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Abstract. Let (R,*) be a 2-torsion free *-prime ring with involution * and center Z(R), U a
nonzero square closed *-Lie ideal of R. An additive mapping F : R — R is called a generalized
derivation if there exits a derivation d : R — R such that F(xy) = F(x)y +xd(y). In the present
paper, we prove that U C Z(R) if any one of following conditions holds: 1) [F(u),u] =0,
2) [d(u), F(v)] =0, 3) d(u)oF(v) =0, 4) [d(u), F(v)] = £[u,v], 5) d(u)oF(v) = tuov, 6)
du)F(v) £uv € Z(R), for all u,v € U. Furthermore, an example is given to demonstrate that
the *-primeness hypothesis is not superfluous.

2010 Mathematics Subject Classification: 16W25; 16 W10; 16N60; 16U80

Keywords: x—prime rings, Lie ideals, derivations, generalized derivations

1. INTRODUCTION

Let R will be an associative ring with center Z. For any x,y € R the symbol
[x, y] represents commutator xy — yx. Recall that a ring R is prime if xRy =0
implies x = 0 or y = 0. An additive mapping * : R — R is called an involution
if (xy)* = y*x* and (x*)* = x for all x,y € R. A ring equipped with an involu-
tion is called a ring with involution or *—ring. A ring with an involution is said to
x—prime if xRy = xRy* =0 or xRy = x*Ry = 0 implies that x =0 or y = 0.
Every prime ring with an involution is *—prime but the converse need not hold gene-
ral. An example due to Oukhtite [7] justifies the above statement. That is, let R be a
prime ring, S = R x R° where R? is the opposite ring of R. Define involution * on
S as x(x,y) = (y,x). S is *—prime, but not prime. This example shows that every
prime ring can be injected in a x—prime ring and from this point of view x—prime
rings constitute a more general class of prime rings. In all that follows the symbol
Sa.. (R), first introduced by Oukhtite, will denote the set of symmetric and skew sym-
metric elements of R, i.e. S5, (R) ={x € R | x* = £x}.

An additive subgroup U of R is said to be a Lie ideal of R if [U, R] C U. A Lie
ideal is said to be a x-Lie ideal if U* = U. If U is a Lie (resp. *-Lie) ideal of R, then
U is called a square closed Lie (resp. *-Lie) ideal of R if x?> € U forall x € U. An
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additive mapping d : R — R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x,y € R. For a fixed a € R, the mapping I, : R — R given by I,(x) = [a, x]
is a derivation which is said to be an inner derivation. Recently, in [4], Bresar defined
the following notation. An additive mapping F' : R — R is called a generalized
derivation if there exists a derivation d : R — R such that

F(xy)=F(x)y +xd(y), forallx,y € R.

Basic examples are derivations and generalized inner derivations (i.e., maps of type
X — ax + xb for some a,b € R). One may observe that the concept of generali-
zed derivations includes the concept of derivations and of the left multipliers (i.e.,
F(xy) = F(x)y for all x,y € R). Several authors studied commutativity in prime
and semiprime rings admitting derivations and generalized derivations which satisfy
appropriate algebraic conditions on suitable subsets of the rings. Generalized deri-
vations have been primarily studied on operator algebras. Therefore any investiga-
tion from algebraic point of view might be interesting. Recently, some well-known
results concerning prime rings have been proved for x—prime ring by Oukhtite et
al. (see, [5-9], where further references can be found). In [1] the authors exp-
lored the commutativity of the ring R satisfying one of the following conditions:
(i) d(x)oF(y) =0, (i) [d(x), F(y)] = 0, (iii) d (x)oF (y) = xoy, (iv) d(x)oF (y) =
—xo0y, V) d(x)F(y)—xy € Z, Vi) d(x)F(y) +xy € Z, (vii) [d(x), F(y)] = [x, )]
and (viii) [d(x), F(y)] = —[x, y], for all x,y in some appropriate subset of the ring
R. Motivated by this fact, we extend these theorems to a nonzero square closed *—Lie
ideal U and a generalized derivation of x—prime rings.

2. PRELIMINARIES

Throughout the paper, we make some extensive use of the basic commutator iden-
tities:

[x.yz] = ylx.z] + [x.y]z

[xy.z] = [x.z]ly +x[y.z]

xo(yz) = (xoy)z—y[x.z] = y(x02) +[x.y]z

(xy)oz = x(yoz) —[x,z]y = (x02)y +x[y,z].

Moreover, we shall require the following lemmas.

Lemma 1 (Lemma 4 in [8]). Let R be a x—prime ring with characteristic not two,
U be a nonzero x—Lie ideal of R and a,b € R. If aUb = a*Ub = 0, then a = 0 or
b=0orU CZ.

Lemma 2 (Lemma 2.7 in [2]). Let R be a 2—torsion free x—prime ring and U be
a x—Lie ideal of R. If a € R such that [a,U] C Z, then either U C Z ora € Z.

The following Lemma is immediate consequence of Lemma 2.

Lemma 3. Let R be a x—prime ring with characteristic not two, U be a nonzero
x—Lie ideal of R. If[U,U] C Z, then U C Z.
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Lemma 4 (Lemma 2.4 in [6]). Let R be a 2—torsion free x—prime ring and U a
nonzero x—Lie ideal of R. If R admits nonzero derivation d which commutes with %
such thatd(U) C Z,thenU C Z.

Lemma 5 (Theorem 1.1 in [6]). Let R be a 2—torsion free *—prime ring, U a
nonzero x—Lie ideal of R. If R admits nonzero derivation d which commutes with %
such that d>(U) =0, then U C Z.

3. RESULTS

The following theorem gives a generalization of Posner’s well known result [10,
Theorem 1].

Theorem 1. Let R be a 2—torsion free x-prime ring, U a nonzero square closed
x—Lie ideal of R. If R admits derivations d1,d such that xdy, = dp* and d1dr(U) =
0, then either di =0ord, =00rU C Z.

Proof. Notice that uv +vu = (u + v)? —u2—v2, forall u,v € U. Since u2 € U for
allu e U, uv+vu € U. Also uv —vu € U, for all u,v € U. Hence, we get 2uv € U,
forallu,v e U.

Now, we have djds(u) = 0, for all u € U. Replacing u by 2uv and using R is a
2—torsion free, we have d1(dz(u)v + ud,(v)) = 0, and hence

dr(w)d1(v) +di(u)da(v) =0, forall u,v € U.
Again replace v by vd,(w),w € [U,U] to get
dl(u)vdzz(w) =0, forallu,v e U,w € [U,U].

Since U is a nonzero square closed x—Lie ideal of R, we have [U, U] is a nonzero
square closed *—Lie ideal of R, too. Hence using xd» = d»* the last equation, we
arrive at

di(w)Ud? (w) = dy(u)U * (d3(w)) =0, forallu € U,w € [U,U] N S,, (R)

By Lemma 1, we get either dy(u) = 0, for all u € U or dzz(w) = 0 for each w €
[U.U]N Sa,(R).

If di(u) =0, for all u € U, then we have d; =0 or U C Z by Lemma 4. Assume
that d?(w) = 0 for each w € [U,U]N S, (R). Let w € [U,U] as w + w*, w —w* €
[U,U]NS,, (R) and dzz(w) = (. Hence we have dzz([U, U]) =0, then we get dp =
0or [UU] S Z by Lemma 5, and so U € Z by Lemma 3. This completes the
proof. O

Theorem 2. Let R be a 2—torsion free x—prime ring, U a nonzero square closed
x—Lie ideal of R. If R admits a nonzero generalized derivation F associated with
nonzero derivation d which commutes with x such that [F(u),u] =0, for allu € U
then U C Z.
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Proof. Suppose that

[F(u),u] =0, forallu € U. 3.D
Linearizing (3.1) and using this, we obtain
[F(u),v]+[F(),u] =0, forall u,v e U. (3.2)

Replacing v by 2vu in (3.2) and using R is a 2—torsion free, we get
[F(u),vu] + [F(v)u +vd(u),u] =0.
That is
[F(u),v]u+v[F () u] + [F(v), ulu+
F)[u,u]l+v[dW),u] + [v,uld(u)
=0, forallu,v e U.
Now combining (3.1) and (3.2), using hypothesis in the last equation, we find that
v[dw),u]+ [v,uld(u) =0, forall u,v € U. (3.3)
Again replace v by 2vw in (3.3) and use (3.3), to get
[v,ulwd(u) =0, forall u,v,w € U.
and so
[v,u]Ud (u) =0, forall u,v € U. (3.4)
Since U is a nonzero x—Lie ideal of R yields that
[v,u]*Ud (u) =0, forallv e U,u e UNS,, (R).

By Lemma 1, we get either [v,u] = 0, for all v € U or d (u) = 0 for each u €
UNSg, (R).LetueU,asu+u*,u—u*eUNS,, (R)and [v,u £u*] =0, for all
veUord(u+u*)=0.Hence we have [v,u] =0 or d(u) =0, for all u,v € U. We
obtain that U is union of two additive subgroups of U such that

K={ueU|d@u)=0}

and
L={uelU|[v,ul]=0, forallve U}.

Morever, U is the set-theoretic union of K and L. But a group can not be the set-
theoretic union of two proper subgroups. Hence K = U or L = U. In the former
case, we get U C Z by Lemma 4. In the latter case, [U,U] = (0). Thatis U C Z by
Lemma 3. This completes the proof. O

Corollary 1. Let R be a 2—torsion free x—prime ring, U a nonzero square closed
x—Lie ideal of R. If R admits a nonzero derivation d which commutes with x such
that [d(u),u] =0, forallu € U thenU C Z.
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Theorem 3. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with * such that [d(u), F (v)] = 0, for all
u,v e U, thenU C Z.

Proof. We have
[d(u), F(v)] =0, forall u,v € U. 3.5
Replacing u by 2uw,w € U in (3.5) and applying (3.5), we get
2(d(w)[w, F(v)] + [u, F(v)]d(w)) =0, forall u,v,w € U.
Using the fact that R is a 2—torsion free ring, we have
dw)[w, F(v)]+ [u, F(v)][d(w) =0, forall u,v,w € U. 3.6)
Substituting d(t),t € [U, U] for w in (3.6), we get
dw)[d(t), F(v)] + [u, F(v)]d?(t) =0, forallu,v € U,t € [U,U].
Using the hypothesis, the above relation yields that
[u, F(v)]d?(t) =0, forallu,v € U,t € [U,U]. (3.7)

Now, taking 2vu instead of u in (3.7) and using this equation, charR # 2, there
by obtain
[v, F(v)]JUd?(t) =0, forallv e U,z € [U,U].

Since [U, U] is a nonzero square closed x—Lie ideal of R and *xd = d *, we find that
[v, F)]Ud?(t) = [v, F()]U * (d*()) = 0, forall v € Ut € [U,U]N Sq, (R).
By Lemma 1, we get either [v, F(v)] = 0, for all v € U, or d?(t) = 0 for each t €

[U.UINSa,(R). Lett € [U,U],ast +t*,t —t* € [U,U]N S, (R) and d?(¢) = 0.
Hence we get d2(¢) = 0, for all ¢ € [U, U]. Thus we obtain that

[v, F(v)]=0o0rd?()=0, forallv e U,t € [U,U].

In the former case, U C Z by Theorem 2. In the latter case, [U,U] C Z by Lemma
5,and so U C Z by Lemma 3. This completes the proof. O

Proceeding on the same lines with some necessary variations in the proof of The-
orem 3, we can prove the following theorem:

Theorem 4. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivations d which commutes with *
and g such that [d(u),g(v)] =0, forallu,v € U, then U C Z.

Theorem 5. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with x such that d(u)oF (v) = 0, for all
u,vel, thenU C Z.
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Proof. We have
d(u)oF(v) =0, forall u,v e U. (3.9)
Replacing u by u? in (3.8), we get
(dw)oF (v)u+d)u, F(v)]|+u(du)oF (v))—[u, F(v)]d(u) =0, forallu,ve U
and so,
dw)u, F(v)]—[u, F(v)]d(u) =0, forall u,v € U. 3.9

We can write [d(u), [u, F(v)]] =0, for all u,v € U from (3.9). This yields that
[d(u),lp(v) (u)] =0, where Ir@) : R — R, Ip@)(x) = [x, F(v)] is an inner de-
rivation of R. By Theorem 4, we get either /r,;) =0 or U C Z. In the first case,
F(U)C Z,andso [u, F(u)] =0, for all u € U. This implies that U C Z by Theorem
2. This completes the proof. (]

Theorem 6. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivations d which commutes with %
and g such that d(u)og(v) =0, forallu,v € U, then U C Z.

Proof. Using the same arguments as in the proof of Theorem 5, we get the required
result. O

Theorem 7. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with * such that [d(u), F(v)] = [u,v],
forallu,v e U, thenU C Z.

Proof. Replacing v by 2vw,w € U and using charR # 2, we have
[d(u). F(v)]w + F(v)[d(u), w]+v[d (u).d(w)] + [d (), v]d(w) — [u, v]w —v[u, v]
=0. (3.10)
Applying hypothesis, we get
F)[du),w]+v[du),d(w)]+ [d(u),v]d(w) —v[u,w] =0, forall u,v,w € U.

Writing w for d(u),u € [U, U], we obtain that D
v[du),d*w)] + [du),v]d? ) —v[u,du)] = 0. (3.12)

Taking 2vw for v and using charR # 2, (3.12), we see that
[d(u),v]Ud?*(u) =0, forallv e U,u € [U,U]. (3.13)

Since [U, U] is a nonzero square closed *—Lie ideal of R and xd = d *, we can
get [d(u),v]U * (d?(u)) =0, forall v € U,u € [U,U] NS4, (R). Hence we arrive at

[d(u),v]JUd?(u) = [d(u),v]U % (d*(u)) =0, forallv € U,u € [U,U] N Sy, (R).
(3.14)
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By Lemma 1, we get either [d(u),v] =0 or d?(u) =0, foreach u € [U,U]N S84, (R).
Letu € [U,U],asu+u*, u—u*€[U,UINS,, (R)and [d(u+u*),v]=00rd?(u+
u*) = 0. Hence we have [d(u),v] = 0 or d?(u) = 0, for all u € [U,U]. We set
K={ue[UU]|[du),v]=0, forallve U}
and
L={uecl[UU]|d?*®u)=0}.

Clearly each of K and L is additive subgroup of [U, U]. Morever, [U, U] is the set-
theoretic union of K and L. But a group can not be the set-theoretic union of two
proper subgroups, hence K = [U,U] or L = [U,U]. In the former case, we have
[d(u),u] = 0 for all u € [U,U] and so using Corollary 1, [U,U] C Z. In the second

case, we have d2([U,U]) = 0. Thatis [U,U] C Z by Lemma 5. Hence using Lemma
3, we get U C Z. This completes the proof. O

Proceeding on the same lines with some necessary variations in the proof of The-
orem 7, we can prove the following theorem which partially generalizes the result of
[3, Theorem 1].

Theorem 8. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivations d which commutes with %
and g such that [d(u),g(v)] = [u,v], forallu,v e U, then U C Z.

Theorem 9. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with x such that [d(u), F (v)] = —[u,v],
forallu,v e U, thenU C Z.

Proof. It can be proved using the techniques of Theorem 7. |

Theorem 10. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with * such that d(u)oF (v) = uov, for
allu,ve U, thenU C Z.

Proof. By the hypothesis, we have
d(u)oF (v)—uov =0, forall u,v € U. (3.15)
Replacing v by 2vw, w € U in (3.15), we get
2((d)oF (v)w — F(v)[d (u),w] + (d(u)ov)d(w) —v[d (u).d (w)]
—(uov)w +v[u,w]) =0.
Using (3.15) and charR # 2, we obtain

— F()[d(u),w]+ (d(u)ov)d(w)—v[du),d(w)]+v[u,w] =0, forall u,v,w € U.
(3.16)
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Substituting d(u),u € [U, U] for w in (3.16), we have

(dw)ov)d?(u) —v[d(u),d* )]+ v[u,d(u)] =0, foral u € [U,U],v,w € U.
(3.17)
Replacing v by 2wv,w € U in (3.17), we get
2(w(d)ov)d?u) + [d(u), wlvd*(u) —wv[d (u),d?u)] + wvlu,du)] = 0.
In the view of (3.17), the above expression yields that 2[d (1), w]vd?(u) = 0, for all
ue[U,U],v,w € U. Since charR # 2, we arrive at

[d(u), w]Ud?*u) =0, forallu € [U,U],w € U.

The proof is comleted by using the same arguments in the equation (3.13) of The-
orem 7. g

Corollary 2. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivations d which commutes with *
and g such that d(u)og(v) = uov, forallu,v € U, then U C Z.

Proof. Using the same arguments as in the proof of Theorem 10, we get
[d(u),w]Ugd(u) =0, forallu € [U,U],w € U.
Using *d = d *, we arrive at
*([d(u),w]))Ugd(u) =0, forallu € [U,U],w € U.

Arguing in the similar manner as we have done in the proof of Theorem 10, we arrive
at [d(u),u] =0or gd(u) =0, for all u € [U, U]. In the former case, we have U C Z
by Corollary 1. In the second case, using Theorem 1, we find U C Z. UJ

Theorem 11. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with x such that d(u)oF (v) = —uov, for
allu,ve U, thenU C Z.

Proof. Similarly Theorem 10. |

Theorem 12. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with * such that d(u) F (v) —uv € Z, for
allu,ve U, thenU C Z.

Proof. By the hypothesis, we have
du)F()—uv e Z, forallu,v € U. (3.18)
Replacing v by 2vw,w € U in (3.18), we get
2((dw) F(v) —uv)w +du)vd(w)) € Z, forall u,v,w € U.
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Since charR # 2, we have

(dw)F()—uv)w+du)vd(w) € Z, forall u,v,w € U. (3.19)
Commutting this term with w and using the hypothesis, we obtain
[d(u)vd(w),w] =0, forall u,v,w € U. (3.20)

Substituting 2d (u)v,u € [U, U] for v in (3.20) and using this equation, we get
[d(u),w]ld(u)Ud(w) =0, forallw € U,u € [U,U].

Since U is a nonzero square closed *—Lie ideal of R and using *d = d* in the

last equation, we arrive at
[d(u), w]ld(w)Ud(w) = [d(u), wld(u)U * (d(w)) =0,
forallu € [U,U],w e UNS,, (R).

Arguing in the similar manner as we have done in the proof of Theorem 10 after
(3.18) yields that either [d(u), w]d(u) = 0 or d(w) = 0, for each w € U,u € [U,U].

Now, we assume that [d(u), w]d(u) = 0, for all w € U,u € [U,U]. Replacing w
by 2wv,v € U in this equation and using this, we have

[d(u), w]vd(u) =0, forallu € [U,U],w,v € U.

Again using [U, U] is a nonzero square closed x—Lie ideal of R and *d = d* in the
last equation, we get

[d(u), wlvd(u) = [d(u),w]v*(d(u)) =0, forallu € U,w,v € [U,U].

An application of similar techniques as used in the proof of Theorem 10, we obtain
that U C Z. 0

Corollary 3. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivation d which commutes with %
such that d(u)d(v) —uv € Z, forallu,v € U, then U C Z.

Theorem 13. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits a nonzero generalized derivation F associated
with nonzero derivation d which commutes with * such that d(u) F (v) +uv € Z, for
allu,ve U, thenU C Z.

Proof. Similarly. (|

Corollary 4. Let R be a 2—torsion free x—prime ring and U a nonzero square
closed x—Lie ideal of R. If R admits nonzero derivation d which commutes with %
such that d(u)d(v) +uv € Z, forallu,v € U, then U C Z.

The following example demonstrates that the above results are not true in the case
of arbitrary rings.

Example 14. Let / be the ring of integers. Set R = {( g Z; ) |a,b,c € I}
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00 0 c

c —b a b a 2b a b 0 b .
(0 4 )’F(O c):(O 0 )’d(O c)=(0 0). Then it is
easy to see that U is a nonzero square closed x—Lie ideal of R and F is a gene-
ralized derivation associated with a nonzero derivation d commuting with *. More-
over, it is straightforward to check that F satisfies the properties: 1) [F(u),u] =0,
2) [d(u), F(v)] =0, 3)d(u)oF(v) =0,4) [du), F(v)] = £[u,v], 5) d(u)oF (v) =
Fuov, 6) d(u)F(v) £uv € Z, for all u,v € U. However, U € Z(R).

andU:{(O b) | bel%. We define the following maps: *(a b):
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