outward normal deriv-

ative of the numerical solution on an interior edge (see Chapter 3 in [1] for details). If
u0 D 0 on T then the r.h.s. of (3.4) will be f . The estimated boundary condition will
also be zero. The solution of (3.4)-(3.6) depends on the local finite element space
WeT . If WeT � Vh=2;pC1, then we will again have e D 0 on eT .

4. NUMERICAL RESULTS

By courtesy of William F. Mitchell the procedure described above was tested nu-
merically using his PHAML code [7]. The code was supplied with the following
initial mesh:

The problem was a simple Poisson equation,K � 1, C � 0, with Dirichlet bound-
ary condition in (2.1)-(2.2)

�4u.x;y/D f .x;y/ in˝;

u.x;y/D uD.x;y/ on �;
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FIGURE 1. The initial mesh and triangle T .

with˝ D .0;1/2, and bk D 0 (see (3.1)). The polynomial degree p was 1 at the initial
step. For computing the reference solution PHAML used bisected triangles.

We used as our counterexample

uc.x;y/D xCC0�T .x;y/.�3200.x�y/
2y2.2x�1/2.�1C4x/2�

.1810432x7�4313088x6C4323072x5�2356224x4 (4.1)

C751088x3�139176x2C13747x�549//;

and fc.x;y/ WD �4uc.x;y/, uD.x;y/D xj� , C0 D 105.
The second term of uc was calculated by the method described above. Theoretic-

ally we should have uh;p D uh=2;pC1D x according to the previous section, yielding
that the real error ku�uh;pkH1 can be arbitrary and we can control it by our choice
of C0.

When we implemented this model problem in PHAML we encountered problems
with numerical integration. One can verify that

R
Tj
fc.x;y/ �x

kyl D 0 if 0� k; l � 2,
kC l � 2 for all Tj that are a subtriangle of T and for any C0. However, even when
the highest available order quadrature was used it was different from zero and the
r.h.s. of (2.3) became nonzero.

We obtained kuh=2;pC1 � uh;pkH1.˝/ � 10
�9, which was our main aim. The

addition of x was necessary. Without it kuh=2;pC1kH1.˝/ � 10
�9 and the relative

error was O.1/. The addition of 1 would not make any difference if we used a
seminorm instead of a norm.
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For all possible stopping criteria mentioned in Section 2 we could achieve
qP

T �
2
T

� 10�9. This means that the algorithm terminated at the initial step whenever TOL>
10�8, even though the computational error can be almost arbitrary, depending only
on C0.

5. CONCLUSION

We can easily fix this problem by building a back-up estimator into the code. For
example, we can use the residual-based error estimator

ˇ̌̌̌ ˇ̌
u�uh;p

ˇ̌̌̌ ˇ̌2
� �2res D Cres

0@X
T2�h

h2T krk
2
L2.T /

C

X

2@T

hT kRk
2
L2.
/

1A ; (5.1)

where r is the interior residual r D f C div.Kruh;p/�Cuh;p, R D
h
@uhp

@�

i
is the

jump of the derivative of the numerical solution on the interior edges, jjjujjj2D a.u;u/
is the energy norm (see [1] for details), and Cres is a constant which does not depend
on h.

It is well known that reference solution based methods are a very effective class
of adaptive techniques. The inequality (5.1) supplies a guaranteed upper bound; on
the other hand, its use for the purpose of hp-adaptivity is a little bit complicated. We
should modify our algorithm as follows:

Initialize: solve the initial problem with small polynomial degree p on a
coarse grid
Repeat:
S1 compute the error using one of the quantities from Step 4 of the al-

gorithm described at the end of Section 2.
S2 if the error is small then use (5.1)

S2a if �res < TOL terminate
S2b else do a brute-force adaptive step (both h and p) and go to step

S4. (See Remark 3.)
S3 else determine on which elements in the grid and how to refine/derefine
S4 compute the new solution and go to S1

Remark 2. By adopting this strategy we can avoid the need for building an effective
hp-adaptive technique that impinges on a residual-based estimator. We propose to use
a brute-force adaptive step in order to try to avoid a major modification of the original
algorithm. It is possible to use the hp-adaptive technique from [6] that provides lower
degrees of freedom, however, the method would become more complicated.

Remark 3. There exists another possible correction that was published in [9, 10].
Those papers introduce an adaptive method that is proved to be convergent. The key
idea is the measurement of the oscillation of f . Elements should be checked twice:
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first according to the error estimator and after that according to the oscillation of the
right hand side. If the refinement involves all problematic elements the method will
converge. In our case the only question would be how to decide which refining option
should be used over the elements where there is considerable oscillation: they could
be refined both in h and p.

The reference solutions are characterized by one fundamental issue: they assume
a local behavior of the error. This means that in most cases the error can be located
easily if it is caused by a rough mesh or low polynomial degree at the place where it is
detected. Otherwise, when the error is spread around the reference solution methods
fail. However, above we have seen that it can also fail to converge to the exact solution
even when the error is caused by low polynomial degree on an element.

The idea of creating the counterexample, can be used for many applications. Al-
though, we should note that the way of the correction is a more difficult question. The
residual-based error estimator is hard to carry out for every type of PDEs, especially
with the proper constant. On the other hand, the reference solution based algorithm
is easy-to-use for wide range of problems.
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