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Abstract. Let us consider a non-self mapping T W A! B , where A and B are two nonempty
subsets of a metric space .X;d/. The aim of this paper is to solve the nonlinear programming
problem that consists in minimizing the real valued function x 7�! d.x;T x/, where T belongs
to a new class of non-self mappings. In especial case, existence and uniqueness of fixed point for
Kannan type self mappings are also obtained.
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1. INTRODUCTION

Let A and B be two nonempty subsets of a metric space X . A non-self mapping
T W A! B is said to be a contraction if there exists a constant r 2 Œ0;1/, such that
d.T x;Ty/ � rd.x;y/, for all x;y 2 A. The well-known Banach contraction prin-
ciple states that if A is a complete subset of X and T is a contraction self-mapping,
then the fixed point equation T x D x has exactly one solution.

The Banach contraction principle is a very important tools in nonlinear analysis
and there are many extensions of this principle; see, e.g., [13] and the references
therein.

Let .X;d/ be a metric space. A self-mapping T W X ! X is called Kannan map-
ping if there exists ˛ 2 Œ0; 1

2
/ such that

d.T x;Ty/� ˛Œd.x;T x/Cd.y;Ty/�;

for all x;y 2 X . We know that if X is complete metric space, every Kannan self-
mapping defined on X has a unique fixed point ([12]). Note that, the notion of
contraction mappings and Kannan mappings are independent. That is, there exists
a contraction mapping, which is not Kannan and a Kannan mapping, which is not a
contraction. Therefore, we cannot compare these two class of mappings directly.

Recently, Kikkawa and Suzuki in [14], established the following fixed point the-
orem, which is an extension of Kannan’s fixed point theorem.
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Theorem 1 ([14]). Define a non-increasing function ' from Œ0;1/ into .1
2
;1� by

'.r/D

(
1 if 0� r < 1p

2
;

1
1Cr

if 1p
2
� r < 1:

Let .X;d/ be a complete metric space and let T be a self-mapping on X . Let ˛ 2
Œ0; 1

2
/ and put r WD ˛

1�˛
2 Œ0;1/. Assume that

'.r/d.x;T x/� d.x;y/ implies d.T x;Ty/� ˛Œd.x;T x/Cd.y;Ty/�;

for all x;y 2X . Then T has a unique fixed point ´ and limnT nxD ´ holds for every
x 2X .

It is interesting to note that the function '.r/ defined in Theorem 1 is the best
constant for every r (see Theorem 2.4 of [14]).

2. PRELIMINARIES

Consider the non-self mapping T W A! X , in which A is a nonempty subset of a
metric space .X;d/. Clearly, the fixed point equation T x D x may not have solution.
Hence, it is contemplated to find an approximate x 2A such that the error d.x;T x/ is
minimum. Indeed, best approximation theory has been derived from this idea. Here,
we state the following well-known best approximation theorem due to Kay Fan.

Theorem 2 ([8]). Let A be a nonempty compact convex subset of a normed linear
space X and T WA!X be a continuous mapping. Then there exists x 2A such that
kx�T xk D dist.T x;A/ WD inffkT x�ak W a 2 Ag.

A point x 2 A in the above theorem is called a best approximant point of T in A.
The notion of best proximity point for non-self mappings is introduced in a similar
fashion:

Definition 1. Let A and B be nonempty subsets of a metric space .X;d/ and
T W A! B be a non-self mapping. A point p 2 A is called a best proximity point of
T if

d.p;Tp/D dist.A;B/ WD fd.x;y/ W .x;y/ 2 A�Bg:

In fact, best proximity point theorems have been studied to find necessary condi-
tions such that the minimization problem

min
x2A

d.x;T x/; (2.1)

has at least one solution.
Best proximity point theory is an interesting topic in optimization theory which

recently attracted the attention of many authors (see for instance [1–9, 16]).
Let A and B be two nonempty subsets of a metric space .X;d/. Let us fix the

following notations which will be needed throughout this article:

A0 WD fx 2 A W d.x;y/D dist.A;B/ for some y 2 Bg;
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B0 WD fy 2 B W d.x;y/D dist.A;B/ for some x 2 Ag:

It is easy to see that if .A;B/ is a nonempty and weakly compact pair of subsets of a
Banach space X , then .A0;B0/ is also nonempty pair X .

The notion of proximal contractions was defined by Sadiq Basha, as follows.

Definition 2 ([15]). Let .A;B/ be a pair of nonempty subsets of a metric space
.X;d/. A mapping T W A! B is said to be a proximal contraction if there exists a
non-negative real number ˛ < 1 such that, for all u1;u2;x1;x2 2 A,(

d.u1;T x1/D dist.A;B/

d.u2;T x2/D dist.A;B/
) d.u1;u2/� ˛d.x1;x2/:

Definition 3 ([15]). Let A;B be two nonempty subsets of a metric space .X;d/.
A is said to be approximatively compact with respect to B if every sequence fxng of
A satisfying the condition that d.y;xn/!D.y;A/ for some y 2B has a convergent
subsequence.

Next theorem is the main result of [15].

Theorem 3. Let .A;B/ be a pair of nonempty closed subsets of a complete metric
space .X;d/ such that A0 is nonempty and B is approximatively compact with re-
spect to A. Assume that T WA!B is a proximal contraction such that T .A0/�B0.
Then T has a unique best proximity point.

We mention that in [10], the current author extended Theorem 3 and established
a best proximity point theorem under weaker conditions with respect to Theorem 3,
due to Sadiq Basha (see Theorem 2.1 and Corollary 2.1 of [10]).

In this article, we introduce a new class of mappings called weak proximal Kannan
non-self mappings and obtain a similar result of Theorem 1 for this new class of non-
self mappings.

3. MAIN RESULTS

To establish our main results, we introduce the following new class of non-self
mappings.

Definition 4. Define a strictly decreasing function � from Œ0; 1
2
/ onto .1

2
;1� by

�.r/D 1� r:

Let .A;B/ be a nonempty pair of subsets of a metric space .X;d/. Let ˛ 2 Œ0; 1
2
/

and put r WD ˛
1�˛

. Then T W A! B is said to be a weak proximal Kannan non-self
mapping if for all u;v;x;y 2 A with

d.u;T x/D dist.A;B/ & d.v;Ty/D dist.A;B/;

we have

�.r/d�.x;T x/� d.x;y/ implies d.u;v/� ˛Œd�.x;T x/Cd�.y;Ty/�: (3.1)
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The notion of proximal Kannan non-self mapping can be defined as below.

Definition 5. Let .A;B/ be a nonempty pair of subsets of a metric space .X;d/.
Then T W A! B is said to be a proximal Kannan non-self mapping if there exists
˛ 2 Œ0; 1

2
/ such that for all u;v;x;y 2 A with

d.u;T x/D dist.A;B/ & d.v;Ty/D dist.A;B/;

we have

d.u;v/� ˛Œd�.x;T x/Cd�.y;Ty/�:

It is clear that the class of weak proximal Kannan non-self mappings contains
the class of proximal Kannan non-self mappings as a subclass. Also, the class of
proximal Kannan non-self mappings contains the class of Kannan non-self mappings.

We now state our main result of this article.

Theorem 4. Let .A;B/ be a nonempty pair of subsets of a complete metric space
.X;d/ such that A0 is nonempty and closed. Assume that T W A! B is a weak
proximal Kannan non-self mapping such that T .A0/�B0. Then there exists a unique
point x� 2A such that d.x�;T x�/D dist.A;B/. Moreover, if fxng is a sequence in
A such that d.xnC1;T xn/D dist.A;B/, then xn! x�.

Proof. Assume x0 2 A0. Since T .A0/ � B0, there exists x1 2 A0 such that
d.x1;T x0/ D dist.A;B/. Again, since T x1 2 B0, there exists x2 2 A0 such that
d.x2;T x1/D dist.A;B/: Continuing this process, we can find a sequence fxng in
A0 such that

d.xnC1;T xn/D dist.A;B/; for all n 2N[f0g: (3.2)

Thus,

d.x0;T x0/� d.x0;x1/Cd.x1;T x0/D d.x0;x1/Cdist.A;B/;

and so,

�.r/d�.x0;T x0/� d
�.x0;T x0/� d.x0;x1/ &

(
d.x1;T x0/D dist.A;B/;

d.x2;T x1/D dist.A;B/:

Since T is a weak proximal Kannan non-self mapping, we conclude that

d.x1;x2/� ˛Œd
�.x0;T x0/Cd

�.x1;T x1/�

� ˛Œd.x0;x1/Cd
�.x1;T x0/Cd.x1;x2/Cd

�.x2;T x1/�

D ˛Œd.x0;x1/Cd.x1;x2/�:

Therefore,

d.x1;x2/�
˛

1�˛
d.x0;x1/D rd.x0;x1/:
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Similarly, we can see that

�.r/d�.x1;T x1/� d.x1;x2/ &

(
d.x2;T x1/D dist.A;B/;

d.x3;T x2/D dist.A;B/:

This implies that

d.x2;x3/� ˛Œd
�.x1;T x1/Cd

�.x2;T x2/�

� ˛Œd.x1;x2/Cd
�.x2;T x1/Cd.x2;x3/Cd

�.x3;T x2/�

D ˛Œd.x1;x2/Cd.x2;x3/�:

So,
d.x2;x3/�

˛

1�˛
d.x1;x2/D rd.x1;x2/� r

2d.x0;x1/:

Hence, by induction, we conclude that

d.xn;xnC1/� r
nd.x0;x1/;

which implies that

˙1nD1d.xn;xnC1/�˙
1
nD1r

nd.x0;x1/ <1:

That is, fxng is a Cauchy sequence in A0. Since A0 is closed and X is complete
metric space, we deduce that fxng is a convergent sequence. Let x� 2 A0 be such
that xn! x�. We claim that x� is a unique best proximity point of T . At first, we
prove that

d�.x�;T x/� ˛d.x�;x/; 8x 2 A0 with x ¤ x�: (3.3)

Let x 2A0 and x¤ x�. Since T .A0/�B0, there exists y 2A0 such that d.y;T x/D
dist.A;B/. By the fact that xn! x�, there exists N1 2N such that

d.xn;x
�/�

1

3
d.x;x�/; 8n�N1:

We now have

�.r/d�.xn;T xn/� d
�.xn;T xn/D d.xn;T xn/�dist.A;B/

� d.xn;x
�/Cd.x�;xnC1/Cd.xnC1;T xn/�dist.A;B/

D d.xn;x
�/Cd.x�;xnC1/�

2

3
d.x;x�/

D d.x;x�/�
1

3
d.x;x�/� d.x;x�/�d.xn;x

�/

� d.xn;x/:

Thus,

�.r/d�.xn;T xn/� d.xn;x/ &

(
d.xnC1;T xn/D dist.A;B/;

d.y;T x/D dist.A;B/:
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Again, since T is weak proximal Kannan non-self mapping we conclude that

d.xnC1;y/� ˛Œd
�.xn;T xn/Cd

�.x;T x/�� ˛Œd.xn;xnC1/Cd
�.x;T x/�:

Thereby,

d.x�;T x/D lim
n!1

d.xn;T x/

� lim
n!1

Œd.xn;xnC1/Cd.xnC1;y/Cd.y;T x/�

� lim
n!1

Œ.1C˛/d.xn;xnC1/C˛d
�.x;T x/Cd.y;T x/�

� lim
n!1

Œ.1C˛/rnd.x0;x1/C˛d
�.x;T x/Cdist.A;B/�

D ˛d�.x;T x/Cdist.A;B/:

Then,
d�.x�;T x/� ˛d�.x;T x/; 8x 2 A0; with x ¤ x�:

That is, (3.3) holds. It now follows from (3.3) that

d�.xn;T xn/� d.xn;x
�/Cd�.x�;T xn/

� d.xn;x
�/C˛d�.xn;T xn/:

Thus,

�.r/d�.xn;T xn/D .1� r/d
�.xn;T xn/� .1�˛/d

�.xn;T xn/� d.xn;x
�/: (3.4)

On the other hand, since x� 2 A0 and T .A0/ � B0, there exists y� 2 B0 such that
d.y�;T x�/D dist.A;B/. Therefore,

�.r/d�.xn;T xn/� d.xn;x
�/ &

(
d.xnC1;T xn/D dist.A;B/;

d.y�;T x�/D dist.A;B/;

which implies that

d.xnC1;y
�/� ˛Œd�.xn;T xn/Cd

�.x�;T x�/�

� ˛Œd.xn;xnC1/Cd
�.xnC1;T xn/Cd

�.x�;T x�/�:

If in above relation n!1, we obtain

d.y�;x�/� ˛d�.x�;T x�/

D ˛Œd.x�;y�/Cd�.y�;T x�/�D ˛d.x�;y�/:

This deduces that d.x�;y�/D 0 or x� D y�. Hence x� is a best proximity point of
the mapping T . The uniqueness of best proximity point follows from the condition
that T is weak proximal Kannan non-self mapping. That is, suppose that x�1 ;x

�
2 are

two distinct points in A such that d.x�i ;T x
�
i /D dist.A;B/, for i D 1;2. So,

�.r/d�.x�1 ;T x
�
1 /� d.x

�
1 ;x
�
2 / &

(
d.x�1 ;T x

�
1 /D dist.A;B/;

d.x�2 ;T x
�
2 /D dist.A;B/;
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Then,
0 < d.x�1 ;x

�
2 /� ˛Œd

�.x�1 ;T x
�
1 /Cd

�.x�2 ;T x
�
2 /�D 0;

which is a contradiction. Hence, the best proximity point is unique.
�

The following corollaries are obtained from Theorem 4.

Corollary 1. Let .A;B/ be a nonempty pair of subsets of a complete metric space
.X;d/ such that A0 is nonempty and closed. Assume that T W A! B is a proximal
Kannan non-self mapping such that T .A0/ � B0. Then there exists a unique point
x� 2 A such that d.x�;T x�/ D dist.A;B/. Moreover, if fxng is a sequence in A
such that d.xnC1;T xn/D dist.A;B/ then, xn! x�.

Corollary 2. Let .A;B/ be a nonempty pair of a complete metric space .X;d/
such that A0 is nonempty and closed. Assume that T W A! B is a Kannan non-
self mapping such that T .A0/ � B0. Then there exists a unique point x� 2 A such
that d.x�;T x�/ D dist.A;B/. Moreover, if fxng is a sequence in A such that
d.xnC1;T xn/D dist.A;B/ then, xn! x�.

Corollary 3. Let A be a nonempty and closed subset of a complete metric space
.X;d/. Assume that T W A! A is a self mapping such that

�.r/d.x;T x/� d.x;y/ implies d.T x;Ty/� ˛Œd.x;T x/Cd.y;Ty/�;

for all x;y 2 A, where �.r/ is defined as in the Definition 4. Then T has a unique
fixed point x� 2 A. Moreover, if x0 2 A and we define xnC1 D T xn, then xn! x�.

Corollary 4 (Kannan fixed point theorem). LetA be a nonempty and closed subset
of a complete metric space .X;d/. Assume that T W A! A is a Kannan mapping.
Then T has a unique fixed point. Moreover, for each x0 2A if we define xnC1D T xn
then the sequence fxng converges to the fixed point of T .

Example 1. Suppose that X D R with the usual metric. Suppose that

A WD Œ0;2�[f5g & B WD Œ3;4�:

Then A and B are nonempty closed subsets of X and A0 D f2;5g and B0 D f3;4g.
Note that dist.A;B/D 1. Let T W A! B be a mapping defined as

T .x/D

(
7
2

if x D 0;

4 if x ¤ 0:

It is easy to see that T is weak proximal Kannan non-self mapping for each ˛ 2
Œ0; 1

2
/. Indeed, it is sufficient to note that d.u;T x/ D dist.A;B/, holds for u D 5

and x 2 A�f0g. Therefore, Theorem 4 guaranties the existence and uniqueness of a
best proximity point for T and this point is x� D 5.
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Example 2. Suppose that X D R with the usual metric. Suppose that

A WD Œ0;
1

100
�[f1g & B WD Œ2;3�:

Then A and B are nonempty closed subsets of X and dist.A;B/ D 1. Define a
non-self mapping T W A! B as follows

T .x/D

(
2 if x 2Q\A;
101
50

if x 2Qc \A:

Note that T is not continuous. We claim that T is Kannan nons-elf mapping with
˛ D 1

3
. For this purpose, it is sufficient to consider two following cases.

Case 1. If x 2Q\A�f1g and y 2Qc \A, then

˛Œd�.x;T x/Cd�.y;Ty/�D
1

3
Œ
101

50
� .xCy/��

2

3
>
1

50
D d.T x;Ty/:

Case 2. If x D 1 and y 2Qc \A, then

˛Œd�.x;T x/Cd�.y;Ty/�D
1

3
Œ
51

50
�y��

1

3
�
101

100
>
1

50
D d.T x;Ty/:

It now follows from Corollary 2 that T has a unique best proximity point and this
point is x� D 1.

Remark 1. We mention that in [11] the author studied the existence of best proxim-
ity points in metric spaces with a partial order, where weak proximal Kannan non-self
mappings are satisfied only for comparable elements.

REFERENCES

[1] A. Abkar and M. Gabeleh, “Best proximity points for asymptotic cyclic contraction mappings,”
Nonlin. Anal., vol. 74, no. 18, pp. 7261–7268, 2011.

[2] A. Abkar and M. Gabeleh, “Proximal quasi-normal structure and a best proximity point theorem,”
J. Nonlin. Convex Anal., vol. 44, no. 4, pp. 653–659, 2013.

[3] M. Al-Thagafi and N. Shahzad, “Convergence and existence results for best proximity points,”
Nonlin. Anal., vol. 70, no. 10, pp. 3665–3671, 2009.

[4] A. Amini Harandi, “Best proximity point theorems for cyclic strongly quasi-contraction map-
pings,” J. Glob. Optim., vol. 56, no. 4, pp. 1667–1674, 2013.

[5] C. Di Bari, T. Suzuki, and C. Vetro, “Best proximity points for cyclic Meir- Keeler contractions,”
Nonlin. Anal., vol. 69, no. 11, pp. 3790–3794, 2008.

[6] A. Eldred and P. Veeramani, “Existence and convergence of best proximity points,” J. Math. Anal.
Appl., vol. 323, no. 2, pp. 1001–1006, 2006.

[7] R. Espinola, “A new approach to relativelt nonexpansive mappings,” Proc. Amer. Math. Soc., vol.
136, no. 6, pp. 1987–1996, 2008.

[8] K. Fan, “Extensions of two fixed point theorems of F.E. Browder,” Math. Z., vol. 122, no. 3, pp.
234–240, 1969.



EXISTENCE AND UNIQUENESS RESULTS FOR BEST PROXIMITY POINTS 131

[9] M. Gabeleh, “Proximal weakly contractive and proximal nonexpansive non-self mappings in met-
ric and Banach spaces,” J. Optim. Theory Appl., vol. 158, no. 2, pp. 615–625, 2013.

[10] M. Gabeleh, “Best proximity points for weak proximal contractions,” Bull. Malaysian Math. Sci.
Soc., in press.

[11] M. Gabeleh, “Discrete optimization for ordered weak proximal Kannan contractions,” Analele
Stiint Ifice Ale Universitat II ”AL.I. Cuza” Din Iasi (S.N.), to appear.

[12] R. Kannan, “Some results on fixed points,” Amer. Math. Monthly, vol. 76, no. 4, pp. 405–408,
1969.

[13] M. Khamsi and W. Kirk, An introduction to metric spaces and fixed point theory, 2nd ed., ser.
Series is books. New York: Wiley-Interscience, 2001, vol. III.

[14] M. Kikkawa and T. Suzuki, “Some similarity between contractions and Kannan mappings,” Fixed
Point Theory Appl., vol. 2008, pp. 1–8, 2010.

[15] S. Sadiq Basha, “Best proximity points: optimal solutions,” J. Optim. Theory Appl., vol. 151,
no. 1, pp. 210–216, 2011.

[16] W. Sanhan, C. Mongkolkeha, and P. Kumam, “Generalized proximal  � contraction mappings
and best proximity points,” Abstract Appl. Anal., vol. 2012, pp. 1–19, 2012.

Author’s address

Moosa Gabeleh
Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran
E-mail address: gab.moo@gmail.com, Gabeleh@abru.ac.ir


