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Abstract. In this paper, we define Mannheim partner curves in a three dimensional Lie group
G with a bi-invariant metric. The main result of the paper is given as (Theorem 4): A curve
˛ W I � R!G with the Frenet apparatus fT;N;B;�;�g is a Mannheim partner curve if and only
if

��
�
1CH2

�
D 1

where �, � are constants and H is the harmonic curvature function of the curve ˛:
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1. INTRODUCTION

In the classical diferential geometry of curves, J. Bertrand studied curves in Euc-
lidean 3-space whose principal normals are the principal normals of another curve.
In [1] he showed that a necessary and sufficient condition for the existence of such a
second curve is that a linear relationship with constant coefficients shall exist between
the first and second curvatures of the given original curve. In other word, if we denote
first and second curvatures of a given curve by k1 and k2 respectively, then for �;�
2 R we have �k1C�k2 D 1. Since the time of Bertrand’s paper, pairs of curves of
this kind have been called Conjugate Bertrand Curves, or more commonly Bertrand
Curves (see [10]):

Another kind of associated curve whose principal normal vector field is the binor-
mal vector field of another curve is called Mannheim curve. Mannheim partner
curves was studied by Liu and Wang (see [12]) in Euclidean 3� space and in the
Minkowski 3�space. After these papers lots of papers have been published about
Mannheim curves in Euclidean 3�space, Minkowski 3�space, dual 3�space and
Galilean spaces (see [7, 9, 15, 17, 18]). Matsuda and Yorozu [13] gave a definition of
generalized Mannheim curve in Euclidean 4�space. They show some characteriza-
tions and examples of generalized Mannheim curves. Ersoy et.al. gave a definition
of generalized Mannheim curve in Minkowski 4�space.

c
 2014 Miskolc University Press
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The degenarete semi-Riemannian geometry of Lie group is studied by Çöken
and Çiftçi [4]. Moreover, they obtanied a naturally reductive homogeneous semi-
Riemannian space using the Lie group. Then Çiftçi [3] defined general helices in
three dimensional Lie groups with a bi-invariant metric and obtained a generaliza-
tion of Lancret’s theorem and gave a relation between the geodesics of the so-called
cylinders and general helices.

Recently, Izumiya and Takeuchi [8] have introduced the concept of slant helix in
Euclidean 3-space. A slant helix in Euclidean space E3 was defined by the property
that its principal normal vector field makes a constant angle with a fixed direction.
Also, Izumiya and Takeuchi showed that ˛ is a slant helix if and only if the geodesic
curvature of spherical image of principal normal indicatrix .N / of a space curve ˛

�N .s/D

 
�2�

�2C �2
�3=2 ��� �0

!
.s/

is a constant function.
Harmonic curvature functions have been defined by Özdamar and Hacısalihoğlu

[16]. Recently, many studies have been reported on generalized helices and slant
helices using the harmonic curvatures in Euclidean spaces and Minkowski spaces
[2, 6, 11]. Then, Okuyucu et al. [14] have defined slant helices in three dimensional
Lie groups with a bi-invariant metric and obtained some characterizations using their
harmonic curvature functions.

In this paper, first of all, we define Mannheim partner curves in a three dimensional
Lie group G with a bi-invariant metric and we obtain the necessary and sufficient
conditions for the Mannheim partner curves in a three dimensional Lie group G:

2. PRELIMINARIES

Let G be a Lie group with a bi-invariant metric h ;i and D be the Levi-Civita
connection of Lie group G: If g denotes the Lie algebra of G then we know that g is
issomorphic to TeG where e is neutral element of G: If h ;i is a bi-invariant metric
on G then we have

hX;ŒY;Z�i D hŒX;Y � ;Zi (2.1)

and

DXY D
1

2
ŒX;Y � (2.2)

for all X;Y and Z 2 g:
Let ˛ W I � R!G be an arc-lenghted regular curve and fX1;X2;:::;Xng be an

orthonormal basis of g: In this case, we write that any two vector fields W and Z
along the curve ˛ as W D

Pn
iD1wiXi and Z D

Pn
iD1´iXi where wi W I ! R and

´i W I ! R are smooth functions. Also the Lie bracket of two vector fields W and Z
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is given by

ŒW;Z�D

nX
iD1

wi´i
�
Xi ;Xj

�
and the covariant derivative ofW along the curve ˛ with the notationD˛0W is given
as follows

D˛0W D
�

W C
1

2
ŒT;W � (2.3)

where T D ˛0 and
�

W D
Pn
iD1

�
wiXi or

�

W D
Pn
iD1

dw
dt
Xi : Note that if W is the

left-invariant vector field along to the curve ˛ then
�

W D 0 (see for details [5]).
Let G be a three dimensional Lie group and .T;N;B;�;�/ denote the Frenet ap-

paratus of the curve ˛. Then the Serret-Frenet formulas of the curve ˛ satisfies:

DT T D �N , DTN D��T C �B , DTB D��N

where D is Levi-Civita connection of Lie group G and � D
�

kT k:

Definition 1. Let ˛ W I � R!G be a parametrized curve. Then ˛ is called a
general helix if it makes a constant angle with a left-invariant vector field X . That is,

hT .s/;Xi D cos� for all s 2 I;

for the left-invariant vector fieldX 2g is unit length and � is a constant angle between
X and T , which is the tangent vector field of the curve ˛ (see [3]).

Definition 2. Let ˛ W I �R!G be a parametrized curve with the Frenet apparatus
.T;N;B;�;�/ then

�G D
1

2
hŒT;N � ;Bi (2.4)

or

�G D
1

2�2�

�� �

hT; ŒT;T �iC
1

4�2�

�

kŒT;T �k2

(see [3]).

Proposition 1. Let ˛ W I � R!G be an arc length parametrized curve with the
Frenet apparatus fT;N;Bg. Then the following equalities

ŒT;N �D hŒT;N � ;BiB D 2�GB

ŒT;B�D hŒT;B� ;N iN D�2�GN

hold [14].

Definition 3. Let ˛ W I � R!G be an arc length parametrized curve. Then ˛ is
called a slant helix if its principal normal vector field makes a constant angle with a
left-invariant vector field X which is unit length. That is,

hN.s/;Xi D cos� for all s 2 I;
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where � ¤ �
2

is a constant angle between X and N which is the principal normal
vector field of the curve ˛ (see [14]).

Definition 4. Let ˛ W I � R!G be an arc length parametrized curve with the
Frenet apparatus fT;N;B;�;�g : Then the harmonic curvature function of the curve
˛ is defined by

H D
� � �G

�

where �G D 1
2 hŒT;N � ;Bi (see [14]):

Theorem 1. Let ˛ W I �R!G be a parametrized curve with the Frenet apparatus
.T;N;B;�;�/. The curve ˛ is a general helix, if and only if,

� D c�C �G

where c is a constant (see [3]) or using the definition of the harmonic curvature
function of the curve ˛ (see [14]) H is a constant function.

Theorem 2. Let ˛ W I � R!G be a unit speed curve with the Frenet apparatus
.T;N;B;�;�/. Then ˛ is a slant helix if and only if

�N D
�.1CH 2/

3
2

H
0 D tan�

is a constant where H is a harmonic curvature function of the curve ˛ and � ¤ �
2

is
a constant (see [14]).

3. MANNHEIM PARTNER CURVES IN A THREE DIMENSIONAL LIE GROUPS

In this section, we define Mannheim partner curves and their characterizations are
given in a three dimensional Lie group G with a bi-invariant metric h ;i. Also we
give some characterizations of Mannheim partner curves using the special cases of
G.

Definition 5. A curve ˛ in 3-dimensional Lie group G is a Mannheim curve if
there exists a special curve ˇ in 3-dimensional Lie groupG such that principal normal
vector field of ˛ is linearly dependent binormal vector field of ˇ at corresponding
point under  which is bijection from ˛ to ˇ: In this case ˇ is called the Mannheim
partner curve of ˛ and .˛;ˇ/ is called Mannheim curve couple.

The curve ˛ W I � R!G in 3-dimensional Lie group G is parametrized by the
arc-length parameter s and from the Definition 5 Mannheim mate curve of ˛ is given
ˇ W I � R!G in 3-dimensional Lie group G with the help of Figure 1 such that

ˇ .s/D ˛ .s/C�.s/N .s/ ; s 2 I

where � is a smooth function on I and N is the principal normal vector field of ˛.
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FIGURE 1. Mannheim Partner Curves

Theorem 3. Let ˛ W I � R!G and ˇ W I � R!G be a Mannheim curve couple
with arc-length parameter s and s; respectively. Then corresponding points are a
fixed distance apart for all s 2 I , that is,

d .˛ .s/ ;ˇ .s//D constant, for all s 2 I: (3.1)

Proof. From Definition 5, we can simply write

ˇ .s/D ˛ .s/C�.s/N .s/ (3.2)

Differentiating Eq. (3.2) with respect to s and using Eq. (2.3), we get

dˇ .s/

ds

ds

ds
D
d˛ .s/

ds
C�0 .s/N .s/C�.s/

�

N.s/

D T .s/C�0 .s/N .s/C�.s/

�
DTN �

1

2
ŒT;N �

�
and with the help of Proposition 1 and Frenet equations, we obtain

dˇ .s/

ds

ds

ds
D .1��.s/� .s//T .s/C�0 .s/N .s/C�.s/..� � �G/.s//B .s/

hence

Tˇ .s/D
ds

ds

�
.1��.s/� .s//T .s/C�0 .s/N .s/C�.s/.� � �G/.s/B .s/

�
: (3.3)
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And then, we know that
˚
N .s/ ;Bˇ .s/

	
is a linearly dependent set, so we have˝

Tˇ .s/ ;Bˇ .s/
˛
D
ds

ds

�
.1��.s/� .s//

˝
T .s/;Bˇ .s/

˛
C�0 .s/

˝
N.s/;Bˇ .s/

˛
C�.s/.� � �G/.s/

˝
B.s/;Bˇ ..s//

˛ �
hence

�0 .s/D 0

that is, �.s/ is constant function on I: This completes the proof. �

Theorem 4. Let ˛ W I � R!G be a parametrized curve with arc length para-
meter s and the Frenet apparatus .T;N;B;�;�/. Then, ˛ is Mannheim curve if and
only if

��
�
1CH 2

�
D 1; for all s 2 I (3.4)

where � is constant and H is the harmonic curvature function of the curve ˛:

Proof. Let ˛ W I � R!G be a parametrized Mannheim curve with arc length
parameter s then we can write

ˇ .s/D ˛ .s/C�N .s/

Differentiating the above equality with respect to s and by using the Frenet equations,
we get

dˇ .s/

ds
D .1��� .s//T .s/C�.� � �G/.s/B .s/ :

On the other hand, we have

Tˇ .s/D
dˇ

ds

ds

ds
D Œ.1��� .s//T .s/C�.� � �G/.s/B .s/�

ds

ds
:

By taking the derivative of this equation with respect to s and using the Frenet equa-
tions we obtain

dTˇ

ds
D

�
��

d�

ds
T .s/C

�
����2��.� � �G/

2
�
N.s/C�.� � �G/

0

B.s/

��
ds

ds

�2
C Œ.1��� .s//T .s/C�.� � �G/.s/B .s/�

d2s

ds2

From this equation we get �
����2��.� � �G/

2
�
D 0;

��
�
1CH 2

�
D 1:

Conversely, if ��
�
1CH 2

�
D 1 then we can easily see that ˛ is a Mannheim curve.

This completes the proof. �
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Corollary 1. IfG is Abelian Lie group then �G D 0: And so, if ˛ W I � R!G is a
parametrized Mannheim curve with arc length parameter s and the Frenet apparatus
.T;N;B;�;�/ in Abelian Lie group G. Then, ˛ satisfy the following equality

�
�
�2C �2

�
D �

Proof. If G is Abelian Lie group then using the �G D 0 and Theorem 4 we have
the result. �

So, the above Corollary shows that the study is a generalization of Mannheim
curves defined by Liu and Wang [12] in Euclidean 3-space.

Theorem 5. Let ˛ W I � R!G be a parametrized curve with arc length para-
meter s. Then ˇ is the Mannheim partner curve of ˛ if and only if the curvature �ˇ
and the torsion �ˇ of ˇ satisfy the following equation

d�ˇHˇ

ds
D
�ˇ

�
.1C�2�2ˇH

2
ˇ /

where � is constant and Hˇ is the harmonic curvature function of the curve ˇ:

Proof. Let ˛ W I � R!G be a parametrized Mannheim curve with arc length
parameter s then we can write

˛ .s/D ˇ .s/C�.s/Bˇ .s/

for some function �.s/. By taking the derivative of this equation with respect to s
and using the Frenet equations we obtain

T
ds

ds
D Tˇ .s/C�

0

.s/Bˇ .s/��.s/
�
�ˇ � �Gˇ

�
.s/Nˇ .s/

hence

T
ds

ds
D Tˇ .s/C

d�.s/

ds
Bˇ .s/��.s/�ˇHˇNˇ .s/

whereHˇ is the harmonic curvature function of the curve ˇ: And then, we know that˚
N .s/ ;Bˇ .s/

	
is a linearly dependent set, so we have

d�.s/

ds
D 0:

This means that �.s/ is a constant function. Thus we have

T
ds

ds
D Tˇ ��.s/�ˇHˇNˇ .s/ : (3.5)

On the other hand, we have

T D Tˇ cos�CNˇ sin� (3.6)
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where � is the angle between T and Tˇ at the corresponding points of the curves ˛
and ˇ: By taking the derivative of this equation with respect to s and using the Frenet
equations we obtain

�N
ds

ds
D�

�
�ˇ C

d�

ds

�
sin�Tˇ C

�
�ˇ C

d�

ds

�
cos�Nˇ C�ˇHˇ sin�Bˇ :

From this equation and since
˚
N .s/ ;Bˇ .s/

	
is a linearly dependent set, we get8<:

�
�ˇ C

d�
ds

�
sin� D 0�

�ˇ C
d�
ds

�
cos� D 0:

For this reason we have
d�

ds
D��ˇ : (3.7)

From Eq. (3.5), Eq. (3.6) and notice that Tˇ is orthogonal to Bˇ , we find that

ds

ds
D

1

cos�
D�

��ˇHˇ

sin�
:

Then we have
��ˇHˇ D� tan�:

By taking the derivative of this equation and applying Eq. (3.7), we get

�
d�ˇHˇ

ds
D �ˇ

�
1C�2�2ˇH

2
ˇ

�
that is

d�ˇHˇ

ds
D
�ˇ

�

�
1C�2�2ˇH

2
ˇ

�
:

Conversely, if the curvature �ˇ and torsion �ˇ of the curve ˇ in three dimensional
Lie group G satisfy

d�ˇHˇ

ds
D
�ˇ

�

�
1C�2�2ˇH

2
ˇ

�
for constant �.s/ ; then we define a curve by

˛ .s/D ˇ .s/C�Bˇ .s/ (3.8)

and we will show that f˛;ˇg is Mannheim curve couple in three dimensional Lie
group G. By taking the derivative of Eq. (3.8) with respect to s twice, we get

T
ds

ds
D Tˇ ���ˇHˇNˇ ; (3.9)

�N

�
ds

ds

�2
CT

d2s

ds2
D ��2ˇHˇTˇ C

�
�ˇ ��

d�ˇHˇ

ds

�
Nˇ ���

2
ˇH

2
ˇBˇ ; (3.10)
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respectively. Taking the cross product of Eq. (3.9) with Eq. (3.10) and noticing that

�ˇ ��
d�ˇHˇ

ds
C�2�3ˇH

2
ˇ

we have

�B

�
ds

ds

�3
D �2�3ˇH

3
ˇTˇ C��

2
ˇH

2
ˇNˇ : (3.11)

By taking the cross product of Eq. (3.9) with Eq. (3.11), we get

�N

�
ds

ds

�4
D���2ˇH

2
ˇ

�
1C�2�2ˇH

2
ˇ

�
Bˇ :

This means that the principal normal vector field of the curve ˛ and binormal vector
field of the curve ˇ are linearly dependent set. And so ˛ is a Mannheim curve and ˇ
is Mannheim partner curve of the curve ˛ in three dimensional Lie group G: �

Proposition 2. Let ˛ W I � R!G be an arc-lenghted Mannheim curve with the
Frenet vector fields fT;N;Bg and ˇ W I � R!G be a Mannheim mate of ˛ with
the Frenet vector fields

˚
Tˇ ;Nˇ ;Bˇ

	
: Then �G D �Gˇ for the curves ˛ and ˇ where

�G D
1
2 hŒT;N � ;Bi and �Gˇ D

1
2

˝�
Tˇ ;Nˇ

�
;Bˇ

˛
:

Proof. Let .˛;ˇ/ be a Mannheim curve couple. From Eq. (3.3) we have

Tˇ .s/D Œ.1��� .s//T .s/C�.� � �G/.s/B .s/�
ds

ds
:

We take the norm of this equation and by using Eq. (3.4), we obtain
ds

ds
D ��H

p
1CH 2:

If we consider with together the last two equations, we get

Tˇ .s/D
H

p
1CH 2

T .s/C
1

p
1CH 2

B.s/: (3.12)

Since .˛;ˇ/ is a Mannheim curve couple we know Bˇ .s/DN.s/: Then,

Nˇ .s/D Bˇ .s/�Tˇ .s/

Nˇ .s/D
1

p
1CH 2

T .s/�
H

p
1CH 2

B.s/:

We know from Definition 2
˝�
Tˇ ;Nˇ

�
;Bˇ

˛
D 2�Gˇ for the curve ˇ: Then with the

help of above equations for Tˇ .s/ ;Nˇ .s/ and Bˇ .s/, we obtain��
H

p
1CH 2

T C
1

p
1CH 2

B;
1

p
1CH 2

T .s/�
H

p
1CH 2

B.s/

�
;N

�
D 2�Gˇ ;

H 2

1CH 2
hŒT;N � ;BiC

1

1CH 2
hŒT;N � ;Bi D 2�Gˇ :
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Using the last equation of Proposition 1, we get

�G D �Gˇ :

This completes the proof. �

Theorem 6. Let ˛ W I �R!G be a parametrized Mannheim curve with curvature
functions �, � and ˇ W I �R!G be a Mannheim mate of ˛ with curvatures functions
�ˇ , �ˇ : Then the relations between these curvature functions are

�ˇ .s/D
H

0

.s/

��.s/H.s/
�
1CH 2.s/

�3=2 ;
�ˇ .s/D

1

�H .s/
C �Gˇ :

Proof. If we differentiate Eq. (3.12) and using the Frenet formulas, we have

�ˇNˇ��H
p
1CH 2 D

H
0�

1CH 2
�3=2 .T �HB/:

If we take the norm of the last equation, we get

�ˇ D
H

0

��H
�
1CH 2

�3=2 :
Since f˛;ˇg is a Mannheim curve couple, we know Bˇ DN: If we differentiate this
equation and using the Frenet formulas, we have

�
�
�ˇ � �Gˇ

�
Nˇ�H

p
1CH 2 D�T CHB:

If we take the norm of the last equation, we get

�ˇ D
1

�H
C �Gˇ :

This completes the proof. �

Theorem 7. Let ˛ W I � R!G be an arc-lenghted Mannheim curve and ˇ W I �
R!G be a Mannheim mate of ˛: The Mannheim curve ˛ is a slant helix if and only
if its Mannheim mate ˇ is a general helix.

Proof. If Mannheim curve ˛ is a slant helix, then using Theorem 2 we have, �N
is a constant function. From Theorem 6 for the curve ˇ; we have

�ˇ � �Gˇ

�ˇ
D

1
�H

H
0

��H.1CH2/
3=2

�ˇ � �Gˇ

�ˇ
D
�
�
1CH 2

�3=2
H

0
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�ˇ � �Gˇ

�ˇ
D �N D constant.

So, the curve ˇ which is Mannheim mate of ˛ is a general helix.
Conversely, we assume that ˇ, which is Mannheim mate of ˛; is a general helix.

So we have
�ˇ � �Gˇ

�ˇ
D constant.

From the last equation and Theorem 6 we can easily see that �N is a constant func-
tion. This completes the proof. �

Theorem 8. Let ˛ W I � R!G be an arc-lenghted Mannheim curve and ˇ W I �
R!G be a Mannheim mate of ˛. If ˛ is a slant helix then the harmonic curvature
function of the curve ˛: H.s/ is

H.s/D
1

2

�
aebs �

1

a
e�bs

�
(3.13)

for some nonzero constant a and b and s is the arc length parameter of the curve ˛.
If we consider a D b D 1; we have the harmonic curvature funtion of the curve ˛ is
hyperbolic sine function in arc length s, that is, H.s/D sinhs.

Proof. Let ˛ W I � R!G be an arc-lenghted Mannheim curve with Frenet appar-
atus fT;N;B;�;�g in three dimensional Lie group G. Since the curve ˛ is a slant
helix, we have

hN;Xi D cos�; � ¤
�

2
(3.14)

for left invariant vector field X: Differentiating Eq. (3.14) twice, we have

�� hT;XiC .� � �G/hB;Xi D 0 (3.15)

and
��

0

hT;XiC .� � �G/
0

hB;Xi D
n
�2C .� � �G/

2
o
hN;Xi :

Since ˛ is a Mannheim curve using Theorem 4, we rewrite the last equation

��
0

hT;XiC .� � �G/
0

hB;Xi D
�

�
cos� (3.16)

where � is a non-zero constant. By a direct calculation using Eq. (3.15) and Eq.
(3.16), we obtain

hT;Xi D
H

�H
0 cos� (3.17)

and
hB;Xi D

1

�H
0 cos�: (3.18)

Differentiating Eq. (3.17) and Eq. (3.18), we have

� D
1

�

 
1�

HH
00�

H
0
�2
!
;
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� � �G D
H

00

�
�
H

0
�2 ;

respectively. These equations give that

H D
� � �G

�
D

H
00�

H
0
�2
�HH

00
:

Then we have the following differential equation�
1CH 2

�
H

00

�

�
H

0
�2
D 0:

Solving the last equation, we obtain Eq. (3.13). This completes the proof. �

Theorem 9. Let .˛;ˇ/ be a Mannheim curve couple in three dimensional Lie
group G with bi-invariant metric. Then ˛ is general helix if and only if ˇ is a
geodesic.

Proof. If Mannheim curve ˛ is a general helix, then its harmonic curvature H is
constant function. And so from Theorem 6,

�ˇ D 0:

So, the curve ˇ is a geodesic.
Conversely we assume that ˇ is a geodesic curve. From Theorem 6 we can easily

see that
H

0

.s/D 0

and so
H.s/D constant.

This completes the proof. �
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