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1. I

The mathematical theory of shape optimization benefits of a vast literature; the
optimal shape design for systems governed by PDEs was studied in a great many
papers, see for example [1], [2], [3]. Also, problems where variational or hemivaria-
tional inequalities appear were treated in [1], [4], [5], [6] and others.

A problem of shape optimization for a system described by a variational inequality
can be looked at as a problem of optimal control in which the role of the control
is played by sets from a class of admissible domains and the variational inequality
appears as the state equation. In this context it is interesting to study the behavior of
solutions to the variational inequality when the domain is perturbed.

The purpose of this paper is to study the stability with respect to the domain per-
turbations of a nonlinear variational inequality of the form

FinduΩ ∈ K(Ω) such that

〈A(Ω,uΩ), v− uΩ〉 ≥ 0, ∀v ∈ K(Ω),

whereΩ is a bounded open subset ofRN, K(Ω) is a closed, convex set in the Sobolev
spaceH1(Ω) andA is a nonlinear operator of a special form,A(Ω,u) ∈ (H1(Ω))∗.
If Ω0 is fixed in the class of the admissible domains andu0 is the solution of (VI)Ω0,
the following problem arises: Is there a neighborhoodV0 of Ω0 (in a sense that will
be specified) and a mappingθ defined on this, continuous atΩ0, with θ(Ω0) = u0 and
such thatθ(Ω) is a solution of (VI)Ω for eachΩ ∈ V0 ?
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General stability results for parametric variational inequalities under small pertur-
bations of the parameter have been given in [7], [8]. One of these results is presented
in Section 3 and used in the paper.

In order to define the topological space of the parameters as a space of functions
we use the mapping method (Section 2) for which the basic results were established
by Murat and Simon in [3].

Finally, in Section 4 we present the main result of the paper and an example for a
linear variational inequality.

2. T  

The mapping method consists in defining the class of admissible domains as im-
ages of a fixed set. The main notions and properties were established in [3]; we
present some of them following [4], [2].

Let C ⊂ RN be a bounded, open set, with∂C of classWi,∞, i ≥ 1 and such that
intC̄ = C.

We consider the following spaces:

Wk,∞(RN)N = {φ | Dαφ ∈ L∞(RN)N ∀α with 0 ≤ |α| ≤ k}
F k,∞ = {S : RN → RN | S bijective, S − I ,S−1 − I ∈Wk,∞(RN)N}
Ok,∞ = {Ω | Ω = S(C),S ∈ Fk,∞}

and the norm inWk,∞(RN)N:

‖S‖k,∞ = ess sup
x∈RN

( ∑

0≤|α|≤k

|DαS|2N
)1/2

‖·‖N represents the norm onRN. The norm onL∞(RN) (or L∞(RN)N2
) will be denoted

by ‖ · ‖∞.
Ok,∞ consists in a family of bounded and open sets. If∂C is of classWk,∞, k ≥ 1

then∂Ω is of classWk,∞ also.
We define onOk,∞ × Ok,∞ a function

δk,∞(Ω1,Ω2) = inf
S∈F k,∞,S(Ω1)=Ω2

(‖S − I‖k,∞ + ‖S−1 − I‖k,∞).

It can be proved (see [4], [2]) that there exists a positive constantµk such that

dk,∞(Ω1,Ω2) =
(
min{δk,∞(Ω1,Ω2), µk})1/2

is a complete metric onOk,∞.

Remark 1. It is known (see [3]) thatΩn → Ω in Ok,∞ if and only if there exist
Sn,S ∈ F k,∞ such thatΩn = Sn(C), Ω = S(C) and Sn → S, S−1

n → S−1 in
Wk,∞(RN)N.

The next Lemma (see [4]) summarizes some properties used in the paper:
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Lemma 1. (a) If S ∈ F k,∞, Ω = S(C), thenu ∈ H1(Ω) if and only ifu ◦ S ∈ H1(C).
If un→ u in H1(Ω) (or in H1(C)) thenun◦S→ u◦S in H1(C) (or un◦S−1→ u◦S−1

in H1(Ω)).
(b) Letk ≥ 1, u ∈ H1(RN). The mappingS 7→ u ◦ S is continuous fromF k,∞ to

H1(RN).
(c) Letk ≥ 1. The mappingsS 7→ JS−1 andS 7→ detJS are continuous fromF k,∞

to Wk−1,∞(RN) (with JS we denoted the Jacobian matrix ofS ).
(d) If u, v ∈ H1(Ω) andΩ = S(C) we have:

‖u ◦ S − v ◦ S‖H1(C) ≤ (‖detJS−1‖∞)1/2(‖JS‖∞ + 1)‖u− v‖H1(Ω).

3. P  

Let H be a real, reflexive Banach space and denote withH∗ its dual. LetW be a
topological space, letT : W × H → H∗ and letK : W → 2H be a set-valued map.
For a given parameterw ∈W we consider the variational inequality:

(VIP)w Find an elementx(w) ∈ K(w) such that

〈T(w, x(w)), y− x(w)〉 ≥ 0, ∀y ∈ K(w).

For a fixedw0 ∈ W (the initial value of the parameter), suppose thatx0 ∈ K(w0) is
the solution of the corresponding problem (VIP)w0. We say that the problem (VIP)w0

is stable under perturbationsif there exists a neighborhoodW0 of w0 and a mapping
x : W0→ H, continuous atw0, with x(w0) = x0 and such that, for eachw ∈W0, x(w)
is a solution of (VIP)w.

Definition 1. The mapT : W × H → H∗ is calledconsistent inw at (w0, x0) if, for
each0 < r ≤ 1, there exists a neighborhoodWr of w0 and a functionβ : Wr → R,
continuous atw0, with β(w0) = x0 such that for eachw ∈ Wr , there existsyw ∈ K(w)
such that

‖yw − x0‖ ≤ β(w)

and
〈T(w, yw), z− yw〉 + β(w)‖z− yw‖ ≥ 0,

for eachz ∈ K(w) such thatr < ‖z− yw‖ ≤ 2.

Definition 2. The mapsT(w, ·) : H → H∗ are calleduniformly strongly monotone
onW0 ⊂W if there exists a positive constantα such that for allw ∈W0 andx, y ∈ H,
x , y we have :

〈T(w, x) − T(w, y), x− y〉 ≥ α‖x− y‖2.
The following Theorem is a particular case of a Theorem proved in [7].

Theorem 1. In the above notations, let the setK(w) be closed and convex for each
w ∈W. Considerw0 ∈W andx0 ∈ K(w0) fixed. Suppose that:

(i) x0 is a solution of(VIP)w0;
(ii) T is consistent inw at (w0, x0);
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(iii) there exists a neighborhoodV of w0 such that the mapsT(w, ·) are uniformly
strongly monotone, continuous from the line segments ofH to the weak topology of
H∗, for all w ∈ V andx ∈ K(w).

Then the problem(VIP)w0 is stable under perturbations.

4. S       

Let Ω ⊂ RN be a bounded and open set. We consider the problem:

(VI)Ω FinduΩ ∈ K(Ω) such that∫

Ω

A(x,∇uΩ(x)) · (∇v(x) − ∇uΩ(x))dx

+

∫

Ω

a(x,uΩ(x))(v(x) − u(x))dx≥ 0, ∀v ∈ K(Ω)

in the following notations and hypotheses:
(H1) K(Ω) ⊂ H1(Ω) is a closed, convex, nonempty set,
(H2) A = (a1, . . . ,aN) with a j : RN × RN → R, a : RN × R → R having the

properties:
(P1)a j(·, ·), j = 1, . . . ,N anda(·, ·) are measurable with respect to the first variable

and continuous with respect to the second one,
(P2) |a j(x, ξ)| ≤ c(k(x) + ‖ξ‖N) and |a(x, η)| ≤ c1(k1(x) + |η|) a.e. x ∈ RN, for all

ξ ∈ RN, for all η ∈ R, with c, c1 positive constants andk, k1 functions inL2(D) (for
any bounded and open setD).

(P3)
N∑

j=1

a j(x, ξ)ξ j ≥ c2‖ξ‖2N − c3, a.e.x ∈ RN, for all ξ ∈ RN,

(P4)
N∑

j=1

(a j(x, ξ) − a j(x, ξ̃))(ξ j − ξ̃ j) ≥ γ1‖ξ − ξ̃‖2N, a.e.x ∈ RN, for all ξ, ξ̃ ∈ RN

and (a(x, η) − a(x, η̃))(η − η̃) ≥ γ2|η − η̃|2, a.e.x ∈ RN, for all η, η̃ ∈ R.

Theorem 2. In the conditions stated above, the variational inequality(VI)Ω has at
least one solution (see [9], p. 74).

Let S ∈ F k,∞ such thatΩ = S(C). Making the transformx = S(X) in (VI)Ω we
get an equivalent problem on the fixed setC:

FinduS ∈ KS ⊂ H1(C) such that∫

C
A(S(X), JS−t(X)∇uS(X)) · JS−t(X)(∇v(X) − ∇uS(X))detJS(X)dX

+

∫

C
a(S(X), uS(X))(v(X) − uS(X))detJS(X)dx≥ 0, ∀v ∈ KS,

whereKS = S K(Ω) = {u ◦ S | u ∈ K(Ω)} is closed and convex.
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We define the operatorA : F k,∞ × H1(C)→ (H1(C))∗ as

〈A(S, u), v〉 =

∫

C
A(S(X), JS−t(X)∇u(X)) · JS−t(X)∇v(X)detJS(X)dX

+

∫

C
a(S(X), u(X))v(X)detJS(X)dX, ∀v ∈ H1(C).

Then the variational inequality can be written:

(VI)S FinduS ∈ KS such that〈A(S, uS), v− uS〉 ≥ 0, ∀v ∈ KS.

We will apply Theorem 1 to this family of variational inequalities, consideringS ∈
F k,∞ as the parameter.

Other hypotheses that we impose are:
(H3) |a j(x, ξ) − a j(x̃, ξ̃)| ≤ ψ(x, x̃)(‖ξ‖N + ‖ξ̃‖N) + φ(x, x̃)‖ξ − ξ̃‖N + σ(x, x̃), for all

j = 1, . . . ,N, x, x̃, ξ, ξ̃ ∈ RN; whereψ(·, ·), φ(·, ·), σ(·, ·) are nonnegative functions
belonging toC(RN×RN)∩L∞(RN×RN) andψ(x, x̃) = ψ(x̃, x), ψ(x, x) = σ(x, x) = 0.

(H4) |a(x, η) − a(x̃, η̃)| ≤ χ(x, x̃)(|η| + |η̃|) + µ(x, x̃)|η − η̃|, whereχ has the same
properties asψ andµ has the same properties asφ.

Lemma 2. Suppose that the hypotheses(H1)-(H4) take place. Ifψ ∈ C(RN × RN) ∩
L∞(RN × RN) andSn,S0 ∈ F k,∞ with Sn→ S0, S−1

n → S−1
0 in Wk,∞(RN)N, then

‖ψ(Sn(·),S0(·)) − ψ(S0(·),S0(·))‖L∞(C) → 0

whenn→ ∞.

Proof. We have thatψ is uniformly continuous on every bounded set ofRN × RN,
which implies:

For eachε > 0, there existsδ > 0 such that for eachx1, x̃1, x2, x̃2 ∈ D (a bounded
closed subset ofRN), with ‖x1 − x2‖N < δ and‖x̃1 − x̃2‖N < δ we have

|ψ(x1, x̃1) − ψ(x2, x̃2)| < ε.
Sn→ S0 in L∞(C), that is inf

E⊂C,|E|=0
sup

X∈C\E
‖Sn(X) − S0(X)‖N → 0.

Forδ > 0 there existsn0 ∈ N such that forn > n0

inf
E⊂C,|E|=0

sup
X∈C\E

‖Sn(X) − S0(X)‖N < δ.

This implies that, forn > n0, there exists a setEn ⊂ C, |En| = 0 such that
‖Sn(X) − S0(X)‖N < δ for eachX ∈ C \ En.
Using the uniform continuity and the fact thatSn(C) andS0(C) are in a bounded

set ofRN, we get: There existsn0 ∈ N such that for alln > n0, existsEn ⊂ C, |En| = 0
with

|ψ(Sn(X),S0(X)) − ψ(S0(X),S0(X))| < ε, ∀X ∈ C \ En
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DenoteE = ∪n>n0En, |E| = 0, C \ E ⊂ C \ En, so

sup
X∈C\E

|ψ(Sn(X),S0(X)) − ψ(S0(X),S0(X))|

≤ sup
X∈C\En

|ψ(Sn(X),S0(X)) − ψ(S0(X),S0(X))| < ε

for all n > n0. Finally, forε > 0 there existsn0 ∈ N such that for alln > n0 we have

inf
E⊂C,|E|=0

sup
X∈C\E

|ψ(Sn(X),S0(X)) − ψ(S0(X),S0(X))| ≤ ε,

which completes the proof. �

Suppose that the next hypothesis is satisfied in all the paper:
(H5) There exists a neighborhoodV0 of S0 and a positive constantδ such that for

all S1,S2 ∈ V0 andu1 ∈ KS1, there existsu2 ∈ KS2 such that

‖u1 − u2‖H1(C) ≤ δ(‖S1 − S2‖k,∞ + ‖S−1
1 − S−1

2 ‖k,∞).

Example 1. Let K(Ω) = {v ∈ H1
0(Ω) | ∇v = 0, v(x) ≥ ϕ(x) a.e. x ∈ Ω}, with

ϕ ∈ H1
0(Ω) ∩C(Ω) a Lipschitz function with∇ϕ = 0 onΩ.

We have:

KS = {v̌ ◦ S | v̌ ∈ K(Ω)} = {v ∈ H1
0(C) | ∇v = 0, v(X) ≥ ϕ(S(X)) a.e.X ∈ C}

Let S1,S2 ∈ F k,∞, u1 ∈ KS1. This means∇u1 = 0 andu1 ≥ ϕ(S1(X)) a.e. onC. We
defineu2 as:

u2(X) =

{
u1(X), if u1(X) ≥ ϕ(S2(X))
ϕ(S2(X)), if u1(X) < ϕ(S2(X)).

We haveu2 ∈ KS2. Obviously|u1(X) − u2(X)| ≤ |ϕ(S1(X)) − ϕ(S2(X))|. Moreover,

‖u1 − u2‖2H1(C) =

∫

C
|u1(X) − u2(X)|2dX ≤

∫

C
|ϕ(S1(X)) − ϕ(S2(X))|2dX

≤ L2
∫

C
|S1(X) − S2(X)|2dX ≤ L2‖S1 − S2‖2k,∞|C|1/2

which shows that(H5) is satisfied.

Example 2. A special case when(H5) is trivially satisfied is the case whenK = KS

is independent ofS ∈ F k,∞, for all k ≥ 1. For example (see [4]), this happens for

K(Ω)1 = {v ∈ H1(Ω) | v|∂Ω = c, v ≥ d a.e. inΩ}
K(Ω)2 = {v ∈ H1(Ω) | v ≥ f a.e. inΩ},

wherec, d, f are constants. Then:

S K(Ω)1 = {v ∈ H1(C) | v|∂C = c, v ≥ d a.e. inC}
S K(Ω)2 = {v ∈ H1(C) | v ≥ f a.e. inC},

which do not depend onS.
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We fix now an initial valueS0 ∈ F k,∞, u0 ∈ K a solution of (VI)S0 and we prove
the main theorem of the paper.

(In order to prove the main theorem, we suppose that:
(H6) |a j(x, ξ)−a j(x, ξ̃)| ≤ L1‖ξ− ξ̃‖N and|a(x, η)−a(x, η̃)| ≤ L2|η− η̃|, a.e.x ∈ RN,

for all ξ, ξ̃ ∈ RN andη, η̃ ∈ R, with L1, L2 positive constants.)

Theorem 3. Suppose that(H1)-(H5) are satisfied. LetS0 ∈ F k,∞ and u0 ∈ KS0

fixed. If u0 is a solution of the variational inequality(VI)S0, then(VI)S0 is stable
under perturbations, that is: there exists a neighborhoodW0 of S0 and a mapping
θ : W0 → H1(C) such that for eachS ∈ W0, θ(S) = uS is a solution of(VI)S,
θ(S0) = u0 andθ is continuous inS0.

Proof. We use Theorem 1 withW := F k,∞, H = H1(C), K : W→ 2H, K(S) = KS a
set-valued map andT : W × H → H∗, T(S,u) = A(S,u). We check the hypotheses
of Theorem 1.

(i) is obvious.
We prove now (iii), that is we show that there exists a neighborhoodV of S0 such

that the mappingsA(S, ·) are uniformly strongly monotone for eachS ∈ V.
We have:

〈A(S, v) −A(S,u), v− u〉

=

∫

Ω

[A(x,∇(v ◦ S−1)(x)) − A(x,∇(u ◦ S−1)(x))] · ∇(v ◦ S−1 − u ◦ S−1)(x)dx

+

∫

Ω

[a(x, (v ◦ S−1)(x)) − a(x, (u ◦ S−1)(x))](v ◦ S−1 − u ◦ S−1)(x)dx

≥
∫

Ω

{
γ1‖∇(v ◦ S−1)(x) − ∇(u ◦ S−1)(x)‖2N + γ2|(v ◦ S−1)(x) − (u ◦ S−1)(x)|2}dx

≥ γ‖v ◦ S−1 − u ◦ S−1‖H1(Ω) ≥
γ

‖detJS−1‖∞(1 + ‖JS‖∞)2
‖v− u‖2H1(C)

≥ γ̃‖v− u‖2H1(C).

In this evaluation we made use of the transformX = S−1(x), the hypothesis (P4) and
of the continuity of the mappingsS 7→ JS andS 7→ detJS−1 (see Lemma 1, c).

Next the continuity ofA(S, ·) from H1(C) with the strong topology to (H1(C))∗
with the weak topology will be proved.

Let un→ u in H1(C) and letv ∈ H1(C). We get:

|〈A(S,un), v〉 − 〈A(S,u), v〉|
≤ ‖detJS‖∞{‖φ(S(·),S(·))‖∞‖JS−t‖2∞
+ ‖µ(S(·),S(·))‖∞}‖un − u‖H1(C)‖v‖H1(C) → 0.

There is still to be proved (ii) from Theorem 1, that is the consistency ofT.
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Let 0 < r ≤ 1. We considerS ∈ V0 and in (H5) we putS1 := S0, S2 := S,
u1 := u0. Then there existsuS ∈ KS such that

‖uS − u0‖H1(C) ≤ δ(‖S − S0‖k,∞ + ‖S−1 − S−1
0 ‖k,∞).

We define

β(S) = max
{√

δ(‖S − S0‖ + ‖S−1 − S−1
0 ‖),2‖A(S, uS) −A(S0,u0)‖(H1(C))∗

}
.

Obviouslyβ(S0) = 0 (we takeuS0 = u0). We prove next thatβ is continuous atS0.

For
√
δ(‖S − S0‖ + ‖S−1 − S−1

0 ‖) this is obvious.

For the second term, we considerSn → S0 in F k,∞. Then, according to (H5),
uSn → u0 in H1(C).

We evaluate
∣∣∣〈A(Sn,uSn) −A(S0,u0), v〉

∣∣∣ for v ∈ H1(C).
We have

∣∣∣〈A(Sn,uSn) −A(S0,uSn), v〉
∣∣∣ ≤ (α1n + α2n + α3n + α4n)‖v‖H1(C)

where

α1n = ‖detJSn‖∞N
{‖ψ(Sn(·),S0(·))‖∞‖JS−t

n ‖∞(‖JS−t
n ‖∞ + ‖JS−t

0 ‖∞)

+ ‖φ(Sn(·),S0(·))‖∞‖JS−t
n ‖∞‖JS−t

n − JS−t
0 ‖∞

}‖uSn‖H1(C)

+ ‖detJSn‖∞N‖σ(Sn(·),S0(·))‖∞|C|1/2‖JS−t
n ‖∞

+ ‖detJSn‖∞‖JS−t
n − JS−t

0 ‖∞cN
{( ∫

C
|k(S0(X))|2dX

)1/2
+ ‖JS−t

0 ‖∞
}‖uSn‖H1(C),

α2n = ‖detJSn − detJS0‖∞‖JS−t
0 ‖∞cN

{( ∫

C
|k(S0(X))|2dX

)1/2

+ ‖JS−t
0 ‖∞‖uSn‖H1(C)

}
,

α3n = ‖detJSn‖∞‖χ(Sn(·),S0(·))‖∞2‖uSn‖H1(C),

α4n = ‖detJSn − detJS0‖∞c1
{( ∫

C
|k1(S0(X))|2dX

)1/2
+ ‖uSn‖H1(C)

}

Next, as in the proof of (iii), one can obtain

∣∣∣〈A(S0,uSn) −A(S0, u0), v〉
∣∣∣ ≤ α5n‖v‖H1(C)

where

α5n = ‖detJS0‖∞{‖φ(S0(·),S0(·))‖∞‖JS−t
0 ‖2∞ + ‖µ(S0(·),S0(·))‖∞}‖uSn − u0‖H1
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From the hypotheses imposed it is clear thatαn =

5∑

i=1

αin → 0 whenn→ 0. So we

get:

‖A(Sn,uSn) −A(S0,u0)‖(H1(C))∗

= sup
{|〈A(Sn,uSn) −A(S0, u0), v〉| : v ∈ H1(C), ‖v‖H1(C) ≤ 1

}

≤ sup
{
αn‖v‖H1(C) : v ∈ H1(C), ‖v‖H1(C) ≤ 1

} ≤ αn→ 0.

From this the continuity ofβ atS0 is clear.
Let Wr ⊂ V0 be a neighbourhood ofS0 such that for eachS ∈Wr

β(S) ≤ 1 and r − 4β(S)‖A(S0, u0)‖(H1(C))∗ ≥ 0.

Let v ∈ KS with r ≤ ‖v− uS‖. We have:

〈A(S, uS), v− uS〉 + β(S)‖v− uS‖
= 〈A(S,uS) −A(S0, u0), v− uS〉 + 〈A(S0,u0), v− uS〉 + β(S)‖v− uS‖
≥ −‖A(S,uS) −A(S0, u0)‖‖v− uS‖ + 〈A(S0, u0), v− uS〉 + β(S)‖v− uS‖

≥ −1
2
β(S)‖v− uS‖ + β(S)‖v− uS‖ + 〈A(S0,u0), v− u0〉 + 〈A(S0, u0),u0 − uS〉

≥ 1
2
β(S)‖v− uS‖ + 〈A(S0, u0), v− v0〉 + 〈A(S0,u0), v0 − u0〉
− ‖A(S0,u0)‖‖u0 − uS‖

≥ 1
2
β(S)‖v− uS‖ − ‖v− v0‖‖A(S0, u0)‖ − ‖u0 − uS‖‖A(S0,u0)‖

≥ 1
2
β(S)[r − 4β(S)‖A(S0,u0)‖] ≥ 0.

(Here we consideredv0 ∈ KS0 such that‖v− v0‖ ≤ δ(‖S − S0‖ + ‖S−1 − S−1
0 ‖)).

On the other hand we have‖uS − u0‖ ≤ β2(S) ≤ β(S), which concludes the proof.
�

Example 3. We present a linear variational inequality for which all the previous
hypotheses are satisfied. Consider the problem:

Find uΩ ∈ K(Ω) such thataΩ(uΩ, v− uΩ) ≥ 0, ∀v ∈ K(Ω),

where

aΩ(u, v) =

∫

Ω

[B(x)∇u(x) · ∇v(x) + b(x)u(x)v(x)]dx

with B ∈ C(RN)N2 ∩ L∞(RN)N2
, b ∈ C(RN) ∩ L∞(RN), b(x) ≥ b̃ > 0 and

N∑

j=1

N∑

k=1

b jk(x)ξkξ j ≥ α‖ξ‖2N
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a.e. x ∈ RN, for all ξ ∈ RN. It can be easily shown that, with

a j(x, ξ) =

N∑

k=1

b jk(x)ξk = Bj(x) · ξ anda(x, η) = b(x)η

the hypotheses(H1)-(H4) are satisfied.
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