Existence and uniqueness results for best proximity points

Moosa Gabeleh
EXISTENCE AND UNIQUENESS RESULTS FOR BEST PROXIMITY POINTS

MOOSA GABELEH

Received 24 September, 2013

Abstract. Let us consider a non-self mapping \(T : A \to B \), where \(A \) and \(B \) are two nonempty subsets of a metric space \((X, d)\). The aim of this paper is to solve the nonlinear programming problem that consists in minimizing the real valued function \(x \mapsto d(x, Tx) \), where \(T \) belongs to a new class of non-self mappings. In especial case, existence and uniqueness of fixed point for Kannan type self mappings are also obtained.

2010 Mathematics Subject Classification: 47H10; 47H09
Keywords: best proximity point, fixed point, proximal Kannan non-self mapping

1. Introduction

Let \(A \) and \(B \) be two nonempty subsets of a metric space \(X \). A non-self mapping \(T : A \to B \) is said to be a contraction if there exists a constant \(r \in [0, 1) \), such that \(d(Tx, Ty) \leq rd(x, y) \), for all \(x, y \in A \). The well-known Banach contraction principle states that if \(A \) is a complete subset of \(X \) and \(T \) is a contraction self-mapping, then the fixed point equation \(Tx = x \) has exactly one solution.

The Banach contraction principle is a very important tools in nonlinear analysis and there are many extensions of this principle; see, e.g., [13] and the references therein.

Let \((X, d) \) be a metric space. A self-mapping \(T : X \to X \) is called Kannan mapping if there exists \(\alpha \in [0, \frac{1}{2}) \) such that

\[
d(Tx, Ty) \leq \alpha[d(x, Tx) + d(y, Ty)],
\]

for all \(x, y \in X \). We know that if \(X \) is complete metric space, every Kannan self-mapping defined on \(X \) has a unique fixed point ([12]). Note that, the notion of contraction mappings and Kannan mappings are independent. That is, there exists a contraction mapping, which is not Kannan and a Kannan mapping, which is not a contraction. Therefore, we cannot compare these two class of mappings directly.

Recently, Kikkawa and Suzuki in [14], established the following fixed point theorem, which is an extension of Kannan’s fixed point theorem.
Theorem 1 ([14]). Define a non-increasing function φ from $[0, 1)$ into $(\frac{1}{2}, 1]$ by

$$\varphi(r) = \begin{cases} 1 & \text{if } 0 \leq r < \frac{1}{\sqrt{2}}, \\ \frac{1}{1+r} & \text{if } \frac{1}{\sqrt{2}} \leq r < 1. \end{cases}$$

Let (X, d) be a complete metric space and let T be a self-mapping on X. Let $\alpha \in [0, \frac{1}{2})$ and put $r := \frac{\alpha}{1-\alpha} \in [0, 1)$. Assume that

$$\varphi(r)d(x, Tx) \leq d(x, y) \quad \text{implies} \quad d(Tx, Ty) \leq \alpha[d(x, Tx) + d(y, Ty)],$$

for all $x, y \in X$. Then T has a unique fixed point z and $\lim_{n \to \infty} T^nx = z$ holds for every $x \in X$.

It is interesting to note that the function $\varphi(r)$ defined in Theorem 1 is the best constant for every r (see Theorem 2.4 of [14]).

2. Preliminaries

Consider the non-self mapping $T : A \to X$, in which A is a nonempty subset of a metric space (X, d). Clearly, the fixed point equation $Tx = x$ may not have solution. Hence, it is contemplated to find an approximate $x \in A$ such that the error $d(x, Tx)$ is minimum. Indeed, best approximation theory has been derived from this idea. Here, we state the following well-known best approximation theorem due to Kay Fan.

Theorem 2 ([8]). Let A be a nonempty compact convex subset of a normed linear space X and $T : A \to X$ be a continuous mapping. Then there exists $x \in A$ such that

$$\|x - Tx\| = \text{dist}(Tx, A) := \inf\{\|Tx - a\| : a \in A\}.$$

A point $x \in A$ in the above theorem is called a best approximant point of T in A.

The notion of best proximity point for non-self mappings is introduced in a similar fashion:

Definition 1. Let A and B be nonempty subsets of a metric space (X, d) and $T : A \to B$ be a non-self mapping. A point $p \in A$ is called a best proximity point of T if

$$d(p, Tp) = \text{dist}(A, B) := \{d(x, y) : (x, y) \in A \times B\}.$$

In fact, best proximity point theorems have been studied to find necessary conditions such that the minimization problem

$$\min_{x \in A} d(x, Tx),$$

has at least one solution.

Best proximity point theory is an interesting topic in optimization theory which recently attracted the attention of many authors (see for instance [1–9, 16]).

Let A and B be two nonempty subsets of a metric space (X, d). Let us fix the following notations which will be needed throughout this article:

$$A_0 := \{x \in A : d(x, y) = \text{dist}(A, B) \quad \text{for some} \quad y \in B\},$$
$B_0 := \{ y \in B : d(x,y) = dist(A,B) \text{ for some } x \in A \}.$

It is easy to see that if (A,B) is a nonempty and weakly compact pair of subsets of a Banach space X, then $(A_0 : B_0)$ is also nonempty pair X.

The notion of proximal contractions was defined by Sadiq Basha, as follows.

Definition 2 ([15]). Let (A, B) be a pair of nonempty subsets of a metric space (X,d). A mapping $T : A \rightarrow B$ is said to be a proximal contraction if there exists a non-negative real number $\alpha < 1$ such that, for all $u_1, u_2, x_1, x_2 \in A$,

$$
\begin{align*}
&d(u_1, Tx_1) = dist(A,B) \\
&d(u_2, Tx_2) = dist(A,B) \\
&d(u_1, u_2) \leq \alpha d(x_1, x_2).
\end{align*}
$$

Definition 3 ([15]). Let A, B be two nonempty subsets of a metric space (X,d). A is said to be approximatively compact with respect to B if every sequence $\{x_n\}$ of A satisfying the condition that $d(y, x_n) \rightarrow D(y, A)$ for some $y \in B$ has a convergent subsequence.

Next theorem is the main result of [15].

Theorem 3. Let (A, B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that A_0 is nonempty and B is approximatively compact with respect to A. Assume that $T : A \rightarrow B$ is a proximal contraction such that $T(A_0) \subseteq B_0$.

Then T has a unique best proximity point.

We mention that in [10], the current author extended Theorem 3 and established a best proximity point theorem under weaker conditions with respect to Theorem 3, due to Sadiq Basha (see Theorem 2.1 and Corollary 2.1 of [10]).

In this article, we introduce a new class of mappings called weak proximal Kannan non-self mappings and obtain a similar result of Theorem 1 for this new class of non-self mappings.

3. Main Results

To establish our main results, we introduce the following new class of non-self mappings.

Definition 4. Define a strictly decreasing function θ from $[0, \frac{1}{2})$ onto $(\frac{1}{2}, 1]$ by

$$
\theta(r) = 1 - r.
$$

Let (A,B) be a nonempty pair of subsets of a metric space (X,d). Let $\alpha \in [0, \frac{1}{2})$ and put $r := \frac{\alpha}{1 - \alpha}$. Then $T : A \rightarrow B$ is said to be a weak proximal Kannan non-self mapping if for all $u, v, x, y \in A$ with

$$
d(u, Tx) = dist(A,B) \quad & d(v, Ty) = dist(A,B),
$$

we have

$$
\theta(r)d^*(x, Tx) \leq d(x, y) \text{ implies } d(u, v) \leq \alpha[d^*(x, Tx) + d^*(y, Ty)]. \quad (3.1)
$$
The notion of proximal Kannan non-self mapping can be defined as below.

Definition 5. Let \((A, B)\) be a nonempty pair of subsets of a metric space \((X, d)\). Then \(T : A \rightarrow B\) is said to be a proximal Kannan non-self mapping if there exists \(\alpha \in [0, \frac{1}{2})\) such that for all \(u, v, x, y \in A\) with

\[
d(u, Tx) = \text{dist}(A, B) \quad \& \quad d(v, Ty) = \text{dist}(A, B),
\]

we have

\[
d(u, v) \leq \alpha [d^*(x, Tx) + d^*(y, Ty)].
\]

It is clear that the class of weak proximal Kannan non-self mappings contains the class of proximal Kannan non-self mappings as a subclass. Also, the class of proximal Kannan non-self mappings contains the class of Kannan non-self mappings.

We now state our main result of this article.

Theorem 4. Let \((A, B)\) be a nonempty pair of subsets of a complete metric space \((X, d)\) such that \(A_0\) is nonempty and closed. Assume that \(T : A \rightarrow B\) is a weak proximal Kannan non-self mapping such that \(T(A_0) \subseteq B_0\). Then there exists a unique point \(x^* \in A\) such that \(d(x^*, Tx^*) = \text{dist}(A, B)\). Moreover, if \(\{x_n\}\) is a sequence in \(A\) such that \(d(x_{n+1}, Tx_n) = \text{dist}(A, B)\), then \(x_n \rightarrow x^*\).

Proof. Assume \(x_0 \in A_0\). Since \(T(A_0) \subseteq B_0\), there exists \(x_1 \in A_0\) such that \(d(x_1, Tx_0) = \text{dist}(A, B)\). Again, since \(Tx_1 \in B_0\), there exists \(x_2 \in A_0\) such that \(d(x_2, Tx_1) = \text{dist}(A, B)\). Continuing this process, we can find a sequence \(\{x_n\}\) in \(A_0\) such that

\[
d(x_{n+1}, Tx_n) = \text{dist}(A, B), \quad \text{for all } n \in \mathbb{N} \cup \{0\}. \tag{3.2}
\]

Thus,

\[
d(x_0, Tx_0) \leq d(x_0, x_1) + d(x_1, Tx_0) = d(x_0, x_1) + \text{dist}(A, B),
\]

and so,

\[
\theta(r)d^*(x_0, Tx_0) \leq d^*(x_0, Tx_0) \leq d(x_0, x_1) \quad \& \quad \begin{cases} d(x_1, Tx_0) = \text{dist}(A, B), \\ d(x_2, Tx_1) = \text{dist}(A, B). \end{cases}
\]

Since \(T\) is a weak proximal Kannan non-self mapping, we conclude that

\[
d(x_1, x_2) \leq \alpha [d^*(x_0, Tx_0) + d^*(x_1, Tx_1)]
\]

\[
\leq \alpha [d(x_0, x_1) + d^*(x_1, Tx_0) + d(x_1, x_2) + d^*(x_2, Tx_1)]
\]

\[
= \alpha [d(x_0, x_1) + d(x_1, x_2)].
\]

Therefore,

\[
d(x_1, x_2) \leq \frac{\alpha}{1 - \alpha} d(x_0, x_1) = rd(x_0, x_1).
\]
Similarly, we can see that
\[
\theta(r) d^*(x_1, T x_1) \leq d(x_1, x_2) \quad \text{and} \quad \begin{cases}
 d(x_2, T x_1) = \text{dist}(A, B), \\
 d(x_3, T x_2) = \text{dist}(A, B).
\end{cases}
\]

This implies that
\[
d(x_2, x_3) \leq \alpha [d^*(x_1, T x_1) + d^*(x_2, T x_2)] \\
\leq \alpha [d(x_1, x_2) + d^*(x_2, T x_1) + d(x_2, x_3) + d^*(x_3, T x_2)] \\
= \alpha [d(x_1, x_2) + d(x_2, x_3)].
\]

So,
\[
d(x_2, x_3) \leq \frac{\alpha}{1 - \alpha} d(x_1, x_2) = r d(x_1, x_2) \leq r^2 d(x_0, x_1).
\]

Hence, by induction, we conclude that
\[
d(x_n, x_{n+1}) \leq r^n d(x_0, x_1),
\]

which implies that
\[
\sum_{n=1}^{\infty} d(x_n, x_{n+1}) \leq \sum_{n=1}^{\infty} r^n d(x_0, x_1) < \infty.
\]

That is, \(\{x_n\} \) is a Cauchy sequence in \(A_0 \). Since \(A_0 \) is closed and \(X \) is complete metric space, we deduce that \(\{x_n\} \) is a convergent sequence. Let \(x^* \in A_0 \) be such that \(x_n \to x^* \). We claim that \(x^* \) is a unique best proximity point of \(T \). At first, we prove that
\[
d^*(x^*, T x) \leq \alpha d(x^*, x), \quad \forall x \in A_0 \quad \text{with} \quad x \neq x^*. \tag{3.3}
\]

Let \(x \in A_0 \) and \(x \neq x^* \). Since \(T(A_0) \subseteq B_0 \), there exists \(y \in A_0 \) such that \(d(y, T x) = \text{dist}(A, B) \). By the fact that \(x_n \to x^* \), there exists \(N_1 \in \mathbb{N} \) such that
\[
d(x_n, x^*) \leq \frac{1}{3} d(x, x^*), \quad \forall n \geq N_1.
\]

We now have
\[
\theta(r) d^*(x_n, T x_n) \leq d^*(x_n, T x_n) = d(x_n, T x_n) - \text{dist}(A, B) \\
\leq d(x_n, x^*) + d(x^*, x_{n+1}) + d(x_{n+1}, T x_n) - \text{dist}(A, B) \\
= d(x_n, x^*) + d(x^*, x_{n+1}) \leq \frac{2}{3} d(x, x^*) \\
= d(x, x^*) - \frac{1}{3} d(x, x^*) \leq d(x, x^*) - d(x_n, x^*) \\
\leq d(x_n, x).
\]

Thus,
\[
\theta(r) d^*(x_n, T x_n) \leq d(x_n, x) \quad \text{and} \quad \begin{cases}
 d(x_{n+1}, T x_n) = \text{dist}(A, B), \\
 d(y, T x) = \text{dist}(A, B).
\end{cases}
\]
Again, since T is weak proximal Kannan non-self mapping we conclude that
\[d(x_{n+1}, y) \leq \alpha [d^*(x_n, Tx_n) + d^*(x, Tx)] \leq \alpha [d(x_n, x_{n+1}) + d^*(x, Tx)]. \]

Thereby,
\[
\begin{align*}
d(x^*, Tx) &= \lim_{n \to \infty} d(x_n, Tx) \\
&\leq \lim_{n \to \infty} [d(x_n, x_{n+1}) + d(x_{n+1}, y) + d(y, Tx)] \\
&\leq \lim_{n \to \infty} [1 + \alpha]d(x_n, x_{n+1}) + \alpha d^*(x, Tx) + d(y, Tx)] \\
&\leq \lim_{n \to \infty} [1 + \alpha r^n d(x_0, x_1) + \alpha d^*(x, Tx) + dist(A, B)] \\
&= \alpha d^*(x, Tx) + dist(A, B).
\end{align*}
\]

Thus,
\[
\begin{align*}
d^*(x^*, Tx) \leq \alpha d^*(x, Tx), \quad \forall x \in A_0, \quad \text{with} \quad x \neq x^*.
\end{align*}
\]

That is, (3.3) holds. It now follows from (3.3) that
\[
\begin{align*}
d^*(x_n, Tx_n) &\leq d(x_n, x^*) + d^*(x^*, Tx_n) \\
&\leq d(x_n, x^*) + \alpha d^*(x_n, Tx_n).
\end{align*}
\]

Thus,
\[
\begin{align*}
\theta(r) d^*(x_n, Tx_n) &= (1 - r) d^*(x_n, Tx_n) \leq (1 - \alpha)d^*(x_n, Tx_n) \leq d(x_n, x^*). \quad (3.4)
\end{align*}
\]

On the other hand, since $x^* \in A_0$ and $T(A_0) \subseteq B_0$, there exists $y^* \in B_0$ such that $d(y^*, Tx^*) = dist(A, B)$. Therefore,
\[
\begin{align*}
\theta(r) d^*(x_n, Tx_n) &\leq d(x_n, x^*) \quad & \text{with} \quad d(x_{n+1}, Tx_{n+1}) = dist(A, B), \\
d(y^*, Tx^*) &\leq dist(A, B),
\end{align*}
\]

which implies that
\[
\begin{align*}
d(x_{n+1}, y^*) &\leq \alpha [d^*(x_n, Tx_n) + d^*(x^*, Tx^*)] \\
&\leq \alpha [d(x_n, x_{n+1}) + d^*(x_{n+1}, Tx_n) + d^*(x^*, Tx^*)] \\
&= \alpha d^*(x^*, Tx^*) + d(y^*, Tx^*) = \alpha d(x^*, y^*).
\end{align*}
\]

This deduces that $d(x^*, y^*) = 0$ or $x^* = y^*$. Hence x^* is a best proximity point of the mapping T. The uniqueness of best proximity point follows from the condition that T is weak proximal Kannan non-self mapping. That is, suppose that x^*_1, x^*_2 are two distinct points in A such that $d(x^*_i, Tx^*_i) = dist(A, B)$, for $i = 1, 2$. So,
\[
\begin{align*}
\theta(r) d^*(x^*_1, Tx^*_1) &\leq d(x^*_1, x^*_2) \quad & \text{with} \quad d(x^*_1, Tx^*_1) = dist(A, B), \\
d(x^*_2, Tx^*_2) &\leq dist(A, B),
\end{align*}
\]
Then,

\[0 < d(x_1^*, x_2^*) \leq \alpha [d^*(x_1^*, Tx_1^*) + d^*(x_2^*, Tx_2^*)] = 0, \]

which is a contradiction. Hence, the best proximity point is unique.

\[\square \]

The following corollaries are obtained from Theorem 4.

Corollary 1. Let \((A, B)\) be a nonempty pair of subsets of a complete metric space \((X, d)\) such that \(A_0\) is nonempty and closed. Assume that \(T : A \to B\) is a proximal Kannan non-self mapping such that \(T(A_0) \subseteq B_0\). Then there exists a unique point \(x^* \in A\) such that \(d(x^*, Tx^*) = dist(A, B)\). Moreover, if \(\{x_n\}\) is a sequence in \(A\) such that \(d(x_{n+1}, Tx_n) = dist(A, B)\) then, \(x_n \to x^*\).

Corollary 2. Let \((A, B)\) be a nonempty pair of a complete metric space \((X, d)\) such that \(A_0\) is nonempty and closed. Assume that \(T : A \to B\) is a Kannan non-self mapping such that \(T(A_0) \subseteq B_0\). Then there exists a unique point \(x^* \in A\) such that \(d(x^*, Tx^*) = dist(A, B)\). Moreover, if \(\{x_n\}\) is a sequence in \(A\) such that \(d(x_{n+1}, Tx_n) = dist(A, B)\) then, \(x_n \to x^*\).

Corollary 3. Let \(A\) be a nonempty and closed subset of a complete metric space \((X, d)\). Assume that \(T : A \to A\) is a self mapping such that

\[\theta(r)d(x, Tx) \leq d(x, y) \quad \text{implies} \quad d(Tx, Ty) \leq \alpha [d(x, Tx) + d(y, Ty)], \]

for all \(x, y \in A\), where \(\theta(r)\) is defined as in the Definition 4. Then \(T\) has a unique fixed point \(x^* \in A\). Moreover, if \(x_0 \in A\) and we define \(x_{n+1} = Tx_n\), then \(x_n \to x^*\).

Corollary 4 (Kannan fixed point theorem). Let \(A\) be a nonempty and closed subset of a complete metric space \((X, d)\). Assume that \(T : A \to A\) is a Kannan mapping. Then \(T\) has a unique fixed point. Moreover, for each \(x_0 \in A\) if we define \(x_{n+1} = Tx_n\) then the sequence \(\{x_n\}\) converges to the fixed point of \(T\).

Example 1. Suppose that \(X = \mathbb{R}\) with the usual metric. Suppose that

\[A := [0, 2] \cup \{5\} \quad \& \quad B := [3, 4]. \]

Then \(A\) and \(B\) are nonempty closed subsets of \(X\) and \(A_0 = \{2.5\}\) and \(B_0 = \{3, 4\}\). Note that \(dist(A, B) = 1\). Let \(T : A \to B\) be a mapping defined as

\[T(x) = \begin{cases}
 7 & \text{if } x = 0, \\
 2 & \text{if } x \neq 0.
\end{cases} \]

It is easy to see that \(T\) is weak proximal Kannan non-self mapping for each \(\alpha \in [0, \frac{1}{2}]\). Indeed, it is sufficient to note that \(d(u, Tx) = dist(A, B)\), holds for \(u = 5\) and \(x \in A - \{0\}\). Therefore, Theorem 4 guaranties the existence and uniqueness of a best proximity point for \(T\) and this point is \(x^* = 5\).
Example 2. Suppose that $X = \mathbb{R}$ with the usual metric. Suppose that
\[A := [0, \frac{1}{100}] \cup \{1\} \quad \& \quad B := [2, 3]. \]
Then A and B are nonempty closed subsets of X and $dist(A, B) = 1$. Define a non-self mapping $T : A \to B$ as follows
\[T(x) = \begin{cases} 2 & \text{if } x \in \mathbb{Q} \cap A, \\ \frac{101}{50} & \text{if } x \in \mathbb{Q}^c \cap A. \end{cases} \]
Note that T is not continuous. We claim that T is Kannan non-self mapping with $\alpha = \frac{1}{3}$. For this purpose, it is sufficient to consider two following cases.

Case 1. If $x \in \mathbb{Q} \cap A - \{1\}$ and $y \in \mathbb{Q}^c \cap A$, then
\[\alpha[d^*(x, Tx) + d^*(y, Ty)] = \frac{1}{3}[\frac{101}{50} - (x + y)] \geq \frac{2}{3} > \frac{1}{50} = d(Tx, Ty). \]

Case 2. If $x = 1$ and $y \in \mathbb{Q}^c \cap A$, then
\[\alpha[d^*(x, Tx) + d^*(y, Ty)] = \frac{1}{3}[\frac{51}{50} - y] \geq \frac{1}{3} \times \frac{101}{100} > \frac{1}{50} = d(Tx, Ty). \]
It now follows from Corollary 2 that T has a unique best proximity point and this point is $x^* = 1$.

Remark 1. We mention that in [11] the author studied the existence of best proximity points in metric spaces with a partial order, where weak proximal Kannan non-self mappings are satisfied only for comparable elements.

References

Author’s address

Moosa Gabeleh

Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran

E-mail address: gab.moo@gmail.com, Gabeleh@abru.ac.ir