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Abstract. In this paper, we define Mannheim partner curves in a three dimensional Lie group
G with a bi-invariant metric. The main result of the paper is given as (Theorem 4): A curve
a : I C R —G with the Frenet apparatus {7, N, B,«, t} is a Mannheim partner curve if and only
if

ae (14 H?) =1
where A, u are constants and H is the harmonic curvature function of the curve .
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1. INTRODUCTION

In the classical diferential geometry of curves, J. Bertrand studied curves in Euc-
lidean 3-space whose principal normals are the principal normals of another curve.
In [1] he showed that a necessary and sufficient condition for the existence of such a
second curve is that a linear relationship with constant coefficients shall exist between
the first and second curvatures of the given original curve. In other word, if we denote
first and second curvatures of a given curve by ky and k; respectively, then for A,
€ R we have Ak + wk, = 1. Since the time of Bertrand’s paper, pairs of curves of
this kind have been called Conjugate Bertrand Curves, or more commonly Bertrand
Curves (see [10]).

Another kind of associated curve whose principal normal vector field is the binor-
mal vector field of another curve is called Mannheim curve. Mannheim partner
curves was studied by Liu and Wang (see [12]) in Euclidean 3— space and in the
Minkowski 3—space. After these papers lots of papers have been published about
Mannheim curves in Euclidean 3—space, Minkowski 3—space, dual 3—space and
Galilean spaces (see [7,9, 15, 17, 18]). Matsuda and Yorozu [13] gave a definition of
generalized Mannheim curve in Euclidean 4—space. They show some characteriza-
tions and examples of generalized Mannheim curves. Ersoy et.al. gave a definition
of generalized Mannheim curve in Minkowski 4—space.
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The degenarete semi-Riemannian geometry of Lie group is studied by Coken
and Ciftci [4]. Moreover, they obtanied a naturally reductive homogeneous semi-
Riemannian space using the Lie group. Then Cift¢i [3] defined general helices in
three dimensional Lie groups with a bi-invariant metric and obtained a generaliza-
tion of Lancret’s theorem and gave a relation between the geodesics of the so-called
cylinders and general helices.

Recently, Izumiya and Takeuchi [8] have introduced the concept of slant helix in
Euclidean 3-space. A slant helix in Euclidean space [E3 was defined by the property
that its principal normal vector field makes a constant angle with a fixed direction.
Also, Izumiya and Takeuchi showed that « is a slant helix if and only if the geodesic
curvature of spherical image of principal normal indicatrix (V) of a space curve «

K2

T /
N )= (m (%) ) )

is a constant function.

Harmonic curvature functions have been defined by Ozdamar and Hacisalihoglu
[16]. Recently, many studies have been reported on generalized helices and slant
helices using the harmonic curvatures in Euclidean spaces and Minkowski spaces
[2,6,11]. Then, Okuyucu et al. [14] have defined slant helices in three dimensional
Lie groups with a bi-invariant metric and obtained some characterizations using their
harmonic curvature functions.

In this paper, first of all, we define Mannheim partner curves in a three dimensional
Lie group G with a bi-invariant metric and we obtain the necessary and sufficient
conditions for the Mannheim partner curves in a three dimensional Lie group G.

2. PRELIMINARIES

Let G be a Lie group with a bi-invariant metric (,) and D be the Levi-Civita
connection of Lie group G. If g denotes the Lie algebra of G then we know that g is
issomorphic to T, G where e is neutral element of G. If (,) is a bi-invariant metric
on G then we have

(X,[Yv.Z]) =([X.Y].Z) 2.1
and

1
DxY = E[X’Y] (2.2)

forall X,Y and Z € g.

Let o : I C R —G be an arc-lenghted regular curve and {X1,X>. ..., X, } be an
orthonormal basis of g. In this case, we write that any two vector fields W and Z
along the curve o as W = > /_ w; X; and Z = Y !, z; X; where w; : I — R and
zi - I — R are smooth functions. Also the Lie bracket of two vector fields W and Z
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is given by

n
W.21 = wizi[Xi. X;]
i=1
and the covariant derivative of W along the curve o with the notation D /W is given
as follows

S
Dy W =W+ [T.W] (2.3)

where T = o' and W =>7, w; X; or W = Z??l ‘fi—'fX,'. Note that if W is the

left-invariant vector field along to the curve o then W = 0 (see for details [5]).
Let G be a three dimensional Lie group and (7, N, B, «, t) denote the Frenet ap-
paratus of the curve . Then the Serret-Frenet formulas of the curve o satisfies:

DrT =«kN, DrN=—«T+tB, DrB=—N

where D is Levi-Civita connection of Lie group G and x = ||T'||.

Definition 1. Let o : I C R —G be a parametrized curve. Then « is called a
general helix if it makes a constant angle with a left-invariant vector field X. That is,
(T'(s),X)=cosf forall s € I,
for the left-invariant vector field X € g is unit length and 6 is a constant angle between

X and T', which is the tangent vector field of the curve o (see [3]).

Definition 2. Let« : I C R —G be a parametrized curve with the Frenet apparatus
(T,N, B,k,7) then

1
WG =3 ([T,N],B) (2.4)
or
_ 1 . . 1 * 2
w6 = 55 (TIL.T) + ;5 |IT.7]
(see [3)]).

Proposition 1. Let @ : I C R —G be an arc length parametrized curve with the
Frenet apparatus {T, N, B}. Then the following equalities

[T,N]=([T.N].B)B =2tGB
[T.B] = ([T.B].N)N = —2tgN
hold [14].

Definition 3. Let & : I C R —G be an arc length parametrized curve. Then « is
called a slant helix if its principal normal vector field makes a constant angle with a
left-invariant vector field X which is unit length. That is,

(N(s),X) =cosf forall s € I,
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where 6 # 7 is a constant angle between X and N which is the principal normal
vector field of the curve o (see [14]).

Definition 4. Let « : / C R —G be an arc length parametrized curve with the
Frenet apparatus {7, N, B,«,t}. Then the harmonic curvature function of the curve

o is defined by
T—1¢G

H =
K

where g = %([T,N],B) (see [14]).

Theorem 1. Let « : I C R —G be a parametrized curve with the Frenet apparatus
(T,N, B,k,t). The curve « is a general helix, if and only if,
T =cCK+ 16
where ¢ is a constant (see [3]) or using the definition of the harmonic curvature

function of the curve o (see [14]) H is a constant function.

Theorem 2. Let « : [ C R—G be a unit speed curve with the Frenet apparatus
(T,N,B,k,t). Then « is a slant helix if and only if

3

k(14 H?)2

- H

is a constant where H is a harmonic curvature function of the curve o and 0 #* % is
a constant (see [14]).

ON =tanf

3. MANNHEIM PARTNER CURVES IN A THREE DIMENSIONAL LIE GROUPS

In this section, we define Mannheim partner curves and their characterizations are
given in a three dimensional Lie group G with a bi-invariant metric (,). Also we
give some characterizations of Mannheim partner curves using the special cases of
G.

Definition 5. A curve « in 3-dimensional Lie group G is a Mannheim curve if
there exists a special curve 8 in 3-dimensional Lie group G such that principal normal
vector field of « is linearly dependent binormal vector field of B at corresponding
point under v which is bijection from « to 8. In this case f is called the Mannheim
partner curve of o and («, B) is called Mannheim curve couple.

The curve o : I C R —G in 3-dimensional Lie group G is parametrized by the
arc-length parameter s and from the Definition 5 Mannheim mate curve of « is given
B : 1 C R —G in 3-dimensional Lie group G with the help of Figure 1 such that

BG)=a@)+A)N(s), sel

where A is a smooth function on / and N is the principal normal vector field of «.
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cxls)

FIGURE 1. Mannheim Partner Curves

Theorem 3. Leta: I C R —G and B : I C R —G be a Mannheim curve couple
with arc-length parameter s and s, respectively. Then corresponding points are a
fixed distance apart for all s € I, that is,

d(a(s),B(s)) = constant, forall s € I. (3.1)
Proof. From Definition 5, we can simply write
B(s) =als)+A(s)N(s) (3.2)
Differentiating Eq. (3.2) with respect to s and using Eq. (2.3), we get
dp(s)ds _ da(s)
ds ds ds
=T (s)+ A (s)N (s)+A(s) |:DTN - % [T, N]]

F A (5)N (5) + A(5)N (s)

and with the help of Proposition 1 and Frenet equations, we obtain

dp(s)ds
fig) = (U=AOKENTE+V N () +A(6) (1=76) (5) B s)

hence

Tg(5) = % [(1 AT (s)+ A ()N () +A(s)(r—16)(s)B (s)] . (33)
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And then, we know that {N (s), Bg (5)} is a linearly dependent set, so we have

Ty ). By ) = & [ (1=2(5)K () (T(5). Bg (5)) + X (5) (N(s). B (5)) }

T ds +A(s) (t —16) (5)(B(s), B ((5)))
hence
AM(s)=0
that is, A (s) is constant function on /. This completes the proof. O

Theorem 4. Let o : I C R —>G be a parametrized curve with arc length para-
meter s and the Frenet apparatus (T, N, B,k,t). Then, a is Mannheim curve if and

only if
Mc(1+H?) =1, foralls € I (3.4)

where A is constant and H is the harmonic curvature function of the curve «.

Proof. Let a : I C R—G be a parametrized Mannheim curve with arc length
parameter s then we can write

B(s) =a(s)+ AN (s)

Differentiating the above equality with respect to s and by using the Frenet equations,
we get

PO (1 DT+ A (= 10) B S).
On the other hand, we have
dB d d
7@ =L L =11 T 0+ A~ 16) B T

By taking the derivative of this equation with respect to s and using the Frenet equa-
tions we obtain
dT, d : ds\?
—_B = —A—KT(S) + (/{ — A=A (r— Tg)z) N(@s)+A(t—16) B(s) —i
ds ds ds
d?s
+[(1=2Ak ()T () + A (r —76) ($)B ()] 2
From this equation we get

(K—)LKZ —)L(t—f(;)z) =0,

Ak (1+H?) =1.

Conversely, if Ak (1 +H 2) = 1 then we can easily see that « is a Mannheim curve.
This completes the proof. t
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Corollary 1. If G is Abelian Lie group then tg = 0. And so, ifa : Il CR —G isa
parametrized Mannheim curve with arc length parameter s and the Frenet apparatus
(T,N, B,k,7) in Abelian Lie group G. Then, a satisfy the following equality

Ak*+7%) =k

Proof. If G is Abelian Lie group then using the tg = 0 and Theorem 4 we have
the result. n

So, the above Corollary shows that the study is a generalization of Mannheim
curves defined by Liu and Wang [12] in Euclidean 3-space.

Theorem 5. Let o : I C R —>G be a parametrized curve with arc length para-
meter s. Then B is the Mannheim partner curve of a if and only if the curvature kg
and the torsion tg of B satisfy the following equation

dkgHp _ kp 2,2 752
—— =1 H
5 P (I+u“kgHp)
where u is constant and Hg is the harmonic curvature function of the curve .

Proof. Let « : I C R—G be a parametrized Mannheim curve with arc length
parameter s then we can write

a(5)=pB)+u@)Bg ()

for some function w (5). By taking the derivative of this equation with respect to s
and using the Frenet equations we obtain

d ,
T2 =Ty ®)+ 1 6) By 5) = 1) (15— 76,) ) Np )
hence
d _ o du(s _ _ _
Td—; = T5(5) + %S)Bﬁ (5)— 1 (5) kg HgNg (5)

where Hg is the harmonic curvature function of the curve 8. And then, we know that
{N (s).Bg (E)} is a linearly dependent set, so we have

dp(s)
=0.
ds
This means that u (5) is a constant function. Thus we have
ds _ _
T%=T/3—,u(s)KﬂH,3Nﬂ (s). (3.5

On the other hand, we have

T = Tgcost) + Ngsinf (3.6)
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where 0 is the angle between T and T at the corresponding points of the curves o
and 8. By taking the derivative of this equation with respect to 5 and using the Frenet
equations we obtain

N _ DN im0ty + (5 + 99 ) cos 6N + 5 Hg sin 6B
K dg_ Kﬂ dE Sin ﬂ Kﬂ dE COS B Kﬂ ﬂSln /3

From this equation and since {N (s),Bg (E)} is a linearly dependent set, we get
(KB + %) sind =0
(Kﬂ + %) cos = 0.

For this reason we have

do 3.7)
— = —kg. .
s~ P
From Eq. (3.5), Eq. (3.6) and notice that Tg is orthogonal to Bg, we find that
ds 1 ukgHpg
ds cos®  sinf

Then we have
ukgHg = —tan6.
By taking the derivative of this equation and applying Eq. (3.7), we get

drgHp 2.2 172
that is
degHpg kg 2.2 172

Conversely, if the curvature kg and torsion 7g of the curve f in three dimensional
Lie group G satisfy
degHpg g 2,272
=P =S (14 p2G )
s (1+ 123
for constant u (5), then we define a curve by

a(5) =B (5)+uBg(s) (3.8)

and we will show that {o, 8} is Mannheim curve couple in three dimensional Lie
group G. By taking the derivative of Eq. (3.8) with respect to § twice, we get
ds
TF:Tﬂ—;LKBHﬁNﬂ, (3.9)
s

oN [ Z 2+T—S— GHaTs+ (15— 0 B8\ Ny 2 H2B,. (3.10)
ds R N VT R A
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respectively. Taking the cross product of Eq. (3.9) with Eq. (3.10) and noticing that
dkgHg

Kg— W1 75 +/L2K2H§
we have s
ds
kB (%) = kg HyTp + g Hy Ng. (3.11)

By taking the cross product of Eq. (3.9) with Eq. (3.11), we get
N ds 4_ 212 (4 222\ g
This means that the principal normal vector field of the curve o and binormal vector

field of the curve 8 are linearly dependent set. And so « is a Mannheim curve and
is Mannheim partner curve of the curve « in three dimensional Lie group G. U

Proposition 2. Let « : I C R —G be an arc-lenghted Mannheim curve with the
Frenet vector fields {T,N,B} and B : I C R—G be a Mannheim mate of a with
the Frenet vector fields {Tﬁ,NB,B/;} . Then tg = TGy for the curves o and 8 where

16 = 3 ([T.N],B) and 1g,, = 1([Ts.Ng]. Bg).
Proof. Let (o, B) be a Mannheim curve couple. From Eq. (3.3) we have
_ ds
Tg () =[1=Ac (ST () + A (1 —76) () B ()] -

We take the norm of this equation and by using Eq. (3.4), we obtain

Qz)ucH\/l—i—Hz.
s

d
If we consider with together the last two equations, we get
H 1
Tg(5) = ——=T(5) + —=B(). (3.12)
P V1+H? V1+H?

Since (a, B) is a Mannheim curve couple we know Bg(s) = N(s). Then,

Ng(s) = Bg(s) x Tg(s)

1 H
—T(s) — ——=B(s).
1+ H? ( 1+ H? )
We know from Definition 2 ([Tﬂ,N 3] , Bﬂ) = 2‘CGB for the curve 8. Then with the
help of above equations for T (5), Ng (5) and Bg(s), we obtain

<|: " T+ ! B ! T(S)_LB(S)] N>—21:
V1+H? 1+ H? ’\/1_’_1_]2 m ) = 41Gg>

2
1
T’N,B T,N,B =2 .
3 (TN]B) + 55 (IT.N). B) = 216,

Ng(s) =
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Using the last equation of Proposition 1, we get
G = TGg.
This completes the proof. O

Theorem 6. Let«: I C R —G be a parametrized Mannheim curve with curvature
functions k, T and  : I C R —G be a Mannheim mate of o with curvatures functions
kg, tg. Then the relations between these curvature functions are

H' (s)
Me(s)H (s) (1+ H2(s))*

kg (5) =

_ 1
8 (5) = 1H (5) + TGg.

Proof. If we differentiate Eq. (3.12) and using the Frenet formulas, we have

’

s H
(1+H?)
If we take the norm of the last equation, we get
H/
K 377

ﬂ =

AcH (14 H?)
Since {a, B} is a Mannheim curve couple, we know Bg = N. If we differentiate this
equation and using the Frenet formulas, we have

—(tp—16,) NgAHV1+ H? = -T + HB.
If we take the norm of the last equation, we get

1
'L'ﬁ :m—i-TGB.

This completes the proof. g

Theorem 7. Let « : I C R —G be an arc-lenghted Mannheim curve and B : 1 C
R —G be a Mannheim mate of «. The Mannheim curve « is a slant helix if and only
if its Mannheim mate B is a general helix.

Proof. If Mannheim curve « is a slant helix, then using Theorem 2 we have, ox
is a constant function. From Theorem 6 for the curve 8, we have

1
B~ 1Gg 1H
- ’

Kg _H

AcH (1+H2)?

wp—16, «(1+H?)?

KB H’
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T8 — TG4
kg
So, the curve 8 which is Mannheim mate of « is a general helix.

Conversely, we assume that 8, which is Mannheim mate of «, is a general helix.
So we have

= gy = constant.

T8 — TGy

kp
From the last equation and Theorem 6 we can easily see that o is a constant func-
tion. This completes the proof. O

= constant.

Theorem 8. Let o : I C R —G be an arc-lenghted Mannheim curve and B : 1 C
R —G be a Mannheim mate of «. If « is a slant helix then the harmonic curvature
Sfunction of the curve a: H(s) is

H(s) = % (aebs - ale—’”) (3.13)

for some nonzero constant a and b and s is the arc length parameter of the curve «.
If we consider a = b = 1, we have the harmonic curvature funtion of the curve o is
hyperbolic sine function in arc length s, that is, H(s) = sinhs.

Proof. Leta : I C R —G be an arc-lenghted Mannheim curve with Frenet appar-
atus {T, N, B,x,t} in three dimensional Lie group G. Since the curve « is a slant
helix, we have

(N, X) = cosf, 0 # % (3.14)
for left invariant vector field X. Differentiating Eq. (3.14) twice, we have
—k (T, X)+(t—16)(B,X)=0 (3.15)

and
— (T.X) + (1 =16) (B.X) = {k? + (r=16)”| (V. X).
Since « is a Mannheim curve using Theorem 4, we rewrite the last equation

(T, XY+ (t—16) (B, X) = f—\cos@ (3.16)

where A is a non-zero constant. By a direct calculation using Eq. (3.15) and Eq.
(3.16), we obtain

H
(T,X) = Wcos@ (3.17)

and I
(B,X) = Wcos@. (3.18)

Differentiating Eq. (3.17) and Eq. (3.18), we have

e L HH”
A (H/)Z ’
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4

H
T—16 = ——,
A (H/)Z
respectively. These equations give that
TG H"
K (H/)Z _ HH// '

Then we have the following differential equation
7 4 2
(1+H)H ~(H) =0.
Solving the last equation, we obtain Eq. (3.13). This completes the proof. U

Theorem 9. Let («,B) be a Mannheim curve couple in three dimensional Lie
group G with bi-invariant metric. Then « is general helix if and only if B is a
geodesic.

Proof. If Mannheim curve « is a general helix, then its harmonic curvature H is
constant function. And so from Theorem 6,

kg =0.
So, the curve B is a geodesic.
Conversely we assume that § is a geodesic curve. From Theorem 6 we can easily
see that
H (s)=0
and so
H (s) = constant.

This completes the proof. U
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