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1. INTRODUCTION

The mathematical theory of shape optimization benefits of a vast literature; the
optimal shape design for systems governed by PDEs was studied in a great many
papers, see for example [1], [2], [3]. Also, problems where variational or hemivaria-
tional inequalities appear were treated in [1], [4], [5], [6] and others.

A problem of shape optimization for a system described by a variational inequality
can be looked at as a problem of optimal control in which the role of the control
is played by sets from a class of admissible domains and the variational inequality
appears as the state equation. In this context it is interesting to study the behavior of
solutions to the variational inequality when the domain is perturbed.

The purpose of this paper is to study the stability with respect to the domain per-
turbations of a nonlinear variational inequality of the form

Findug € K(Q) such that
(A(Q,Ug),V—Ug) = 0, Yve K(Q),

whereQ is a bounded open subsetRi¥, K(Q) is a closed, convex set in the Sobolev
spaceH(Q) andA is a nonlinear operator of a special forA(Q, u) € (HY(Q))*.

If Qo is fixed in the class of the admissible domains afs the solution of V1)q,,
the following problem arises: Is there a neighborh®gdf Qo (in a sense that will
be specified) and a mappifglefined on this, continuous &%, with 8(Qp) = up and
such that(Q) is a solution of ¥/ 1) for eachQ € Vg ?
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26 DANIELA INOAN

General stability results for parametric variational inequalities under small pertur-
bations of the parameter have been given in [7], [8]. One of these results is presented
in Section 3 and used in the paper.

In order to define the topological space of the parameters as a space of functions
we use the mapping method (Section 2) for which the basic results were established
by Murat and Simon in [3].

Finally, in Section 4 we present the main result of the paper and an example for a
linear variational inequality.

2. THE MAPPING METHOD

The mapping method consists in defining the class of admissible domains as im-
ages of a fixed set. The main notions and properties were established in [3]; we
present some of them following [4], [2]. _

LetC c RN be a bounded, open set, wiflt of classW'>, i > 1 and such that
intC = C.

We consider the following spaces:

WERMN = (¢ | D% € L*RVMN Va with 0 < |a| < k}
7> = (s : RN - RN | S bijective S— 1,571 =1 € WERMN)
0% = {Q]Q = S(C), S € F*~)

and the norm iWk=(RN)N:

ISk = €SS SUR Z ID“S|2N)1/2
xRN oljol<k
II/In represents the norm @&N. The norm orL*(RN) (or L*(RN)N*) will be denoted

Ok consists in a family of bounded and open setgiQfis of classWwk>, k > 1
thendQ is of classwk= also.
We define oro%® x 0% a function

Skeo(Q1, Q) = inf (IS = Hlkeo + 1IS™ = Hlkco)-
Séfk'm,s(gl):Qg

It can be proved (see [4], [2]) that there exists a positive congiastich that
koo (1, Q2) = (MiN{Bk oo (1, 2), )2
is a complete metric 00,

Remark 1. It is known (see [3]) tha), — Q in O%* if and only if there exist
Sn.S € 7% such thatQ, = Sy(C), @ = S(C) andS, — S, S;* — Stin
Wk’OO(RN)N.

The next Lemma (see [4]) summarizes some properties used in the paper:
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Lemma 1. (a) If S € F%°, Q = S(C), thenu € H1(Q) if and only ifuo S € H(C).
If un — uin HY(Q) (orin H1(C)) thenupoS — uoSin HY(C) (or uyo St — uoS1
in H1(Q)).

(b) Letk > 1, u € HYRN). The mapping ~ uo S is continuous fron¥*= to
HLRN).

(c) Letk > 1. The mapping$ — JS™'andS — detJS are continuous frorF k>
to WK-2=(RN) (with JS we denoted the Jacobian matrix $1.

(d) If u,v e HY(Q) andQ = S(C) we have:

luo S —vo Sl < (IdettS™Hle)Y2(13Slleo + L)lIU = Vily2(g-

3. PARAMETRIC VARIATIONAL INEQUALITIES

Let H be a real, reflexive Banach space and denote Witlits dual. LetW be a
topological space, I€f : Wx H — H* and letk : W — 2" be a set-valued map.
For a given parametay € W we consider the variational inequality:

(VIP), Find an element(w) € K(w) such that
(T(w, x(W)),y — x(w)) > 0, Yy € K(w).

For a fixedwp € W (the initial value of the parameter), suppose that K(wp) is
the solution of the corresponding proble¥il P),,. We say that the problenvV(P).,
is stable under perturbationigthere exists a neighborhodfly of wg and a mapping
X : Wp — H, continuous atvg, with x(Wg) = Xg and such that, for each € Wy, x(w)
is a solution of Y IP),.

Definition 1. The mapl : W x H — H* is calledconsistent inwv at (wo, Xp) if, for
eachO < r < 1, there exists a neighborhoddf; of wg and a function : W, — R,
continuous atvg, with 8(wp) = Xo such that for eachiv € W;, there existyy,, € K(w)
such that
llyw — Xoll < B(w)

and

(T(W, Yw), 2= Yw) + BW)IIZ— ywll > O,
for eachz € K(w) such thatr < ||z— yull < 2

Definition 2. The mapsl(w,-) : H — H* are calleduniformly strongly monotone
onW, c W if there exists a positive constamsuch that for alw € Wp andx,y € H,
X #ywe have :

(T(W,X) = T(W,y), X~ y) > allx =y~

The following Theorem is a particular case of a Theorem proved in [7].
Theorem 1. In the above notations, let the d€{w) be closed and convex for each
w e W. Considemg € W and Xy € K(wp) fixed. Suppose that:

(i) Xo is @ solution of(VIP)y,;
(i) T is consistent iw at (Wo, Xo);
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(iii) there exists a neighborhood of wy such that the map§(w, -) are uniformly
strongly monotone, continuous from the line segment$ wf the weak topology of
H*, for allw e V and x € K(w).

Then the problen(V1P),, is stable under perturbations.

4. STABILITY WITH RESPECT TO THE DOMAIN OF PERTURBATIONS

LetQ c RN be a bounded and open set. We consider the problem:
(VD)o Findug € K() such that

f A(X, Vuga(X)) - (VV(X) — Vua(X))dx
Q

+ f a(x, up(X))(V(X) — u(x))dx = 0, Yv e K(Q)
Q

in the following notations and hypotheses:

(H1) K(Q) c HY(Q) is a closed, convex, nonempty set,

(H2) A = (ag,...,an) with aj : RN xRN — R, a: RN xR — R having the
properties:

(P1)a;(-,-), j = 1,...,Nanda(-, -) are measurable with respect to the first variable
and continuous with respect to the second one,

(P2)laj(x. &)l < c(k(x) + lI€lln) andla(x, n)| < ca(ka(X) + I7]) a.e. x € RN, for all
& e RN, for all n € R, with ¢, c; positive constants ank k; functions inL?(D) (for

any bounded and open d8}.
N

(P3)Z aj(x &)¢j = Colléll — c3, a.e.x e RN, for all ¢ e RN,
=1

N

(P4)> (@ &) - aj(x )& - &) = yallé - &, ae.xe RN, forall¢,Z e RN
j=1

and @(x,n) — a(x, ) — 1) = y2ln — 7%, a.e.x e RN, for all ,7 € R.

Theorem 2. In the conditions stated above, the variational inequa(ity), has at
least one solution (see [9], p. 74).

LetS € 7% such thatQ = S(C). Making the transfornx = S(X) in (V1)q we
get an equivalent problem on the fixed €et

Findus € Ks c H(C) such that
f A(S(X), ISH(X)Vus(X)) - ISTH(X)(VV(X) — Vug(X))det) S(X)dX
C
+ f a(S(X), us(X))(U(X) — us(X))detIS(X)dx > 0, Vv € Ks,
C

whereKs = SK(Q) = {uo S|ue K(Q)} is closed and convex.



STABILITY WITH RESPECT TO THE DOMAIN 29
We define the operatofl : 75 x HY(C) — (H(C))* as
(A(S,u),v) = fc A(S(X), ISTHX)Vu(X)) - ISTH(X)VV(X)detd S(X)d X
+ fc a(S(X), UX)V(X)det S(X)dX. Vv € HY(C).

Then the variational inequality can be written:
(VI)s Findus € Ks such thagA(S, us),v—us) = 0, Yv € Ks.

We will apply Theorem 1 to this family of variational inequalities, considefhg
Fk> as the parameter.

Other hypotheses that we impose are: 3

(H3) [aj(x, €) — aj(X &)l < w(X, N(lIglIn + I€lN) + ¢(x, K€ — &lIn + (%, K), for all
j=21...,N, X,X&€& € RN: wherey(., ), ¢(-,-), o(-,-) are nonnegative functions
belonging toaC(RN xRN) N L= (RN xRN) andy/(x, %) = y(X, X), ¥(x, X) = o(x, X) = 0.

(Ha) la(x, ) —aX. 7)l < x(x )l + 171) + (X, X)n — 71, wherey has the same
properties ag andu has the same properties@s

Lemma 2. Suppose that the hypothesek )-(H,) take place. liy e CRN x RN n
L@®N x RN) and Sy, Sp € F4= with Sp — Sp, Spt — Syt in Wk ®RN)N, then

¥ (Sn(-), So(")) = ¥(So(-), So())llLec) = O

whenn — .

Proof. We have thaiy is uniformly continuous on every bounded setfof x RN,
which implies:

For eache > 0, there existg > 0 such that for eacky, X1, X2, X> € D (a bounded
closed subset dtN), with [|x; — Xo|ln < 6 and||%, — %o|ln < & we have

(X1, X1) — (X2, R)| < &.
Sh — Spin L®(C), thatis_ inf  sup ||Sh(X) — So(X)|In — O.
EcC,|E|=0 XeC\E
For¢ > 0 there exist$y € N such that fon > ng
inf  sup |ISh(X) — So(X)lIn < 6.
e o, SUP 15009 = So(X)in
This implies that, fon > ng, there exists a sé,, c C, |E,| = 0 such that

[ISh(X) — So(X)lIn < 6 for eachX € C\ Ep.

Using the uniform continuity and the fact that(C) andSp(C) are in a bounded
set ofRN, we get: There exists € N such that for alh > ng, existsE, c C, |E,| = 0
with

1 (Sn(X), So(X)) — ¥(So(X), So(X))l < &, ¥X € C\ Eq
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DenoteE = Up.n,En, [E[=0,C\E CC\ Ep, so

sup [(Sn(X), So(X)) — ¥(So(X), So(X))I
XeC\E

< sup [¥(Sn(X), So(X)) = ¥(So(X), So(X))I < &
XeC\En

for all n > ng. Finally, fore > 0 there exist®;y € N such that for alh > ny we have

Ecicqg - Xﬁg{oE [ (Sn(X), So(X)) — ¥(So(X), So(X))| < &,

which completes the proof. ]

Suppose that the next hypothesis is satisfied in all the paper:
(Hs) There exists a neighborho&@ of Sp and a positive constaatsuch that for
all S1, Sz € Vp andu; € Ks,, there existsl; € Kg, such that

lIuz = Uzllrcy < 6(IIS1 — Sallkeo + 1S7™ = S5 lkeo)-
Example 1. Let K(Q) = {v € Hé(Q) | Vv = 0, V(X) > ¢(x) a.e.x € Q}, with

pE Hé(Q) N C(Q) a Lipschitz function wittVvy = 0 on Q.
We have:

Ks ={VoS|VeK(Q)} ={ve H)C)|Vv=0, V(X) > ¢(S(X)) a.e.X € C}

LetS;, S, € FK°, up € Ks,. This mean&u; = 0andu; > ¢(S1(X)) a.e. onC. We
defineu, as:
U(X) = { u(X), i u(X) 2 ¢(Sx(X))
©(S2(X)),  if ur(X) < (S2(X)).
We havau, € Ks,. Obviouslylui (X) — ua(X)| < [¢(S1(X)) — ¢(S2(X))|. Moreover,

Uz = Ul ) = fo Ju(X) — up(X)PdX < fc (S1(X)) — ¢(S2(X))IPdX

< 12 [ 19100 - S00PdX < LISy - Salf.Jo
C

which shows thafHs) is satisfied.

Example 2. A special case whefis) is trivially satisfied is the case whét = Kg
is independent b € 7%, for all k > 1. For example (see [4]), this happens for

K(Q)1 = (ve HY(Q) | Vlap = ¢, v= da.e. inQ)
K(Q)2 = {ve H(Q) |v> f a.e. inQ),

wherec, d, f are constants. Then:
SK(Q); = {ve HYC) | Vlsc = ¢, v> d a.e. inC}
SK(Q), ={ve HY(C)|v> f a.e. inC},

which do not depend a8.
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We fix now an initial valueSg € ¥%%, ug € K a solution of V1)s, and we prove
the main theorem of the paper.

(In order to prove the main theorem, we suppose that:

(He) laj(x. &) —aj(x, &)| < Lallé - &lly andla(x, n) —a(x, i)l < Laln—ifl, a.e.x € RV,
for all £, & € RN andn, 77 € R, with Ly, L, positive constants.)

Theorem 3. Suppose thafH1)-(Hs) are satisfied. LeBy € 7% andup € Ks,
fixed. Ifup is a solution of the variational inequalit@V/I)s,, then(Vl)s, is stable
under perturbations, that is: there exists a neighborhddgof Sop and a mapping
6 : Wy — HY(C) such that for eacts € Wy, 6(S) = us is a solution of(VI)s,
0(Sp) = Up and@ is continuous irSg.

Proof. We use Theorem 1 with/ := 7%~ H = H1(C), K : W — 21 K(S) = Ks a
set-valued map and : Wx H — H*, T(S,u) = A(S, u). We check the hypotheses
of Theorem 1.

(i) is obvious.

We prove now (iii), that is we show that there exists a neighborhbotlSy such
that the mappingsA(S, -) are uniformly strongly monotone for eaghe V.

We have:

(A(S,V) — A(S, u),v—u)

= f [A(X, V(vo S™H(X) = A(x, V(uo S™H(X)] - V(vo S - uo ST (x)dx
Q

+ f [a(x, (vo STH)(¥) —a(x, (uo STH(P(ve ST —uo STH(¥)dx
Q

> fg yallV(vo STH(X) = V(uo STHMIZ + y2l(v o S™H(X) - (uo STH(X)1P)dx

Y 2
V—Uu
ldetd S1|e (1 + ||JS||00)2” i)

>ylvo STt = uo Sy >
> IV = Ul g

In this evaluation we made use of the transfotre S~%(x), the hypothesis (P4) and
of the continuity of the mappingS — JS andS — det)S™! (see Lemma 1, c).
Next the continuity ofA(S, -) from H(C) with the strong topology toH*(C))*
with the weak topology will be proved.
Letu, — uin HY(C) and letv € H(C). We get:

KA(S, Un), V) = (A(S, u), V)|
< ||detSlluo{ll¢(S(-), S()lleollISTIZ,
+ 1(S () SC)lloo HIUn = Ullya ey VIl cy = O.

There is still to be proved (ii) from Theorem 1, that is the consistendy. of
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Let0 < r < 1. We considelS € Vg and in Hs) we putS; = Sp, Sy = S,
U1 := Ug. Then there existss € Kg such that

llus — Uollizcy < 6(IS = Sollkeo + 1IS™F = Sg lkeo)-

We define

B(S) = max{ \/5(”5 — Soll + 571 = S5 ), 2lA(S, us) — A(So, Uo)llHzcy)- -

ObviouslyB(Sp) = 0 (we takeus, = ug). We prove next thag is continuous aSo.
For \/5(||s — Soll + IS~ — S this iis obvious,
For the second term, we consid8s — Sg in #%*. Then, according toHs),
Us, — Ug in Hl(C).
We evaluaté(A(Sn, Us,) — A(So, Up), V)| for v e HY(C).
We have

[(A(Sh. Us,) — A(So. Us,), V)| < (@10 + a2n + azn + @an)Mlnc)
where

a1n = [1det) Splleo N{II¥(Sn(-), So(-))lleo 1Sy oo (19S5 oo + 19S5 lleo)
+116(Sn(-) So(Nlleoll IS ool ISR = IS leo HIUs, I3y
+ [|detd SnlleoNllo(Sn(*), So(-)llICI*211 IS leo

+ | detSnllllI S5t = IS5 lleCN(( fC k(So(X)IPdX)"? + 19S5 o HIlUs, (e

tan = [ detISy — detlSollull IS5 1 CNI( fC k(Sa(X)PdX) 12

+ 19S5 o llUs, I1(cy )+
zn = [|devSnlloly (Sn(-), So(-)llw2lUs,lly(c)»

(an = [|detISy — det) SolleCrf( fc Ika(So(X))PdX)"? + llus, llzcy )
Next, as in the proof of (iii), one can obtain
(A(So. Us,) — A(So. Uo). V)| < esnlVllinzc
where

arsn = ||detSolleo{lI$(So(-), So( Dl 1ISG I, + 1(So(-), So(-))llse}llUs,, — Uolliyz
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From the hypotheses imposed it is clear gt ZB: ain — 0 whenn — 0. So we
get: =

A(Sh, Us,) — A(So, Uo)llH1cy):

= SUP{[(A(Sh Us,) = A(So, Uo), I : v HY(C), Ml c) < 1)

< suplaniMlpycy : Ve HYC), Ml < 1} < an — 0.

From this the continuity g8 at Sy is clear.
Let W, c Vg be a neighbourhood &y such that for eack € W,

B(S) <1 and r - 48(S)IA(So, Uo)liHi(cy = O.
Letv e Kg with r < |lv - us|. We have:
(A(S, us),V - Us) + B(S)IIV - usl|
= (A(S, Us) — A(So, Up), V — Us) + (A(So, Up), V — Us) + B(S)IIV — Us]|
> —||A(S, us) — A(So, Uo)llllV = Us|l + (A(So, Uo), v — Us) + B(S)IIV - Usl|

1
> —éﬁ(S)llV — Usl| + B(S)IIV — us|| + (A(So, Ug), V — Ug) + (A(So, Up), Up — Us)
1
> Eﬂ(S)HV — Us]| + (A(So, Ug), V — Vo) + (A(So, Up), Vo — Uo)
— [lA(So, Uo)lllluo — Us||

> —B(S)IIV— usl| = IV = VollllA(So, o)l — llug — Us|lIA(So, Uo)Il

2

BS)r — 4B(S)IA(So, Uo)ll] = O.

(Here we considered € Ks, such thatlv — voll < §(lIS — Soll + IS™* - S52I1)).
On the other hand we hayias — ug|| < 8%(S) < B(S), which concludes the proof.
m|

NI~ NI

Example 3. We present a linear variational inequality for which all the previous
hypotheses are satisfied. Consider the problem:

Find ug € K(Q) such thatag(uq, v — ug) > 0, Yv € K(Q),
where
an(u,v) = f [B(X)Vu(X) - VV(X) + b(x)u(x)v(x)]dx
Q

with B e CRMN n L2(RMN* b e CRN) N L=(RN), b(X) > b > 0 and
N N
=1 k=

bi(X)ééj = alléllf
1

I
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a.e.xe RN forall £ e RN. It can be easily shown that, with

N
3j(x.£) = ) bi(Xé = Bj(¥) - £ anda(x, ) = b(x)n
k=1
the hypothese@1)-(H4) are satisfied.
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