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1. INTRODUCTION

Recently, mathematicians have interested in some properties of the orthogonal
matrix polynomials. For example, Joédar and et. al have introduced and studied
Laguerre matrix polynomials [8], Gegenbauer matrix polynomials [9], Hermite mat-
rix polynomials [7], Chebyshev matrix polynomials [4] and Jacobi matrix polyno-
mials [3]. Then the Konhauser matrix polynomials [1 1], the multivariable Humbert
matrix polynomials [1] and the Bessel matrix polynomials [10] have been studied.
Furthermore, one can find several papers concerning the orthogonal matrix polyno-
mials (see [2, 12]). In this paper, we define new matrix polynomials and derive some
of their properties.

Throughout this paper, for a matrix 4 in C™*", its spectrum o (A) denotes the set
of all eigenvalues of A. Furthermore the identity matrix and the zero matrix of C"*"
will be denoted by I and 0, respectively. If f(z) and g(z) are holomorphic functions
of the complex variable z, which are defined in an open set §2 of the complex plane
and A is a matrix in C"*" with 0 (A) C §2, then from the properties of the matrix
functional calculus in [6], it follows that:

f(A)g(A) = g(A) f(A). (1.1
Let A be a matrix in C"*" satisfying (—k) ¢ o (A) fork € Z* and A be a complex

number whose real part is positive. Then the Laguerre matrix polynomials L,(lA’A) (%)
are defined by [8]:

AN\ (EDF 1k
L (x)_k;—k!(n_k)!(AH)n[(AH)k] Ax)* ., neN. (1.2)
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Also Laguerre matrix polynomials have the following generating matrix function:

e Axt
LA =1-n"4eTTm s xeC 1 eC. 1] < 1. (1.3)
n=0

2. DEFINITIONS AND PROPERTIES OF NEW MATRIX POLYNOMIALS

o0
In this section, we define two new matrix polynomials { fn(,ﬁ;’l) (x)} o and
n

(4,1) o0 . . . . .
gnm (X) . via following generating matrix functions
n

F(A,l)(x’t)z( m) Ae 1 tm an(A A)(x)tn ; |[| <1 2.1)

GAM (x,1) = (141™)4e™ o Zg(M)(x);" Dt <1 (2.2)

where A is a matrix in C™™", m is a positive natural number and A is an arbitrary
number, respectively. Here, (2.1) and (2.2) are matrix versions of polynomials given
in [5].

Using (2.1) and (2.2), we obtain the following explicit representations for new
matrix polynomials

n(,m’x)( ) Z( 1) (n(—A"llgl;ll' l)I)l (A'C)n mi’ (23)
[1?1] n—(m—1)i ;
,(1A )L)(x) 2 0:( ) T ( l)'(ln' mi)l) (Ax)n—mi

where [.] denotes the integer part. Taking m = 1 in (2.3), (2.3) reduces Laguerre
matrix polynomials as follows:

(AA)() Z( D"~ ’(A+(n i)l)i(kx)n—i

—i)i!

(—1) (A),, (A);"
- Z

TER TR

i=0

where

a ¢ Z~ U{0} for Yo € 6(A) and A be a complex parameter with Re(1) > 0 (2.4)
(see [8]).
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Differentiating (2.1) with respect to x, the fn(A A (x) matrix polynomials satisfy
recurrence relations

W ()
i = —AfAA () (2.5)

and a generalization of the above equation

(4,2)
TIRC) a4 < n=

For the special case m = 1 in (2.5), it follows that

§LA=TA) () _

AL
. ALY (x)
where A and A satisfy (2.4). Similarly, for g,g m )(x) we have

A\
dgym’ (x) _ gt ()
ax 8n— 1,m
(4,4)

kgnim (x) A+kIA

% e s nz k.

On the other hand, differentiating (2.1) with respect to ¢, the fn(f,;k)(x) matrix poly-
nomials satisfy recurrence relation

A,A A,A A+1,A A+1,A
M ()= (n=m) 2500y = mA | SR o) = (A ()]
A IA A+1,A
— [ SR @) + (= DA )]
where n > 2m. For the special case m = 1 in (2.6), it holds that

LA ) = 0= DL (0 = A LEP 0 = LD () | - aaL P (x)

(2.6)

where n > 2, A and A satisfy (2.4). For fn(f;l,;x)(x), other recurrence relation via
differentiating (2.1) with respect to ¢ is

nf, A0 (x) = m(A=21) +2n1] £;458, () = m(A—=21) +n1] 257 (x)

n—2m,m
— [ KA @+ =1 (D) @7

where n > 2m. For m = 1, (2.7) reduces the recurrence relation satisfied by the
Laguerre matrix polynomials as follows:

nLE@ (x) = (A=) +2n] = Al LD ) = (A= D +n 11 L (x), n > 2

where A and A satisfy (2.4). On the one hand, for g, mA) (x), we derive the following
relations:

A+21,A A+21,A
ng,(,Am)“) (x) = —mAg,(;i;,r,{;,f)(x) —x)kg,(l_tm )(x) +(m— l)xkg,(l_;_l,nl (x)
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where n > m + 1 and

AN
201 —m)I +mA| gD () + [(1—2m)] +mA]gi®s) | (x)
(A4,1) (4,1)

= —x/\gn_’1 ' (X) + XA (m — l)gn_’m_1 (X)) — ng(A A) (x)
where n > 2m. Now, we shall prove interesting relations for fn m )(x) and g(A A (x).
Starting from (2.1), we have

o0

FAM (x ) FAD (3 1) = (1 — M) 24=Tom™ — Z LEAD (x4 y)". (2.8)

Using (2.1) in the left-hand side of (2.8), it follows that

Z IR @ F0P () = £28P (x4 y). (2.9)
Form =1, (2.9) reduces

A—I,A A—1I,A
ZL( )(X)L( )(y)_L(ZA ”L)(x—ky)

where A and A satisfy (2.4) and u ¢ Z~ U {0} for Vi € 6(2A). In the same way,

g,(lAmA) (x) matrix polynomials satisfy

AN A\
Zgi P (0gAD (1) = g0 (x + y).
i=0

Similarly, we have

n
A\ B,A
Zg,‘,_,.;( Vg oP (x) = g AP (2x),

AN B,A
Z SR 0 5P () = LD (2x) (2.10)
where AB = BA. Form = 1in (2.10), we get
A—I.A B—1I,A _
ZL( )( )Lz( )(X) — L;A—FB I,k)(zx)

where A and A satisfy (2.4), v ¢ Z~ U {0} for Vv € 6(B) and n ¢ Z~ U {0} for
Vn € (A + B). On the other hand, (2.8) can be written as

o0

A .

(1- tm)_ZAe T — e = fl.fanA"l) (x + )t
i=0
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and then

ytA

> Fam o = Z (7) [Z i e y)t’}
n=0 n=0 i=0

B )" 0o ) _ oo )
- (y;!) } - Wi [gﬁfif””(xﬂ)t’}

|
Ln=0 j=0 J:
oo [mln—mj yp_mi—i pemii o
An—mj lyn mj ’(n—m]—l) 24,1
=> e R AR
n=0j=0 i=0 ’ I

Comparing the coefficients of ", we have

[7:] n—mj

AR mj—i n mj z(n mj i)

A2 (24.2)

LeAN@) =" - m]_l)' H L (x+y). (@11)
j=0 i=0

If m =1in(2.11), we obtain

nn/kn]lnjl(nj

R P 30 Doy vy ey

Jj=0i=0

—1i)j L(2A LD (x4 )

where u ¢ Z~ U {0} for Vu € 0(2A). Similarly, for g(A A (x), we get

[%]n—m} Jjyn—mj—i ,n—mj—i
QAN (o (=172 YU (n—mj —i); (2A)L)
g (x) = (x+ ).
nm ;} l,;o (n—mj —i)! !

Now, let’s give relations for the derivatives of new matrix polynomials. From (2.1),
it follows that

tA
38 - F(A k)(x 1) =(— l)s SA’S(l m)—A—sI lx s
By the above equation and (2.1), we can write
95
s F(A )L)(x Z) F(A )L)(y Z) _ ZA2Sf(2A+2SI A)(x—l—y)thrzs,
n=0
> A
A,
s |:Z (A, A)(x)[ i| |:Zf( )( )[ j| ZAZSf(2A+2sI A)(x+y)tn+2s’
=0 1=0 n=0

ZZDSfJ{?,(x)D FAD () = Z A2 AT (g y e

n=0i=0 n=2s
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where D$ = j;s and D; = j;s. Comparing the coefficients of ", we have

ZDS (A /\)( )D f(A )L)(y) )LZsf(ZA—i-ZsI k)( +y) : n>2s.  (2.12)

n—i,m 2s,m

If m =1in(2.12), (2.12) reduces

ZD L(A 1/1)( )D3 L(A u)( ) = 5251 A+Qs~ 1)11)(x+y) Y
X ’ -

n—2s

where A and A satisfy (2.4) and u ¢ Z~ U {0} for Viu € a(2A). In the same way, we
get

ZD (D3 (1) = A g 2T e y) sz s (213)

xgn —i,m yglm n 2s,m

On the one hand, using (2.1) and (2.2), we can write
ak
. — F(A A)(x t) G(A X)(x t) _ ZAZk (A-HCI A)(zx)tn-f-Zk.
n=0

Thus, it holds that

ZDk FAR () DEGAM () = 12K pAXEID o) -z ok (214

n—i,m n—2k,2m

The generahzatlons of (2.10) are as follows:

Aq,A Ap A
Yoo A @ A () = AT AR (o 4L g,
i1 +ix+...+ig=n

Ar,A Aj A
S g P g () = gLt ARR (x4 ).
i1+ix+...4+ix=n

where the matrices A1, ..., A; are assumed to be commutative. For k = 0 in (2.14),
we have

A A,
5 AR 040 () = 1A ) @.15)
i=0
The generalization of (2.15) is

n

3 3 SR o) £ ()

§s=0 \i1+izx+...+ix=n—s

Ap,A (Ag,A
x Y g ) g e ()
J1t+j2+...+jk=n
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ArA Ap A
= 3 fif,z‘m)(le)... ifﬁ;m)(zxk)
i1 +io+...+ig=n

where the matrices Ay, ..., Ay are assumed to be commutative.

3. MULTILINEAR AND MULTIL(?"I;SRAL GENEI((I?}}NG MATRIX FUNCTIONS FOR
S (X) AND gpm (X)

In this section, we derive several families of bilinear and bilateral generating mat-
rix functions for the new matrix polynomials generated by (2.1) and (2.2). We first
state our result.

Theorem 1. Corresponding to a non-vanishing function $2;,(y1,...,ys) of s com-
plex variables y1,...,ys (s € N) and of complex order u, let

o0
Au,v(ylwways;Z) = Zakgu—f-vk(yla---’ys)zk ; (ak 5& 0, m,v e C) (31)
k=0
and
[/ p] )
On,poguw (X3 Y1500, V3 §) 1= Z ak Sy pkm ™) Rutok V1, ¥ (3.2)
k=0

where n, p € N and (as usual) [o] represents the greatest integer in o € R. Then we
have

& Ui n my—A _ XA
Y Onpuo (x;yl,..-,ys;t—p)t =(1=r")"e 1" Ay p(y1,.n ysim) (3.3)
n=0

provided that each member of (3.3) exists for |t| < 1 and Re(A) > 0.

Proof. For convenience, let S denote the first member of the assertion (3.3) of
Theorem 1. Then, upon substituting for the polynomials
On,pouw (X1 Y1, ... ¥s3 7%) from the definition (3.2) into the left-hand side of (3.3),
we obtain

oo [n/p]

AL _
S=3" > ar £ () Lok 1oy 1R (3.4)
n=0 k=0

Upon inverting the order of summation in (3.4), if we replace n by n + pk, we can
write

o0 o0
S = Z Zak LA (x) ik D10y s )"
n=0k=0

= (Z ARl C)) r") (Zakrzwk(yl,...,ys)nk)

n=0 k=0
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A — xtA
= (l—t ) e 11— A;,(,,v(_)’h---,ys;n):
which completes the proof of Theorem 1. O

Corollary 1. Corresponding to a non-vanishing function §2,,(y1,..., ys) of s com-
plex variables y1,...,ys (s € N) and of complex order i, let

00
Au,v(yl:u-ays;Z) = Zakgu+uk(ylw--:ys)zk ; (ak 5& 0, m,v e C) (35)
k=0

and

[/ p]
AL
O pyw (X1 Y0 = Y g ) (X)) k(1. 95)EE (3.6)
k=0

where n, p € N and [o] represents the greatest integer in o € R. Then we have

ad N\ .n A — XA
Z@n,p’u’v <x;y1,...,ys;[_p)t :(1+t ) e 14+2m A/_L,V(yl?“"ys;n) (3-7)

n=0
provided that each member of (3.7) exists for |t| < 1 and Re(A) > 0.

By expressing the multivariable function £, 4,k (y1.....,¥s) (k € No, s € N) in
terms of simpler function of one and more variables, we can give further applica-

tions of Theorem 1. For example, if we set s =1 and 2,4,k (y) = g/&iﬁ m)
(B,y)

in Theorem 1, where g;”"""(y) is defined by (2.2), then we obtain the following

result which provides a class of bilateral generating functions for the f,,(j;” (x) and

AN
g (x).
= (B.Y)
Corollary 2. If Ay v(y:2) = > akgMJr”;k m(y)zk where (ar 0, u,v € No);
k=0 ’
and
[/ p]

A\ B,
Onpun(x::0) = Y a [0 (gl (0¢k
k=0

where n, p € N, then we have
- T\ ;n my—A _ XA
Y Onpua (x:71 5 ) 1" = (1= AT A i) (8)
n=0

provided that each member of (3.8) exists.
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Remark 1. Using the generating relation (2.2) for g](CB’;Ty)(y) and taking a; =1,

u=0,v =1, we have

>, ] (4,4) (B,y)
Yo L g, ke

XtA __yny_
= (1=1t"™) AT (14 ")~ B THn"

where || < 1.

B,
— f( Y)

M+vkm(y), (u,v € Np), in Theorem 1, we

Choosing s = land £2,,4,k(y)

obtain the following class of bilinear generating function for the fn(:;l,;k) (x).

[e.e]
Corollary 3. If Ay v (y:2) = > akflfi’vyk)m(y)zk where (ar #0, u,v € Ny);
k=0 ’
and
[n/p]

AL B,
Onpuw (330 o= Y ar [0 () f 5N (5n)¢k
k=0

where n, p € N, then we have

> M\ .n A — XA
> Onpe (3133 L) = (A= AT A (i) (B9)
n=0

provided that each member of (3.9) exists.

Remark 2. Using Corollary 3 and taking ap = 1, u =0, v = 1, we have

oo [n/p] AN (B.9)
DD A COY w31
n=0 k=0

xtA __yny
= (1—1") AT (1) Fe 10"

where |n| < 1.

Now, we obtain the following class of bilinear generating function for the g,(,fi,;,l) (x).

Corollary 4. If

[n/p]
A+B,A c,
AD(x;y52) = akg,(,_,,k,m)(2X)g£b+,y,i,m(y)zk,
k=0
where ap #0,n,p € N, u,v € Nog, AB = BA, then we have

n [k/p]

A\ B,A C, e
Y3 agty gt (g () = APy (3.10)
k=0 1=0
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provided that each member of (3.10) exists.

Furthermore, for every suitable choice of the coefficients ai (k € Ng), if the
multivariable function £2,,{yk(V1,....s), (s € N), is expressed as an appropriate
product of several simpler functions, the assertions of Theorem 1 and Corollary 1

can be applied in order to derive various families of multilinear and multilateral gen-

erating functions for the fn(f,;l) (x) and g,(,fl,;{l) (x).
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