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1. INTRODUCTION AND MAIN RESULTS

We assume that the reader is familiar with the usual notations and basic results
of the Nevanlinna theory [8, 17]. In addition, we will use �.f / and �.f / to denote
respectively the exponents of convergence of the zero-sequence and distinct zeros of
a meromorphic function f , �.f / to denote the order of growth of f . A meromorphic
function ' .´/ is called a small function with respect to f .´/ if T .r;'/D o.T .r;f //
as r !C1 except possibly a set of r of finite linear measure; where T .r; f / is
the Nevanlinna characteristic function of f: In the following, we give the necessary
notations and basic definitions.

Definition 1 ([17]). Let f be a meromorphic function. Then the hyper-order of
f .´/ is defined by

�2 .f /D limsup
r!C1

log logT .r;f /
logr

:

Definition 2 ([8,11]). The type of a meromorphic function f of order � .0 < � <1/
is defined by

� .f /D limsup
r!C1

T .r;f /

r�
:
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If f is entire function of order � .0 < � <1/, we can define the type by

�M .f /D limsup
r!C1

logM .r;f /

r�
:

Remark 1. We have not always the equality �M .f /D � .f / ; for example � .e´/D
1
�
< 1D �M .e´/ :

Definition 3 ([7,17]). Let f be a meromorphic function. Then the hyper-exponent
of convergence of zeros sequence of f .´/ is defined by

�2 .f /D limsup
r!C1

log logN
�
r; 1
f

�
logr

;

where N
�
r; 1
f

�
is the counting function of zeros of f .´/ in f´ W j´j6 rg. Simil-

arly, the hyper-exponent of convergence of the sequence of distinct zeros of f .´/ is
defined by

�2 .f /D limsup
r!C1

log logN
�
r; 1
f

�
logr

;

where N
�
r; 1
f

�
is the counting function of distinct zeros of f .´/ in f´ W j´j6 rg.

The study of oscillation of solutions of linear differential equations has attracted
many interests since the work of Bank and Laine [1,2], for more details, see [9]. The
main subject of this research is the zeros distribution of solutions and their derivatives
of linear differential equations. In this paper, we first discuss the growth of solutions
of second order linear differential equation

f 00CA.´/f 0CB .´/f D F .´/ ; (1.1)

where A.´/ ;B .´/. 6� 0/ and F .´/. 6� 0/ are meromorphic functions of finite order.
Some results on the growth of entire solutions of (1.1) have been obtained by sev-
eral researchers (see [5, 6, 12, 14]). Li and Wang (see [12]) investigated the non-
homogeneous linear differential equation

f 00C e�´f 0Ch.´/eb´f DH .´/; (1.2)

where h.´/ is a transcendental entire function of finite order �.h/ < 1
2
; and b is a

real constant. They proved that all nontrivial solutions of (1.2) are of infinite order,
provided that �.H/ < 1: After their, Wang and Laine (see [14]) studied the differen-
tial equation

f 00CA1 .´/e
a´f 0CA0 .´/e

b´f DH .´/; (1.3)

where A0 .´/ ; A1 .´/ ; H .´/ are entire functions of order less than one, and a;b 2C;
and obtained.
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Theorem 1 ([14]). Suppose that A0 6� 0; A1 6� 0; H are entire functions of order
less than one, and the complex constants a;b satisfy ab ¤ 0 and a ¤ b: Then every
nontrivial solution f of (1.3) is of infinite order.

J. Tu and co-authors investigated the hyper-exponent of convergence of zeros of
f .j / .´/�' .´/ .j D 0;1;2; : : :/, where f is a solution of

f 00CA.´/f 0CB .´/f D 0 (1.4)

and ' .´/ is an entire function satisfying �.'/ < �.f / or �2 .'/ < �2 .f / ; and ob-
tained the following result.

Theorem 2 ([13]). Let A.´/ and B .´/ be entire functions with finite order. If
�.A/ < �.B/ <1 or 0 < �.A/D �.B/ <1 and �M .A/ < �M .B/ ; then for every
solution f 6� 0 of (1.4) and for any entire function ' .´/ 6� 0 satisfying �2 .'/ <
�2 .f / ; we have

�2

�
f .j /�'

�
D �2 .f /D �.B/ .j D 0;1;2; : : :/ :

Recently in [15, 16], H. Y. Xu, J. Tu, X. M. Zheng and H. Y. Xu, J. Tu have
investigated the relationship between small functions and the derivatives of solutions
of higher order linear differential equations with entire and meromorphic functions.
It is a natural to ask what about the exponent of convergence of zeros of f .j / .´/
.j D 0;1;2; : : :/ ; where f is a solution of (1.1). The main purpose of this paper is
to give an answer to this question. The method used in the proofs of our theorems
is quite different from the method used in the papers [13, 16]. Before we state our
results we need to define the following notations

Aj .´/D Aj�1 .´/�
B 0j�1 .´/

Bj�1 .´/
for j D 1;2;3; : : : ; (1.5)

Bj .´/D A
0
j�1 .´/�Aj�1 .´/

B 0j�1 .´/

Bj�1 .´/
CBj�1 .´/ for j D 1;2;3; : : : (1.6)

and

Fj .´/D F
0
j�1 .´/�Fj�1 .´/

B 0j�1 .´/

Bj�1 .´/
for j D 1;2;3; : : : ; (1.7)

where A0 .´/D A.´/ ; B0 .´/D B .´/ and F0 .´/D F .´/ : We obtain the following
results.

Theorem 3. Let A.´/ ; B .´/ 6� 0 and F .´/ 6� 0 be meromorphic functions with
finite order such that Bj .´/ 6� 0 and Fj .´/ 6� 0 .j D 1;2;3; : : :/ : If f is a mero-
morphic solution of (1.1) with �.f /D1 and �2 .f /D �; then f satisfies

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1;2; : : :/
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and
�2

�
f .j /

�
D �2

�
f .j /

�
D � .j D 0;1;2; : : :/ :

Theorem 4. Let A.´/ ; B .´/ 6� 0 and F .´/ 6� 0 be meromorphic functions with
finite order such that Bj .´/ 6� 0 and Fj .´/ 6� 0 .j D 1;2;3; : : :/ : If f is a mero-
morphic solution of (1.1) with

�.f / >maxf�.A/;� .B/;� .F /g ;

then

�
�
f .j /

�
D �

�
f .j /

�
D �.f / .j D 0;1;2; : : :/ :

Remark 2. The conditions Bj .´/ 6� 0 and Fj .´/ 6� 0 .j D 1;2;3; : : :/ are neces-
sary. For example f .´/D e�´C1 satisfies (1.1), whereA.´/D ´

´C1
; B .´/D� 1

´C1

and F .´/D� 1
´C1

: On the other hand

A1 D A�
B 0

B
D 1;

B1 D A
0
�A

B 0

B
CB � 0; F1 D F

0
�F

B 0

B
� 0

and
�.f /D 1 > �

�
f .j /

�
D 0 .j D 1;2;3; : : :/ :

Here, we will give some sufficient conditions on the coefficients which guarantee
Bj .´/ 6� 0 and Fj .´/ 6� 0 .j D 1;2;3; : : :/:

Theorem 5. Let A.´/ ; B .´/ 6� 0 and F .´/ 6� 0 be entire functions with finite
order such that �.B/ > maxf�.A/;� .F /g : Then all nontrivial solutions of (1.1)
satisfy

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1;2; : : :/

with at most one possible exceptional solution f0 such that

�.f0/Dmax
n
�.f0/ ;� .B/

o
:

Remark 3. The condition �.B/ >maxf�.A/;� .F /g does not ensure that all solu-
tions of (1.1) are of infinite order. For example we can see that f0 .´/D e�´

2

satisfies
the differential equation

f 00C2´f 0C .e´
2

C2/f D 1;

where
�.f0/D 0 < �.f0/D �.B/D 2:
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In the next, we note

� .f /D limsup
r!C1

logm.r;f /
logr

:

Theorem 6. Let A.´/ ; B .´/ 6� 0 and F .´/ 6� 0 be meromorphic functions with
finite order such that � .B/ >maxf� .A/;� .F /g : If f is a meromorphic solution of
(1.1) with �.f /D1 and �2 .f /D �; then f satisfies

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1;2; : : :/

and
�2

�
f .j /

�
D �2

�
f .j /

�
D � .j D 0;1;2; : : :/ :

Theorem 7. Let A.´/ ; B .´/ 6� 0 and F .´/ 6� 0 be entire functions with finite
order such that �.B/D �.A/ > �.F / and � .B/ > k� .A/; k > 1 is an integer: If f
is a nontrivial solution of (1.1) with �.f /D1 and �2 .f /D �; then f satisfies

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1; : : : ;k/

and
�2

�
f .j /

�
D �2

�
f .j /

�
D � .j D 0;1; : : : ;k/ :

Corollary 1. Suppose that A0 6� 0; A1 6� 0; H 6� 0 are entire functions of order
less than one, and the complex constants a;b satisfy ab ¤ 0 and jbj> k jaj ; k > 1 is
an integer: Then every nontrivial solution f of (1.3) satisfies

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1; : : : ;k/ :

2. PRELIMINARY LEMMAS

Lemma 1 ([8]). Let f be a meromorphic function and let k > 1 be an integer:
Then

m

 
r;
f .k/

f

!
D S .r;f / ;

where S .r;f /DO .logT .r;f /C logr/ ; possibly outside of an exceptional set E �
.0;C1/ of r with finite linear measure. If f is of finite order of growth, then

m

 
r;
f .k/

f

!
DO .logr/ :

Lemma 2 ([3,4]). LetA0;A1; : : : ;Ak�1;F 6� 0 be finite order meromorphic func-
tions.
.i/ If f is a meromorphic solution of the equation

f .k/CAk�1f
.k�1/

C�� �CA1f
0
CA0f D F (2.1)
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with �.f /DC1 , then f satisfies

�.f /D �.f /D �.f /DC1:

.ii/ If f is a meromorphic solution of equation (2.1) with �.f / D C1 and
�2 .f /D �; then

�.f /D �.f /D �.f /DC1; �2 .f /D �2 .f /D �2 .f /D �:

Lemma 3 ([13]). Let A0;A1; : : : ;Ak�1;F 6� 0 be finite order meromorphic func-
tions. If f is a meromorphic solution of equation (2.1) with

max
˚
�
�
Aj
�
.j D 0;1; : : : ;k�1/ ;� .F /

	
< �.f / <1;

then

�.f /D �.f /D �.f / :

Lemma 4 ([10]). Let f and g be meromorphic functions in the complex plane
such that 0 < �.f / ;� .g/ <1 and 0 < � .f / ;� .g/ <1: Then we have
.i/ If �.f / > �.g/ ; then we obtain

� .f Cg/D � .fg/D � .f / :

.ii/ If �.f /D �.g/ and � .f /¤ � .g/ ; then we get

�.f Cg/D �.fg/D �.f /D �.g/ :

Lemma 5 ([6]). Let A;B1; : : : ;Bk�1; F 6� 0 be entire functions of finite order,
where k > 2: Suppose that either .i/ or .ii/ below holds:
.i/ �

�
Bj
�
< �.A/.j D 1; : : : ;k�1/ ;

.ii/ B1; : : : ; Bk�1 are polynomials and A is transcendental. Then we have

.a/ All solutions of the differential equation

f .k/CBk�1f
.k�1/

C�� �CB1f
0
CAf D F

satisfy

�.f /D �.f /D �.f /DC1

with at most one possible solution f0 of finite order.
.b/ If there exists an exceptional solution f0 in case .a/ ; then f0 satisfies

�.f0/6 max
n
�.A/;� .F / ;�.f0/

o
<1: (2.2)

Furthermore, if �.A/¤ �.F / and �.f0/ < �.f0/ ; then

�.f0/Dmaxf�.A/;� .F /g :
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3. PROOF OF THE THEOREMS AND COROLLARY

Proof of Theorem 3. We prove this theorem by using mathematical induction. Since
B 6� 0; F 6� 0; then by using Lemma 2, we have

�.f /D �.f /D �.f /DC1

and
�2 .f /D �2 .f /D �2.f /D �:

Dividing both sides of (1.1) by B; we obtain
1

B
f 00C

A

B
f 0Cf D

F

B
: (3.1)

Differentiating both sides of equation (3.1), we have

1

B
f .3/C

��
1

B

�0
C
A

B

�
f 00C

��
A

B

�0
C1

�
f 0 D

�
F

B

�0
: (3.2)

Multiplying now (3.2) by B; we get

f .3/CA1f
00
CB1f

0
D F1; (3.3)

where

A1 D A�
B 0

B
;

B1 D A
0
�A

B 0

B
CB

and

F1 D F
0
�F

B 0

B
:

Since B1 6� 0; F1 6� 0 are meromorphic functions with finite order, then by using
Lemma 2, we obtain

�
�
f 0
�
D �

�
f 0
�
D �.f /DC1

and
�2
�
f 0
�
D �2

�
f 0
�
D �2.f /D �:

Dividing now both sides of (3.3) by B1; we obtain
1

B1
f .3/C

A1

B1
f 00Cf 0 D

F1

B1
: (3.4)

Differentiating both sides of equation (3.4) and multiplying by B1; we get

f .4/CA2f
.3/
CB2f

00
D F2; (3.5)

where A2;B2 6� 0 and F2 6� 0 are meromorphic functions defined in (1.5)-(1.7). By
using Lemma 2, we obtain

�
�
f 00
�
D �

�
f 00
�
D �.f /DC1
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and
�2
�
f 00
�
D �2

�
f 00
�
D �2 .f /D �:

We suppose now that

�
�
f .k/

�
D �

�
f .k/

�
D �.f /DC1; �2

�
f .k/

�
D �2

�
f .k/

�
D �2 .f /D � (3.6)

for all k D 0;1;2; : : : ;j � 1; and we prove that (3.6) is true for k D j: By the same
method as before, we can obtain

f .jC2/CAjf
.jC1/

CBjf
.j /
D Fj ;

where Aj ;Bj 6� 0 and Fj 6� 0 are meromorphic functions defined in (1.5) -(1.7). By
using Lemma 2, we obtain

�
�
f .j /

�
D �

�
f .j /

�
D �.f /DC1

and
�2

�
f .j /

�
D �2

�
f .j /

�
D �2 .f /D �:

Thus, the proof of Theorem 3 is completed. �

Proof of Theorem 4. By a similar reasoning as in the proof of Theorem 3, and by
using Lemma 3, we obtain

�
�
f .j /

�
D �

�
f .j /

�
D �.f / .j D 0;1;2; : : :/ :

�

Proof of Theorem 5. By Lemma 5, all nontrivial solutions of (1.1) are of infinite
order with at most one exceptional solution f0 of finite order. By using (1.5) and
Lemma 1 we have

m
�
r;Aj

�
6m

�
r;Aj�1

�
CO .logr/

for all j D 1;2;3; : : : ; which we can rewrite as

m
�
r;Aj

�
6m.r;A/CO .logr/ .j D 1;2;3; : : :/ : (3.7)

On the other hand, we have from (1.6)

Bj D Aj�1

 
A0j�1

Aj�1
�
B 0j�1

Bj�1

!
CBj�1

D Aj�1

 
A0j�1

Aj�1
�
B 0j�1

Bj�1

!
CAj�2

 
A0j�2

Aj�2
�
B 0j�2

Bj�2

!
CBj�2

D

j�1X
kD0

Ak

�
A0
k

Ak
�
B 0
k

Bk

�
CB: (3.8)
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Now we prove that Bj 6� 0 for all j D 1;2;3; : : : : Suppose there exists an integer
j D 1;2;3; : : : such that Bj � 0: By (3.7) and (3.8)

T .r;B/Dm.r;B/6
j�1X
kD0

m.r;Ak/CO .logr/

6 jm.r;A/CO .logr/D jT .r;A/CO .logr/ (3.9)
which implies the contradiction �.B/6 �.A/: Hence Bj 6� 0 for all j D 1;2;3; : : : :
Suppose now there exists an integer j D 1;2;3; : : : that is the first index for which
Fj � 0: Then, by (1.7) and Fj�1 .´/ 6� 0 we have

F 0j�1 .´/�Fj�1 .´/
B 0j�1 .´/

Bj�1 .´/
D 0

which implies
Fj�1 .´/D cBj�1 .´/ ;

where c 2Cnf0g : By (3.8) we have

1

c
Fj�1 D

j�2X
kD0

Ak

�
A0
k

Ak
�
B 0
k

Bk

�
CB: (3.10)

On the other hand, we have from (1.7)

m
�
r;Fj

�
6m.r;F /CO .logr/ .j D 1;2;3; : : :/ : (3.11)

By (3.10), (3.11) and Lemma 1, we obtain

T .r;B/Dm.r;B/6
j�2X
kD0

m.r;Ak/Cm
�
r;Fj�1

�
CO .logr/

6 .j �1/m.r;A/Cm.r;F /CO .logr/

D .j �1/T .r;A/CT .r;F /CO .logr/ (3.12)
which implies the contradiction �.B/6 maxf�.A/;� .F /g : Since Bj 6� 0 and Fj 6�
0 .j D 1;2;3; : : :/ ; then by applying Theorem 3 and Lemma 5 we have

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1;2; : : :/

with at most one exceptional solution f0 of finite order. Since �.B/>maxf�.A/;� .F /g ;
then by (2.2) we obtain

�.f0/6 max
n
�.B/;�.f0/

o
: (3.13)

On the other hand by (1.1), we can write

B D
F

f0
�

�
f 000
f0
CA

f 00
f0

�
:
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It follows that

T .r;B/Dm.r;B/6m

�
r;
F

f0

�
Cm.r;A/CO .logr/

6 T .r;f0/CT .r;F /CT .r;A/CO.logr/
which implies

�.B/6 maxf�.f0/ ;� .A/;� .F /g D �.f0/ : (3.14)
Since �.f0/6 �.f0/ ; then by using (3.13) and (3.14) we obtain

�.f0/Dmax
n
�.B/;�.f0/

o
:

This completes the proof of Theorem 5. �

Proof of Theorem 6. By using the same reasoning as in the proof of Theorem 5,
we can prove Theorem 6. �

Proof of Theorem 7. First, we prove that Bj 6� 0 for all j D 1;2; : : : ;k: Suppose
there exists an integer s; 16 s 6 k such that Bs � 0: By (3.7) and (3.8), we have

T .r;B/Dm.r;B/6
s�1X
kD0

m.r;Ak/CO .logr/

6 sm.r;A/CO .logr/D sT .r;A/CO .logr/ (3.15)
which implies the contradiction k� .A/ < � .B/6 s� .A/ : Hence Bj 6� 0 for all j D
1;2; : : : ;k: Now, we prove that Fj 6� 0 for all j D 1;2; : : : ;k: Suppose there exists an
integer s; 16 s 6 k such that Fs � 0: From (3.12), we have

T .r;B/6 .s�1/m.r;A/Cm.r;F /CO .logr/

D .s�1/T .r;A/CT .r;F /CO .logr/ (3.16)
which implies the contradiction k� .A/ < � .B/6 .s�1/� .A/ : Hence Fj 6� 0 for all
j D 1;2; : : : ;k: Since Bj 6� 0 and Fj 6� 0 .j D 1; : : : ;k/ ; then by Theorem 3 we have

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1; : : : ;k/

and
�2

�
f .j /

�
D �2

�
f .j /

�
D � .j D 0;1; : : : ;k/ :

�

Proof of Corollary 1. Since ab ¤ 0; jbj > k jaj ; then by Theorem 1, every non-
trivial solution f of (1.3) is of infinite order. By using Lemma 4 we have

�
�
A0e

b´
�
D �

�
eb´

�
D
jbj

�
> k
jaj

�
D k�

�
A1e

a´
�
:
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Then by Theorem 7, we obtain

�
�
f .j /

�
D �

�
f .j /

�
D �.f /DC1 .j D 0;1; : : : ;k/ :

�

4. OPEN PROBLEM

It’s interesting to study whether the condition jbj>k jaj ;where k > 1 is an integer
is necessary in Corollary 1. For that, we pose the following problem.

Conjecture 1. Suppose that A0 6� 0; A1 6� 0; H 6� 0 are entire functions of order
less than one, and the complex constants a;b satisfy ab¤ 0 and jbj> jaj : Then every
nontrivial solution f of (1.3) satisfies

�
�
f .j /

�
D �

�
f .j /

�
DC1 .j D 0;1; : : :/ :
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