Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 17 (2016), No. 1, pp. 421-440 DOI: 10.18514/MMN.2016.677

CHARACTERIZATIONS OF ATOMISTIC COMPLETE FINITE
LATTICES RELATIVE TO GEOMETRIC ONES

HUA MAO

Received 18 December, 2013
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for the finite cases.
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1. INTRODUCTION

S.Radeleczki et al. pointed out [1,2,6,7] that the notion of the classification system
can be applied in concept lattices. The dual of this notion is introduced by R.Wille
[3,4,8]. In addition, S.Radeleczki et al. [1,2,06,7] apply and study the properties
of concept lattices in the process of construction of classification systems. Since any
partition lattice is a particular geometric lattice, an open problem was arisen naturally
( S.Radeleczki [7]): Characterize those atomistic complete lattices whose classifica-
tion lattices are geometric. The solution of this open problem might be useful in the
study of classification systems and concept lattices. Hence, this paper will character-
ize atomistic complete finite lattices whose classification lattices are geometric and
answer the open problem for the finite case.

This paper is organized as follows. Section 2 presents some basic information
relative to geometric lattices and classification systems. In Section 3, we describe
certain properties on atomistic complete finite lattices related to geometric lattices.
Afterwards, it answers the open problem suggested by S.Radeleczki [7] for the finite
case.
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2. PRELIMINARIES

Some basic notions and results related to posets, lattices and classification systems
are presented in this section.

2.1. Posets and lattices

We review some basic properties and notations of posets and lattices in this sub-
section. For more detail about posets and lattices, please refer to [5].

Lemma 1. (/)(in [5] p.232) A lattice L is semimodular if and only if x Ny < x
implies that y < x V y.

(2)(in [5] p.234) A lattice L is called geometric if and only if L is complete, atom-
istic (that is, every element of L is a join of atoms), all atoms are compact, and L is
semimodular.

(3)(in [5] p.234) Any interval [y,x] ={a € L | y < a < x} of a geometric lattice
L is again a geometric lattice.

We also need the following statements from [5].

(1) A finite lattice L is semimodular if for all x,y € L: the property which x and
y cover x A y implies that x v y covers x and y.

(2) A finite lattice is geometric if it is semimodular and every element is a join of
atoms.

(3) A finite semimodular lattice is characterized by the following property L is
semimodular if and only if for all x,y € L, all maximal chains between elements
x,y have the same length, and the height function & of L satisfies h(x) + h(y) >
h(xAy)+h(xVy).

Some notations 1. Let (P, <) be a poset. In this paper, if there is no confusion in
the text, then we use the notation P in stead of (P, <). If P has the greatest element
1, then the height (1) is sometimes denoted by #(P). In P, if y covers x, it is in
notation x < y; if y does not cover x, it is in notation x £ y; if y < x and y # x,
it is in notation y < x; if y is not less than x, it is denoted by y £ x; if x and y are
incomparable, it is denoted by x||y.

2.2. Classification systems

Let us recall some information of classification systems from [7]. For more detail
for classification systems, please see [7].

Definition 1. (1) A nonzero element p of a lattice L is called completely join-
irreducible if for any system of elements x; € L (i € I ), theequality p = Vv{x; :i €I}
implies p = x;, for some ig € /. If any nonzero element of L is a join of completely
join-irreducible elements, then L is called a CJ-generated lattice.
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(2) Let L be a complete lattice. A set S ={a; | j € J} (J # @) of nonzero
elements of L is called a classification system of L if the following conditions are
satisfied:

(2.1)a; Nnaj =0, foralli # j, where 0 is the least element in L.

(22)x =Vjey(xnaj), forall x € L.

Some notations 2. (1) Let L be a CJ-generated complete lattice. The set of all
completely join-irreducible elements of L is denoted by J(L). Fora € L, let J(a) =
{peJ(L)|p<a}andset v =0.

(2) Let A(L) denote the set of atoms of a lattice L.

Lemma 2. (1) If S ={a; |i € 1} is a classification system of L, then mg =
{J(a;),i € 1} is a partition induced by S on J(L).

(2) If L is a CJ-generated lattice, then any classification system S = {a; |i € I}
of L is determined by the partition rg, induced by S on J(L).

(3) Any atomistic lattice L is a CJ-generated lattice with J(L) = A(L).

Let L be an atomistic complete lattice. For any x € L'\ 0, the set Sy = {x}U{a €
A(L) | a A x = 0} is a classification system of L.

(4) Let L be a complete lattice and 1 be the greatest element in L. Then S = {1}
is a classification system.

Definition 2. Let L be a CJ-generated complete lattice and let S, and S, be two
classification systems of L. We say that the system S, is finer than S, and we write
Sp < Sy if the partition 7, induced by S, refines the partition g, induced by Sy,
thatis, if rg, < mg,.

Lemma 3. (1) Let Clg(L) denote the set of all classification systems of a CJ-
generated complete lattice L. Then, (Clg(L), <) is a complete lattice.

(Cls(L),<) or Cls(L) for short, is called the classification lattice of the lattice
L.

(2) The least element of the lattice Clg(L), that is, the finest classification system
of L, is the same as So = AN{S | S € Cls(L)}.

Remark 1. Let L be an atomistic complete lattice.

(1) In this paper, Sy stands for {a | a € A(L)}, Sy is {1}, and S represents {x} U
{a€ A(L)|a £ x} forany x € L\ 0.

(2) For any x € L\ 0, using the (3) in Lemma 1, we may easily know that Sy =
{x}U{a € A(L) | a A x = 0} is a classification system of L. In addition, in light of
the (2) in Lemma 3, So = {a | a € A(L)} € Cls(L) holds, and S; = Sy is true for
any a € A(L).

(3) Let S € Clg(L). Then according to the (2) of Definition 1, there is S = S, for
some x € L\O,or S ={x; e L\(A(L)UO) |i el}U{aec A(L) |a £ x;,i €l}
where x, Axy =0,(p #q;p.qel)and |[]|>2.
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For convenient, if S = {x; € L\ (A(L)UO) |i e [}U{ac A(L) |a £x;,i€l} €
Clg(L), thenitis denoted by Sy, ;ey. And further, when I ={1,2,...,n}, Sy, jey is
sometimes denoted as Sx, x,...x,,-

(4) Let S = Sx;x5...x,- By Definition 1 and the (3) above, it is easily to find
S = le.lxl.zmx,.n where i1,i2,...,i, is an arbitrary permutation of 1,2,...,n.

(5)Letx € L\ (A(L)U0). By the discussion beyond, we easily obtain C /4 ([0, x]) =
[So, Sx] in which [Sy, Sx] is an interval in Clg(L) and [0, x] is an interval in L.

Some notations 3. Let L be an atomistic complete finite lattice.

(1) Let % denote {x € L | x has height k in L}, (k =2,...,h(L)).

(2) Forany x € L and [ < h(x), let F'(x) ={y e L |y € F'andy < x} and
€(x) ={yeL|xcovers yin L}. ! is also in notation A(x) ={a € A(L) |a < x}
forany x € L.

3. ANSWER TO THE OPEN PROBLEM

In this section, we will discover the characterizations of atomistic complete finite
lattices whose classification lattices are geometric lattices. Therefore, the open prob-
lem, which is repeated in Section 1, will be solved for finite cases.

Theorem 1. Let L be an atomistic complete finite lattice. If |F2| =1, i.e. L has
only one element of height 2. Then Cls(L) is geometric.

Proof of Theorem 1. Tt is easily to find Cls(L) = {So, S1}. Thus, Cls(L) is geo-
metric. U

In what follows, L always stands for an atomistic complete finite lattice with at
least two elements of height 2. That is to say, 2 = {x € L | x has height 2 in L}
satisfies | F 2| > 2.

First, we may deal with some properties related to C/5(L).

Lemma 4. Cl;(L) possesses the following properties.

(3.1) Let x,y € L\O. Then x <y & Sx < S,. Further, x <y & Sy < Sy.

(3.2) Let x,y € L\ (A(L)UO0). If x Ay =0, then Sx V Sy = Sxy.

Furthermore, let x; € L\ (A(L)U0),(j € §:1¢1=>2). If xinx; =0,(,j € ;i #
7, ﬂ’lel’leengj = ij’jeg.

(3.3) Let x,y € L\ (A(L)UO0). If x Ay #0, then Sx V Sy = Sxvy.

(3.4) A(Clg(L)) ={Sq | d € F2}.

(3.5) Let S = Sy, ier with2 <|I|. Let S’ € Clg(L). Then the following items
(3.5.1), (3.5.2) and (3.5.3) are true.
(3.5.1)If S" = Sy, < S holds for some y € L\ (A(L)UO0), then there are I = {1,2},
y = x1 and h(xz) = 2.
(3.5.2)If S" # Sy forany y € L\ (A(L)U0), S’ < S, and h(x,) = 2 with x, ¢ S’
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inwhichn € I'\ I fora Iy C I with |I| = |I1|+ 1. Then S’ = Sy, jer,-
(3.5.3) Let S" = S, jer, where Iy C I with |I| = |I1|+ 1. If S’ satisfies h(xp) =2
wheren € I\ I1. Then S’ < S holds.

Proof of Lemma 4. We will demonstrate all the results step by step.

Step 1. From Definition 2 with the atomistic property of L, we may easily obtain
item (3.1).

Step 2. We verify item (3.2) using steps 2.1 and 2.2 as follows.

Step 2.1. To prove: for x,y € L\ (A(L)U0),

XAy =0= SxV Sy =S8xy.

If x Ay =0, then Syy € Clg(L) and Sx, Sy < Sxy according to Definition 2.

Let S € Clg(L) satisfy Sx,Sy < §. Using x Ay = 0 and Definition 2, we may
find out A(x) € A(xs) and A(y) € A(ys) for some xg, ys € S. This causes Sy, < S.
Considering Sy, Sy < § with Sy, < S, we may be assured Sx VS, = Syy.

Step 2.2. To prove: for x; € L\ (A(L)U0),(j € ;14| = 2),

xinx;=0,(i,jedii#j)= VjiegSx, = ij,jeg-

Using induction on |#| and item (3.1), we may obtain V;egSx; < Sx; jeg if xi A
xj =0.0G.j € i #J).

By the (3) in Remark 1, V;egSx; = Sy holds for some y € L\ (A(L)U0), or
VjegSx; = Sz,...z,, holds for some z1,...,2m € L\ (A(L) U0) with 2 < m.

Suppose that Ve g Sx; = Sy holds. By item (3.1) and Sx; <V;egSx;,(j € §), we
may determine x; <y (j € §). Furthermore, Sy, jeg < Sy is true by Definition 2.
So, it follows S, = ij jeg Wwith || > 2, which is a contradiction to the (2) of
Definition 1.

Suppose that V;egSx;, = Sz,...z,, holds for 2 < m. Using item (3.1) and Sy; <
Sz1..zm (J € &), we point out x; < z;,,(j € §:jr € {l,...,m}). Utilizing z;, A
Ziy, = 0(j; #is; Jr,is = 1,...,m) and the result in the above case, we follow that if
Zj, # Ziy,-thenx; #x;,(i,j € §), where x; <z,, and x; < z; . This implies A(x;) C
A(zj,),(j € &:j: €{1,....,m}) since L is atomistic. Combining items (1) and (2) in
Lemma 2 with Definition 2, TSy, jeg =TSz om holds. Hence, Sy, jeg < Szy..zm
is true. Additionally, we decide Sx; < Sy, jeg according to A(x;) € A(x;),(j € ),
the definitions of Sy, jeg and Sx;, and Definition 2. Thus, it follows V egSx; <
ij,jeg < 8z,...z,,,- Therefore, we may be assured ij,jeg = \/jengj.

Step 3. To prove item (3.3).

Letx Ay #0. Then{x,y} & Sistrueforany S € Clg(L). If SxV Sy =S7,2..2,
for any z; € L\ (A(L)UO0),(j = 1,2,...,n;2 < n). Then, the properties of x <
71,y < zp and z; # z» taken together follows x A y = 0. This is a contradiction to
x Ay # 0. Hence, we confirm x,y < z;. However, Sy, Sy <S8z, <Sz,..z, = Sx V
Sy follows Sx VS, <87, <S8z,..z, = Sx V Sy, acontradiction. Thus, Sx VvV Sy, =S,
is true for some z € L\ (A(L)UO0). Then, we attain Sy, Sy < Sy Vv S,. Furthermore,
we obtain x, y < z using item (3.1). Moreover, x V y < z holds. So, we determine
Sxvy < 8z.
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On the other hand, in view of x,y < x V y and item (3.1), we obtain Sy, S) <
Sxvy. Furthermore, we attain Sy V Sy < Sxvy.

Therefore, we have demonstrated Sy V Sy = Sxvy.

Step 4. To prove item (3.4).

Let d € ¥2. According to Remark 1, we obtain S; € Cls(L). By item (3.1), it
has So < S4. If So < § < Sy holds for some S € Clg(L). Then we obtain x € S
and x € L\ (A(L)UO0). So, 2 < h(x) holds. Furthermore, we find the existence of
dy € 372(x). Thus, we may obtain So < Sy < § < §;. Combining So < § and
So < Sq, =S, wefind § =S, . On the other hand, taking § < Sy, S5 =< S with
h(dyx) = h(d) = 2 together, we follow d, = d. Therefore, we attain So < S;. Hence,
{S4|d e F? C A(CIg(L)) is true.

If A(CIs(L))\{Sy|d € 2} # @. Then, thereis S € A(CI;(L))\{Sy | d € F2}.
This causes y € S\ (A(L)UO0). So, 2 < h(y) is real. Considered the definition of
height function of a lattice in [5], we find d, € F 2 with dy < y. Moreover, we
obtain de < §. However, Sy < de is known according to the above proof. Hence,
it follows § = Sg,. This is a contradiction to S & {Sy | d € F23. In other words,
A(CIlg(L)) ={Sy | d € F?} is true.

Step 5. To prove item (3.5).

Combining S € Cls(L) with Definition 1, we confirm {x; |i € T}U{a € A(L) |
afxi,ieTyeClg(L)forany T C 1.

Step 5.1. This step verifies items (3.5.1) and (3.5.2).

If S < S. Then, by the (3) in Remark 1, we may find S’ = S, for some y €
L\(A(L)UO0)or 8" =S87,25..z,, With2 <mand z; € L\ (A(L)U0),(i =1,...,m).

Suppose S’ = Sy, for some y € L\ (A(L)U0). Then, A(y) € A(x;,) holds for
some ig € I. According to x; Ax; =0,(i # j;i,j € I), we confirm that there is one
and only one iy € [ satisfying A(y) € A(x;,). In addition, owing to the atomistic
property of Clg(L), we may find y < x;,. And further, we obtain S, < § x;, by item
(3.1).

Under the assumption S’ < S and the closest result above, we may infer to |/ | = 2.
Otherwise, 3 <|/| will follow §' = S, < Sx; < Sx; x;, <Sx,ier =S, a contradic-
tionto S’ < S.

We may assume / = {1,2} and x;, = x1. In view of §' = §), <8y, < S, Sx, €
Cls(L)and S’ < S, we find Sy = Sy, . Thus, y = x; holds. Since x, € L\ (A(L)U0)
causes h(xp) > 2. Assume /(xp) > 2. By the definition of height function in a
lattice, we obtain ¢ < x5 and /&(¢) = 2. Additionally, 0 < ¢ Ax; < x3 Ax; = 0 yields
t Ax1 =0. So, Sx,: € Cls(L) holds. We may easily determine Sy, < Sx,;; < S, a
contradiction to §” = Sx, < S. Therefore, we confirm /(x3) = 2.

Suppose S" = Sz, z,...z,, With 2 <m. No harm to assume I = {1,2,...,n}. Tak-
ing 8"=S8z,..z;m <S =8x,..x, and x; Ax; =0,(i # jii,j =1,...,n) together,
we find zj,, < xj. (21 € I1).....Ziy, < Xj,,(0p € Ip) in which {ig, |o; € I1} ©
..omp,t=1,...,p)lia, a1 € 1} U...Ulig, |ap € Ip} ={1,....m}:{ig, |
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ax € Ik} N{ig, |y € 1} = @, (k # Lk, 1 =1,...,p);{j1, j2,---, Jp} SH{1,...,n}
and jo # jg.(a # B.a,B =1,...,p). Thus, by the (4) of Remark 1, we may be
assured Sz,..z,, = Sz, i1€l1,zipiipel, = Sxjj.x;, <S. Since Sz,..z,, < S, we
obtain S’ = Sx; ..x;, < S.Inaddition, we attain {1,..., jp} C{l,....n}.

If p <n—1. Then, according to the (4) of Remark 1 and {j1,..., jp} C{l,...,n},
we may confirm ijl X, < ijl X jpXjpy Xy < ijl X, — Sxy..x, =S fora
sub-arrangement ji,..., jp, jp+1,--., jn—1 0f 1,2,...,n. This causes a contradiction
to S’ < S. Thus, p =n —1 is true.

Certainly, S' = ijl X,y < S shows that for any 7 < x;,, there is t Ax; = 0 for
any j € {j1,...,jn—1ysince 0 <t Ax; < xj, Ax; =0.

Hence, we may obtain /(x;, ) = 2. Otherwise, it follows Sx; ..x; | <Sx; .x; b
< S for b < xj, and h(b) = 2 according to Definition 2, a contradiction to S" < S.

Step 5.2. To prove item (3.5.3).

Let S’ = Sxiy xiyoxi, | = Sxijiel € Cls(L). Then, it is easily to find S’ < S.

Suppose S’ < §” < S and §” = S, for some y € L\ (A(L)UO0). Then by item
(3.1), we obtain x; <y < x;,,(j € I1) and ip € I. This follows that

if j # 1o, then x; Ax;, =x; € L\ (A(L)UO0), a contradiction to x; A x;, = 0;
if j =iy, then x; < x;,, a contradiction to x; = x;, when j = ip.

Suppose S’ < §" < S = Sxiy i, xi, and S" = 8;,20.z, With2 <m. S’ <
S” follows Xig, S Z1.Xip, < 22,...,%;, = 2k, Where ty = 1,....myitp = my +
L...oma;.. .5ty =mp_1+1,....mpsmy+...+mp = |[1] =n—1. k <m holds
since x; Ax; =0, # jii,je€l), z; € L\(A(L)UO0),(t =1,...,m) and z, A
2¢ =0,(p #q;p,q €{1,...,m}). Meanwhile, combining Sy, jer € Cls(L),(T <
{1,....n}) with §” < § = Sxil--~xin—1xin’ we attain z; < x;,,(j = 1,2,...,n—1).
Hence, in view of this result with x; Ax; =0,(i # j:i,j €1),z, € L\ (A(L)U
0),t=1,...,m)and x; € L\ (A(L)U0),(i € I), weobtainz; = x;,,(j =1,2,...,
n—1) and z, < x;,. However, by the known condition, it follows A(x;,) = 2. So,
Zn € A(L) U0 holds. Hence, it causes S” = S’, a contradiction to S" < S”.

Therefore, we confirm S’ < S. O

Second, we will deal with some properties related to Clg(L) if Clg(L) is geomet-
ric for an atomistic complete finite lattice L.

Lemma 5. Let L be an atomistic complete finite lattice with height 3. Then
Cls(L) is geometric if and only if

(3.6) |F 2| =2, that is, L has at least two elements of height 2.

(3.7) Ifdl,dz € 372, then d1 /\dz 75 0.

Proof of Lemma 5. We will prove with two parts.

Part I. When Cls(L) is geometric.

h(L) = 3 compels that there is d € F 2 according to the definition of height func-
tion in a lattice. If 2 = {d}. Then, we may obtain CIs(L) = {So, S1,Sg} with
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So < Sz < S7. Itis easily found that C (L) is not geometric. This is a contradiction
to the known supposition. Thus, it should have |# 2| > 2. That is, item (3.6) is true.

Suppose that d1 A dy = 0 holds for any dy,d> € F2 = {d; | j € §}. Then, this
causes Sy, seT € Clg(L) < Sy forany T' C ¢ in virtue of the (3) of Remark 1 and the
(2) in Definition 1. In addition, we may easily find Cl3(L) = {So, 51,84, reT.T <
#}. This causes So < Sq, reT < Sd;,jeg < S1. S0, Cls(L) is not geometric since Sy
is not the join of atoms in Clg(L). This is a contradiction to the geometry of C[s(L).

Therefore, there are dg,d7 € 2 satisfying dg # d7 and dg Ad7 # 0.

If there is d3 € ¥ 2 satisfying d3 Ad7 = 0. Then, we obtain So < Sa, < Sazd; < S1
and So < Sg, < §1 with Sg.[|Sg,4,. In addition, Sz, vV Sg, = Sq,vas = S1 holds
according to d7 A de # 0 and item (3.3). This follows Sz, £ 81 = Sg, vV Sg. So,
Clg(L) is not semimodular. This follows a contradiction to the geometry of C/z(L).
In other words, d7 Ad; # 0 holds for any j € . Analogously, de A d; # 0 holds for
any j € 4.

Moreover, So < Sz, < S1 holds. Hence, this maximal chain {So,Sg,,S1} in
Cls(L) has length 3. If there are d4,ds5 € 72 satisfying d4 A ds = 0. Then it causes
So <S4, < Sdq,d45 < S1. So, there is a maximal chain in C/;(L) with length at least 4.
Hence, there are two maximal chains with different lengths in Clg(L). This follows
a contradiction to the geometry of C/z(L).

Summing up, we obtain x A y # O for any x,y € 2. That is, item (3.7) is true.

Part II. When L satisfies items (3.6) and (3.7).

Let d; has height 2in L, (j € §), thatis, F2 ={d; | j € 4}.

Under the suppositions of items (3.6) and (3.7) with h(L) = 3, we may easily
decide that Cs(L) is {So,S1,84,,J € &} in which So <S4, < S1, Sg;|[S4;. (i, ] €
F:i # j)and S1 = V;egSq;. Therefore, Cls(L) is geometric. O

Considering the (3) in Lemma 1 with Lemma 5, we may easily express the follow-
ing corollary.

Corollary 1. Let L be an atomistic complete finite lattice and x € L\ (A(L)U
0U F2) with h(x) = 3. If Clg(L) is geometric, then there are |¥?(x)| > 2 and
dy Ady # 0 for any dy,d> € F2(x) and x = Vieg2(x)d-

Lemma 6. Let L be an atomistic complete finite lattice. If Clg(L) is geometric,
then L satisfies the following properties.

(3.8) [€(x)\ A(L)| > 2 forany x € L\ (A(L)U0).

(3.9) x =Vgeg2(x)d forany x € L'\ (A(L)U0).

(3.10) Let x,y € L\ (A(L)UO). If x Ay < Xx,y, then x,y <XV y.

(3.11) Let x € L with h(x) = 3. Then, there is di Adp # 0 for any dy,d» € F?(x)
with dl 75 dz.

(3.12) Let x € L\ (A(L)UO0). If 3 < h(x), then there are y,z € €(x)\ A(L)
satisfying y #z and y Az # 0.
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(3.13) Let x,y € L\ (A(L)UO0). If2<h(xAY),x Ay Z0, XAy <X, XAy <Yy
and Zx N(x ANY) #0,2y A(x Ay) #0 for any zx,z2y € L\ (A(L)UO0) with zx <
X,2y <y. Then, pAx #0and g Ny #0forany p,q <xVyand p,q€ L\(A(L)U
0).

(3.14) Let y; € L\ (A(L)U0),(j =1,2,....n;2<n),yi Ay; =0,(i # j;i,]j =
1,2,...,n).

Ify; € F2,(j=1,....n), then S < Sy, .y, = S = Sy, i, _,» Jor some
{i1,....in—1} C{1,...,n} and |{i1,...,in—1}| =n—1.

If S < Sy, ..y, We obtain that if there is y;, & F 2 for some in € {1,...,n}, then
S =Sy, ..yi,_,zn holds where zp < yi;, and {i1,....in} ={1,...,n} orify;, € F?
for some j, €{1,...,n}, then S = Sy;, v, Where {iseo s jn—1y=A{1,...,0}\ ja.

(3.15) Let y; € L,(i = 1,2,...,n) satisfy yi Ny; =0, # jii,j =1,2,....,n;
2 <n).

(o) Setting x = v;.’:iyij V wy, and wy < yi, with h(wy,) > 2 and {i1,...,in} =
{1,...,n}. Suppose that for any m <n—1 and p € L with \/;."zly,-,j <p<xor

\/71=1Yizj Vwy, < g < x, where {itj |j=1,....m} C{i1,...,in—1}, there exists s €
{it,....in—13\{iy; | j = 1,....m} satisfying pAys #0, or pAwy #0, 0rqgAys #0.
Then the following property (3.15.1) is true.

(B) Setting z = V;’;%yjt, h(yj,) =2and {ji1,...,jn} =1{1,...,n}. Suppose that
foranym <n—1and p € L with V;”:lyit,- <p<zwhereliy; | j=1,....m} C
Uts--sjn—1}, there exists s € {j1,..., jn—1} \ iz, | ] = 1,...,m} satisfying p A ys #
0. Then the following property (3.15.2) is real.

(3.15.1) If x N yi,, # 0. Then x < xV y;, = VI_,y; holds, and in addition, for
any m <n and \/;."zly,-,j <q<Vi_yyiwhere{iy; | j=1,...,m} C{l,...,n}, there
exists s € {1,...,n}\ iy, | j = 1,...,m} satisfying g Nys # 0.

(3.15.2)IfzAyj, #0. Thenz < zV yj, = v;?zlyj holds, and in addition, for any
m <n and \/;."=1yl~tj <g< V7=1yj where {iy; | j = 1,...,m} C{1,...,n}, there
exists s € {1,....n}\ iy, | j = 1,...,m} satisfying g A ys # 0.

(3.16) Let y; € L\ (A(L)U0),(j =1,2,...,n;2<n), x, € L\ (A(L)UO0) and
Xpn # yn satisfy yi Ay; =0, # jii,j =1,2,....,n) and yj Axp =0,

(j =1,2,...,n—1). Then the following statements hold.

(3.16.1) Let h(xp),h(yn) > 2 and h(x, Ayn) # 0. If yj A(xp V yn) = 0 holds
(j =1,...,n—=1), and in addition, there is 7, € L\ 0 satisfying 2, < Xn, Yn. Then,
forany p,q € L\ (A(L)UO0), x, < p <XpV Yy and y, < q < Xp\ Yp, there exist
s,t €{l,...,n—1} satisfying ys A p # 0and y; Aq # 0.

Additionally, if there are X, A yn # 0 and h(x,) = h(yn) =2, but y; AM(Xp V yn) =
0,(j =1,....n—1). Then, for any p,q € L\ (A(L)UO0),x, < p < xpV yn and
Vn < g <XpV yp, there exist s,t €{1,...,n—1} satisfying ys A p # 0and y; Aq # 0.

(3.16.2) Let h(xpn),h(yn) > 2 and h(xn A yn) #0. When yj A(xn vV Vi_, Vi) =
0,(j =1,....m;:1 <m <n—1), and in addition, there exists z, € L \ 0 satisfying
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Zn < Xn, Yn. Then, for any p,q, f € L\ (A(L) UDO0), if the expressions (i), (ii) and
(iii) hold

(i) \/?”:tyjl. §p<xn\/\/?:m+1y,~ where {j; |t <i <t} S{m+1,....n—1},

(ii)xnvvngtxyji <q<xXpVVi_,, . Viwhere{ji|tx <i <tg} T{m+1,....n—
1},

(iii) Vi Vi < f < Vi1 Vi VXn where {ji |11 <i <t7} S{m+1.....n},
then, the following expressions hold:

there exists sp € {1,....n—1}\{ji |t <i <tp} satisfying ys, A\p #0orxn Ap #
0’.

there exists sq € {1,...,n—1}\{ji | tx <i <14} satisfying ys, Nq # 0;

there exists sy € {1,...,n}\{ji | 1 <i <ty} satisfying ys, A | # 0.

Additionally, let xu A yn # 0 and h(xn) = h(yn) = 2. When yj A(xn vV Vi_, Vi)
=0,(j=1,....m;1 <m <n—1). Then, for any p,q, f € L\ (A(L)UO0), if the
expressions (i), (ii) and (iii) hold, then the following expressions hold:

there is sp € {1,....,n—13\{ji |t <i <1p} satisfying ys, Ap #0orxy Ap #0;

thereis sq € {1,....n—1}\{ji | tx <i <14} satisfying ys, Nq # 0;

thereis sy € {1,...,n}\{ji | 1 <i <ty} satisfying ys, N\ f # 0.

Proof of Lemma 6. We will prove the needed results step by step.

Step 1. To prove item (3.8).

In view of the definition of height function in a lattice and A(x) = n < co, we may
indicate that there is y € F"71(x). It is easily seen y < x. So, y € €(x)\ A(L)
holds.

If |€(x)\ A(L)| = 1. Considered the atomistic property of L, we receive x = y V
(VaeA(L),azy,a<x@). Hence, Cls([0, x]) satisfies S < S, for any S € Cls([0,x]) \
Sx. This implies that Sy is not a join of atoms in [Sg, Sx], a contradiction to the
geometry of Clg(L).

In another word, |€(x) \ A(L)| > 2 holds.

Step 2. To prove item (3.9).

It is easily found x = Ve g2(y)d if h(x) = 2.

Utilizing Corollary 1, we may attain x = Ve g2(y)d forany x € L and h(x) = 3.

Suppose thatif x € L with2 < h(x) <n—1,then X = Vgega(y)d.

Let x € L and /1(x) = n. In view of item (3.8), we find x =V cex)\ar)y- We
may easily decide h(y) <n—1 for any y € €(x) \ A(L). Using the inductive on
n, we obtain y = Vg eg2(y)d for any y € €(x) \ A(L). On the other hand, for any
d e F%(x),wefindd < x ord <y forsome y € €(x)\ A(L).

Therefore, it follows x = Vyee(x)\AL)Y = VaeF2(x)d-

Step 3. To prove item (3.10).

Letx,y € L\(A(L)UO)and x Ay < x, .

If x Ay =0, then x,y € A(L) holds since 0 < x,y. This is a contradiction to
x,y € L\ (A(L)U0).
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Thus, x Ay # 0 is true.

Furthermore, by item (3.3), we may be assured Sy vV S, = Sxvy. Since Cls(L)
is geometric and Sy, Sy < Sy V Sy holds, we confirm Sy, S, < Syvy. If x AxVy,
then Sy < Sp < Sxvy forsome b € L and x < b < xV y. This causes a contradiction
to Sx < Sxvy. Hence, x < x Vv y holds. Similarly, y < x Vv y holds.

Step 4. The result in item (3.11) can be produced by Corollary 1.

Step 5. To prove item (3.12).

Letx € L\ (A(L)U0) with 3 < h(x).

If pAgq =0 for any p,q € €(x)\ A(L). Then, using (3) in Remark I, item
(3.8) and induction on [€(x) \ A(L)|, we confirm Sy yeexn\a@) =y |y € €(x)\
A(L)yUta€ A(L) |a £ y,forany y € €(x)\ A(L)} € Clg(L) and Sy yeex)\A(L) <
Sx,and § <8y yeex)n\a) for any S € [So,Sx]\ Sx. Thus, S is not the join of
atoms. This causes a contradiction to the geometry of Cl(L).

Therefore, there are at least two elements y,z € €(x) \ A(L) satisfying y Az # 0.

Step 6. To prove item (3.13).

From the given conditions, we follow Sxxy < S, S)y. It is easily known Sy, <
Sx A Sy by item (3.1).

We will demonstrate Sx A Sy = Sxay.

Otherwise, Sxay < Sx ASy. If Sy A Sy = §; for some z € L, then x Ay <
z < x,y. Using item (3.1), we may attain Syry < Sz < Sy, Sy, a contradiction to
Sxay < Sx,Sy. Thus, we find Sx A Sy = Sz, jeg € Cls(L) and 2 < |4|. Applying
the (2) of Definition 1, the (2) of Lemma 2 with Definition 2, we may obtain A(x A
y) € A(zj,) for some ip € 4. Considering this result with the atomistic property
of L and 2 < |4|, we follow x Ay < Zj, < Viegzi < x,y. And further, we find
Sxay < Szi0 <Svicyzi <Sx,0r Sxay < Szio < Sv;cyz; < Sy since Sy # S). This
causes a contradiction to Sxay < Sx if Sxay < Szl'O <SVicgzi <Sx,and Sxay < Sy
if Sxay = Sz;) < Sviegzi =Sy

In other words, Sx A Sy = Sxay is true.

Therefore, we may be assured Sxry = Sx A Sy < Sk, Sy.

Furthermore, since Cls(L) is geometric, we may point out Sx,Sy < Sx V Sy.
Since Sy V Sy = Sxvy holds by x Ay # 0 and item (3.3), we find x,y <xVy
according to the given condition x Ay < x, y withitem (3.10). Thatis, Sy, Sy < S; <
Sxvy does not hold for any z € L. Actually, if there is p € L\ (A(L) UO0) satisfying
p<xVyand pAx=0,then Sy, € Clg(L) holds. We may easily find Sy < Sy, <
Sxvy, a contradiction to Sy < Syv,. Therefore, for any p € L\ (A(L)UO0) and
p <xVy,ithas p Ax # 0. Analogously, g A y # 0 holds for any ¢ € L\ (A(L)U0)
andg <xVy.

Step 7. To prove item (3.14).

Let y; € F2, thatis, y; hasheight2in L, (j = 1,2,...,n;n > 2). If S < Sy, .y,
Then, taken S < Sy, ...y, and the (3) in Remark 1 together, we attain S = S, . ,,, for
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zi € L\(A(L)U0),(i =1,...,m). We may easily obtain 21 = yi,,....Zn—1 = Yi,_,
in which {i1,...,in—1} C{1,...,n}, {i1,....in—1}| =n—1and m <n.

If m =n. Then z, < y;,, 2n € L\ (A(L)UO0) and S < S, ..y, taken together
causes Z, < yj, in which i, = {1,...,n}\ {i1,....in—1}. But, h(y;,) = 2 follows
Zn € A(L) U0, a contradiction to z,, € L\ (A(L)UO0).

Therefore, m <n —1 is true. In addition, we may easily explore thatif p < g <m,
the.n Sz1ozp < Szy. <Szi.zm = Syl.l, < S8y,..y,- Hence,n —1 <
m is true.

That is to say, S = Syz'l wViy 4 holds.

Next, to prove the other part in item (3.14).

Suppose S < Sy, ...y, and § = S, for some z € L\ 0. Since both of y;; & A(L)U
0 and So < Sy; < Sy, yi, <o < Sy ey, < Sy wvi,_ zn < Syi..y, are true.
Additionally, according to the geometry of Cl (L), we may point out z & A(L) UO.
Furthermore, we follow z < y;, for one and only one ip € {1,...,n} since S; <
Syiypand yi Ay; =0, # jii,j =1,...,n;2 <n). Thus, by item (3.1), we arrive
at§; < Syi(J < Sy,...y,- This is a contradiction to S; < Sy, ...y,

Suppose S = Sz,...z,, With2 <m. Then, z; € L\ (A(L)U0),(j =1,...,m) hold
according to the (3) of Remark 1.

Since Sz,..z,, < Sy;...y, infers that for any i € {1,...,m}, there is z; < y;, for
some j; € {1,...,n}.

Ifz;, < Vi, (@t =12,...,m). Then Sz, .z, < Syl.1 < Sy,...y, holds according to
Definition 2 and 2 < n. This causes a contradiction to Sz, ...z, < Sy;...y,,

Additionally, combining z; € L\ (A(L)U0),(j =1,....m)and y, Ay, =0,(p #
q:p,q =1,...,n), we decide that for any z,, where jo € {1,...,m}, there is one and
only one y;; satisfying 2, < yi, . (ij, € {L....n}). If zj; # zj, but zj; < yj; . 2i, <
YVj;, and zj; < yj;, where i3 ¢{i1.iz}, thenzj, Vzi, <yj;, and 0 <z2i3 A (24, VZiy) <
Yji, N Vi, = 0. We may obtain Sz, z,, < S(z; vzi))ziy.ziyy < Sy1...yn- This causes

“ZpZpa1..2q i,y

a contradiction to Sz, ...z,, < Sy;...y,. Thus, z; < y; holds (i =1,...,m). In addition,
if z, # z4. then y, # y4.(p.q € {1....,m}). Hence, We may assume z; < y;,(j =
1,...,m). So, m <n is true.

If m=mn. Since z; <y; (j =1,...,n) and § < Sy, ..., follow that there is
iop € {1,....,m} = {1,...,n} satisfying z;, < y;,. We determine that if there are
more than two elements i1,iz € {1,...,m} satisfying z;, < y;, and z;, < yi,, then
SZI-nZi]lei]---Ziz-uzn < Szln-zilfl.))[]Z[1+l---Zizleizzinrl---Zn < Sy...y, holds. This
is a contradiction to S < Sy, ..,,. Hence, there is one and only one ip € {1,...,m}
satisfying z;, < yi,. No matter to suppose igp = 7.

When m = n and h(y,) > 2. We find S),. .y, ,z € Cls(L) and Sy, .y, ,z <
Syi...y, forany z < y,. In addition, if there is M € Clg(L) satisfying Sy, ...y, ,z <
M < Sy,..y,, then it is easily to obtain y; € M,(j =1,...,n—1) and b € M such
that z < b < y,. This causes a contradiction to z < y,. Therefore, S = Sy, y,_,z,
holds where z,, < yy.
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When m < n and h(y,) = 2.

Then, we will demonstrate m < n holds.

Otherwise, z, < y, infers to z,, € A(L)UO0, a contradiction to z,, € L\ (A(L)U0).
That is to say, this case will not happen actually.

Combining

p<qg=m= SZI...ZP < SZl...szp+l - Zq

S Sziezm S Syieym = Syicymymttevn— = Syi.yn

andz; <y;,(j=1,....m)with Sz, ., =S8 <S),..y, and the geometry of Cls(L),
we decide n —1 < m.

If m =n—1. Thatis, |{1,...,m}| =n—1 holds. No matter to suppose {1,...m} =
{1,...,n—1}. Considered z; < y;,(j =1,....m)and § = Sz, z,, < Sy,...y,> WE
may confirmz; = y;,(j =1,....mim=n—1).

We will demonstrate h(y,) = 2.

Otherwise, h(y,) > 2 is true. But, using the definition of height function in a
lattice, we affirm the existence of b € L \ 0 satisfying b < y, and h(b) = h(y,)—1>
2. In addition, it is easily found Sz,.. .z, < Sz,..z,,6 < Syi..y,- This follows a
contradiction to Sz, ...z, < Sy,...y,-

When m =n—1and h(y,) = 2. Since Sz, ..z,, < Syi..ymymetyn-t < Syi..vn
holds in light of z; < y;,(j = 1,...,m) and the given condition Sz, . z,, < Sy ...y,
We may attain Sy, ..y,_, < S.If Sy, .y, <S < S8y,..y, holds, then thereis b € §'\
(A(L)U{y1,...yn—1}) satistying b < y,. However, h(y,) =2 and b < y, together
causes b € A(L) U0, a contradictionto b € S\ (A(L)U{y1,...,Vn—1}). Therefore,
S = Sy,...y,_, holds.

Step 8. To prove item (3.15).

Under the supposition of («), x A y;, = 0 will not happen since w, # 0,w, < x
and wy, < y;,. Thatis to say, there is item (3.15.1) and only item (3.15.1) to happen.
According to the given conditions, items (3.5) and (3.14) with (2) in Definition 1, we
affirm Sy, ..y,_ 1w, < Sy;...yn>Sx. Thus, under the supposition of (@), we may be
assured Syl.1 wViy W = Sx ASy..yp < Sx.Sy,...y,. Furthermore, by the geometry
of Clg(L), we find Sx,Sy,..y, < SxV Sy,

If the supposition of (8) happens. Then we find Syjlmyj%l =S A Sy .y, <
Sz.Sy,...y, according to item (3.14) and the (2) in Definition 1. Thus, by the geo-
metry of Clg(L), we affirm Sz,Sy, ..y, < SzV Sy, ..y,-

Step 8.1. To prove item (3.15.1).

Let x A y;, 7 0. We will prove the needed results as the following two parts.

Part I. We prove vayl.” =SxVSy .-

Let Sx vV Sy,..y, = Sz,...z,, forsome z; € L\ 0.

The result in item (3.1) and x, y; € L\ (A(L) U 0) together follows z; ¢ A(L) U
0,(j =1,...,n;i = 1,...,m). This implies y;;, <x <2z1, (j =1,...,n—1) and
Vi, < z2. If 21 # z2, then x Ay;, < z1 Azz = 0. This follows x Ay;, =0, a
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contradiction to x A y;, # 0. Thus, we produce z; = z. According to item (3.1)
and Sx, Sy, ..y, <Sz1 < Sz1..zm = Sx V' Sy,...y,, we confirm Sy vV Sy, .y, = Sz,
Therefore, we obtain Sx, Sy, ...y, < SxV Sy,...y, = Sz,.

Part I1. We will prove the other needed results in item (3.15.1).

In light of the resultin Part I, x vV (y1 V...V y,) = x V y;, and item (3.1), we find
vay,.n = Sz,. Combining this result with Sy < Sx VvV Sy, ...y, = Sz and w, < y;,, we
may easily affirm x < x Vv y;,. In addition, Sy, ...y, < S XVyi, = Svnzlyj illustrates

J
that no element S € Cls(L) satisfies Sy,..y, < S < SV7=1yj' According to item

(3.1) and the (3) of Remark 1, we may state that for any m < n and \/;."=1yl-,i <g<
\/;.’zlyj, there exists s € {1,...,n}\{iy; | j = 1,...,m} satisfying g A ys # 0 where
li, | =1,....m} C{l,...,n}.

Step 8.2. Item (3.15.2) may be verified by similar way to that for item (3.15.1).

Step 9. To prove item (3.16).

Considering the known conditions, item (3.1), the (2) in Definition 1 with Defin-
ition 2, we obtain Sy, ..y, ; < Sy;.yu_1%0 V1. yn_1yn- Suppose that there are
S2,83 € Clg(L) satisfying Sy, ..y,_; < S2 < Sy;..yp_ix, and Sy, .y, < S3 <
Sy1...yn—1yn- Then, using items (3.5) and (3.14), we may obtain the following four
statements.

if h(x,) > 2, then S2 = Sy, ...y,_,z, Where 22 < xp;

if h(x,) =2,then S2 = Sy,...y,_,:

if h(yn) > 2, then S3 = Sy,...y,_,z5 Where 23 < yu;

if h(yy) =2,then S3=Sy,..y,_,-

Therefore, if there is S € Clg(L) satisfying S < Sy, ...y, 1x0Sy1...yn—1n> then
thereis S =Sy, ...y,_1z, When 2, = x, Ay, € A(L)UO and 2, < X, yp; or there is
S =S8y..9,_ Whenx, Ay, € A(L)UO.

Step 9.1. To verify item (3.16.1).

Since z, < x, and y, taken together follows z, = x, A y,. Hence, in view
of h(xp A yn) # 0, there is Sy, .y,—1 < Sy1oyn_1x0>Sy1.eyn if Xn Ayn € A(L),
and in addition, there is Sy, ...y, 1z, < Sy1o.yn_1%0sOy1.yn if Zn € L\ (A(L)UO0).
No matter which of the above cases happens, using the geometry of Cls(L) and
Lemma 1, we always obtain Sy, ...y, _1x,:Sy1..9n < Sy1..yn—1xn ¥V Sy;...y,. Utilizing
the (3) in Remark 1 and Definition 2, we may easily gain Sy, ..y, ;1x, V Sy;..y, =
Sy yn—1(Genvyn)- Thus, wearrive at Sy, ...y, 1 x> Syi..yn < Sy .yp_i(xpvy,)- There-
fore, for any p,q € L\ (A(L)UO0), xp < p <xpVyn and y, < q < X, V yp, there
are s,t € {1,...,n— 1} satisfying ys A p # 0 and y; Aq # 0.

Analogously to the proof above, we may easily obtain the “additionally” part in
item (3.16.1).

Step 9.2. To prove item (3.16.2).

Using item (3.16.1) and the induction on n — (m + 1), similarly to the proof in Step
9.1, we may easily obtain item (3.16.2). 0
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Remark 2. In the proof of Step 7 for Lemma 6, for the case “when m =n —1 and
h(yn) =27, we may use item (3.5) to obtain the same result.

But, we think that the proof in Lemma 6 for this case is useful to prove the other
cases.

Third, we will reveal under what conditions, Cls(L) is geometric for an atomistic
complete finite lattice L.

Lemma 7. Let L be an atomistic complete finite lattice. If L satisfies items from
(3.8) to (3.16), then Cls(L) is a geometric lattice.

Proof of Lemma 7. Applying the information in Subsection 2.1 and Lemma 3, we
only need to prove that C/g(L) is atomistic and semimodular.

According to Lemma 4, we may be assured A(Cls(L)) ={S; | d € F2}.

Step 1. We prove that every element in C (L) is a join of atoms using the follow-
ing Step 1.1 and Step 1.2.

Step 1.1. To prove: Sx = Vgeg2(x)Sq forany x € L\ (A(L) U0).

Let x € #2. The needed result is easily followed.

Let x € L\ (A(L)U0) and h(x) = 3. By items (3.8) and (3.11), we find 2 <
|F2(x)|. Let dy,d> € F2(x) and d1 Ady # 0. Then in light of item (3.3), we may
obtain Sg, V Sg, = Sq,vd, = Sx. Furthermore, we may decide Sx = Vgeg2(x)Sa
since Sy < Sy forany d € F2(x).

Suppose that there is Sx = Vgeg2(y)Sq for any x € L\ (A(L) U0) and /(x) <
n—1.

Let x € L\ (A(L)UO0) with h(x) =n. Let €(x) = {y; | i € 4}, thatis, €(x) is
the set of elements covered by x in L.

In view of item (3.8), we produce x = V; ¢4 y;. Since L satisfies item (3.12). We
obtain Sy, V Sy, = S),vy, = Sy using item (3.3), where y1,y> € €(x)\ A(L), y1 #
¥2 and y1 A y2 # 0. On the other hand, by item (3.1), we confirm Sy < Sy for any
ye€x)\AL).

Moreover, combining the above results, we attain Sy = Vyee(x)Sy.

Considered y € €(x) with h(x) = n, we find h(y) < n —1. Using inductive
supposition, we will obtain Sy = Vyec52(,)Sq. Additionally, we may easily find
that if d € F2(x), then d € €(x)\ A(L) or d < y; for some y; € €(x). That
is to say, d € $2(y) holds for some y € €(x)\ A(L). Therefore, we arrive at
Sx =Vges2(x)Sd-

Step 1.2. To prove: Sy, ier € Cls(L) is a join of atoms where |T'| > 2.

Let § = Sy, se5 € Clg(L) with 2 < |T|. Using (2) of Definition 1 and item (3.2),
we may find § = V;¢7Sx,. For every Sy,, applying with Step 1.1, we may obtain
Sx, = Vd;eF2(x,;)Sd; Where F2(x¢) =1{dj | j € $+},(t € T). Therefore, we attain
S = Vier Vied, de.

Step 2. We prove that C /(L) is semimodular.
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Let S5,83 € Clg(L), S2]|S3 and S2 A S3 < S3,853. According to the (3) of Re-
mark 1, we may point that there are S, = Sy or S, = ij ,jeg»and in addition, S3 =
SyorS3=3S,, ieg,forsomex,y € L\Oand x;,y; € L\ (A(L)UO0),(j € 4,i €d)
with |£|,|d| = 2. Based on this statement, we will divide different cases to prove
S2,83 < S3 Vv §3 by the following Steps 2.1, 2.2 and 2.3.

Step 2.1. Assume S = Sy and S3 = Sy, for some x,y € L\ 0.

Since So < S2 A S3 < 83,53 and S A S3 € Clg(L), we may affirm x,y € L\
(A(L)UO0).

We will distinguish two cases to fulfill the proof.

Case 1. Suppose S> A S3 = Sp.

Then, Sx, Sy € A(Cls(L)) holds. Thus, by item (3.4), we believe x,y € F2.

When x Ay = 0. Using item (3.2), we obtain Sy, Sy < Sxy = Sx VvV §y. If Sx <
S < Sxy holds for some S € Cl3(L), then S = Sy, holds where p € L\ (A(L)U0)
and p < y. However, A(y) =2 and p < y taken together follows p € A(L)UO.
This is a contradiction to p € L \ (A(L)UO0). Thus, Sy < Sx, holds. Analogously,
Sy < Sxy is true.

When x Ay # 0. Using item (3.3), we affirm Sy vV Sy = Sxvy. Inlightof x,y €
F2 and S, A S3 = Sy, we find x Ay € A(L). So, x Ay < x,y is followed. Using
item (3.10), we may affirm x,y < x vV y. Moreover, h(x Vv y) = h(x) 4+ 1 = 3 holds.
Hence, it follows Sy, Sy < Sxvy. Therefore, we may obtain Sy, S, < Sx Vv Sy.

Case 2. Suppose Sy A Sy # So.

Then, 3 < h(x),h(y) hold since Sy A Sy < S, Sy.

By item (3.1), it is easily to find Sxay < Sx A Sy.

We will demonstrate Sx A Sy = Sxay.

Otherwise, Sxay < Sx A Sy holds. If Sx A Sy = S, for some z € L, then x A
y <z <x,y. According to item (3.1), we may achieve Sxry < S; < Sx,Sy, a
contradiction to Sxay < Sx,Sy. Thatis to say, we attain Sy A S, = S5, jeg € Clg(L)
and 2 < |J|. By the (2) of Definition I, the (2) of Lemma 2, and Definition 2, we may
obtain A(x Ay) C A(z;,) for some ip € J. Considering this result with the atomistic
property of L and 2 < ||, we provide x Ay < z;, < VjegZi < X,, and further,
Sxay < Szio < SVicgzi < Sx,0r Sxay < Szl.0 <S8vicyz; < Sy since Sy # S,. No
matter which of the above cases to happen, it causes a contradiction to Sxxy < Sx or
Sxay < Sy.

In other words, Sx A Sy = Sxay is real.

In fact, Sx A Sy # So and Sx A Sy = Sy taken together infers to h(x A y) > 2.

Moreover, x Ay < x,y holds according t0 Sxay = Sx A Sy < Sx,Sy. Combining
with item (3.10), we may get x,y < x VvV y. Hence, since L satisfies item (3.13) and
there are Syny < Sx,Sy, we may determine Sx,S, < Sxvy. Additionally, So #
Sx ASy and Sx A Sy = Sxay follow x Ay # 0. According to item (3.3), we find
Sxvy =Sx VvV Sy.

Therefore, we decide Sy, Sy < Sx V Sy.



CHARACTERIZATIONS OF ATOMISTIC COMPLETE FINITE LATTICES 437

Step 2.2. Assume S = Sy forsome x € L\Oand S3 ={y; | j € Y}U{a € A(L) |
aZyj.Vje¥Y}eClg(L)with2 <|¥Y|.

Combining items (3.5) and (3.14) with S> A §3 < §3, we may state that there is
Y3 C Y satistying [Y3|+1 = Y| and S AS3 >{y; | j € Y3jU{aec A(L) |a £
v,V j € Y3}. According to S» A S3 < Sy, we may indicate x > V;cy,y;. No matter
to assume ¥ = {1,2,...,n} and Y3 = {1,2,...,n—1}. In view of item (3.14) and
S2 A S3 < Sy,...y, = S3, we may obtain that

if h(yn) =2,then SoAS3 =S8y,..y,_5
if h(yn) >3, then S AS3=Sy,...y,_1z, Where 2, <y, and z, € L\ (A(L)U
0).

Suppose /(yn) = 2. Then Sy, . .y, ; < Sx,Sy,...y, produce that x, which x =
\/;’Zlyj, satisfies: for any p € L\ (A(L)UO0) with \/;”Zlyij < p < x, there is ys A
p#Oforsomese{l,....n—1}\{i; | j=1,....m} where {i; | j =1,....m} C
{1,...,n—1}. We will use the following two statuses to fulfill the proof.

Status 1. When x Ay, = 0.

Then, Sy, € Cls(L) is obtained from the (2) of Definition 1. Hence, it follows
Sx,S8y1..9p < Sxy,. Moreover, we may be assured Sx V Sy, ..y, < Sxy,-

Considering the (3) of Remark 1 and S, < Sx < Sx Vv Sy,...y,» We may suppose
SxV Sy ..y, =Sp forsome b € L\ (A(L)UO0). Evidently, this supposition will cause
Sxyn < Sp. Thus, we decide Sxy, = Sx V Sy,...y, = Sp. This is a contradiction to
x # yn and [{b}] = 1.

On the other hand, we may also suppose Sx V Sy,...y, = Sz,..z,, Wwhere 2 <m
according to the (3) of Remark 1. This supposition will cause x < z;, and y, < z,,
in which z;,,2s, € {z1,...,2Zm}. Considered both of the (1) and (2) in Lemma 2
with Definition 2, we may determine Syy, < SZ,1 2, = Sz1..zm- Thus, it follows
Sxyn = Sz,2, = Sx V Syi.y,- If 24y = 24y, then Sy, = Sz, . This expression
transfers to the above case. But the above case shows that this expression is wrong.
In other words, z;, # Z, 1S true.

Therefore, we obtain Sx VvV Sy, ..y, = Sxy,-

If Sy < S < Sxy, for some S € Clg(L). Then x € § and b, € S, where b, €
L\ (A(L)UO0) and b < y,. However, h(y,) = 2 follows the non-existence of b;,.
Thus, there does not exist S € Clg(L) satisfying Sx < S < Sxy,. That is to say,
Sx < Sxy, holds.

If Sy,..y, <8 < Sxy, forsome S € Cly(L). Theny, € S, V¥_,y;, <q € S.{j:|
t=1,...u} C{l,....n—=1},2<[{js |t =1,...,u}| and A(y;) € A(z},) for z;, €
S,Gedl,...n=1\{js|t=1,...oufand [{jp | p=1,...,0}| < |{1,....n =1} \
{je 1t =1,...,u}|). In addition, we easily find (Vi_,y;,) Az;, =0 for every z;, €
S, (p =1,...,v). However, we already know that there exists s € {1,...,n —1}\
e |t =1,...,u} satisfying (Vi_,y;,) A ys # 0. That is to say, it does not exist
S € Clg(L) satisfying Sy, ..y, < S < Sxy,. Thus, there is Sy, .y, < Sxy, = Sx V

S.Vl---J’n‘
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Status 2. When x A y, # 0.

Actually, using item (3.15.2), we will attain Sxvy, = Sx V Sy, ...y, and
SxsSy1eyn < Sxvyy,-

Suppose h(y,) # 2. Then, S2 A S3 = Sy,...y,_z, is true where z,, < y,. Addi-
tionally, S> A S3 < Sy follows x = v;?;iyj VZn-S0,Zp =xXAyp € L\ (A(L)UO)
holds. This implies x A y, # 0.

We will prove Sx V Sy, ...y, = Sxvy,-

It is easily found Sy, Sy, ...y, < Sxvy, since item (3.1). Thus, we obtain Sy Vv
Sy1yn = Sxvy,. Assume Sy V Sy, .y, = Sp,..p, for b € L\ (A(L)UO0),(i =
1,...,m). By item (3.1), it follows y; < x <b(,(j =1,...,n—1) and y, < b, for
some t € {l,....m}. Ift #1,then 0 <x Ay, <byAb; =0. So, x Ay, =01is
followed. This causes a contradiction to x A y, # 0. Moreover, we gain y; < x <
by and y, < by, (j =1,...,n—1). Thus, m = 1 holds. In addition, according to
item (3.1) and x V y, < by, we may present Sy V Sy, .y, < Sxvy, < Sp,. Hence,
Sxvy, = Sx V Sy,...y, holds.

Next, according to Sy, ...y, _1z, < Sx.Sy;...y,» we may indicate that for any v;zly,-j
<p<xor \/5.=1y,-j Vzp<g<xwhere{i;|j=1,....,t} C{l,...,n—1}, there
exists s € {1,....,n—=1}\{i; | j = 1,...,t} satisfying ys Ap #0 or 2, A p # 0 or
ys Aq # 0. Using items (3.15.1) and (3.1), it follows S», S3 < S2 vV S3.

Step 2.3. Let S2 = Sx;x,...x,, and S3 = Sy, y,...y,. By item (3.5) and S> A §3 <

S2, 83, we follow Sz A S3 > Sy,jl...y,jn_1 = Sx./l"'xjm—l = Sy N1 x} a0
{x1,..., X0} 0 {y1,..., yu}| =n—1. No matter to suppose {y1,..., ¥n} N{X1,....Xm}
={y1,¥2....,¥n—1}. Thus, we may reveal n = m, Xp 7# yn,and S2 = Sy, y»..y,_1 x>

S3 = Sy1y2-~~Yr171yn’
We will demonstrate

h(x,) =2 if and only if h(y,) = 2.

In fact, if A (y,) = 2, then by item (3.14) and S2 A S3 < Sy, ...y, thereis S A S3 =
Sy1.yu_1- Meanwhile, Sy, .y, = S2AS3 <82 = Sy,...y,_1x, follows h(x,) =2
by item (3.14).

Similarly, if 2 (x,) = 2, then h(y,) = 2.

Additionally, if #(y,) = 2, then according to items (3.5) and (3.14) and & (x,) = 2,
we obtain S2 AS3 =Sy, y,_1 < Sy vn_1x0sOy1...yn—1 v, hOIdS.

When h(y,) =2and x, Ay, =0. We will prove Sy, . y,xn = Sy1.ovn VSy1.vn_1xn
= S2 Vv S3.

Suppose S € Clg(L) and Sy, ..y,_1x, < S < Sy,..yux,- Then, by y, Ay, =
0,xp Ayp=0,(p#q;p,g=1,....n),itfollows y; € S,(j =1,...,n—1) and x,, €
S. Additionally, by the supposition, we decide that there is z € L \ (A(L) U0) with
Z < yp satisfying zAy; =zAx, =0,(j =1,...,n—1). This implies 2 < h(z) <
h(yn), a contradiction to h(y,) = 2. Moreover, Sy, y,_ix, < Syj...ynx, 15 real.
Analogously, Sy, ...y, < Sy;...y,x, 18 true. Hence, Sy, ...y, V' Sy 1..yu_1x0 = Sy1..vmxn
is true and Sy, ...y, Sy ...y,—1%, < Sy1..yn V Syi...yu—ix, holds.
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When h(y,) =2 and x, A y, # 0.

Since h(x,) = h(y,) =2 and x, A y,, # 0 taken together follows x, A Vi, < X5, Y
and x, Ay, € A(L).

We PrOV)e Sy yn1xn VSy1yn = Syt eyn_1 Gavyn) I Vi A (xnVyn) =0,(j =
1,...,n—1).

Using the (3) in Remark 1, item (3.1) and Definition 1, it is easily to obtain
Sytevn—1xn YV Sy1yn = Szy.zm (@i € L\ (A(L)U0);i =1,...,m). According
to 2; AZg =0,(t,s = 1,...,m;t #5), we follow y; =z;,(j =1,....n—1). In
view of x, A y, # 0, we attain x,,y, < z,. And further, we gain x, V y, < z,.
Moreover, we decide Sy, .y, 1 xnvyn) = Sy1..yn ¥V Syi...yp—1x,- On the other hand,
combining X, yn, < X, V y, with items (3.1) and (3.2), we may easily arrive at

Syl...ywSyl...yn_lxn = Syl...y,,_l(xnvyn)' So,

Sy VSy1yn—1xn = Sy1 eyt (in V)

is followed.
Combining the above, we affirm Sy, 5, _1x, V' Sy ..y, = Sy1.ym 1 (invyn)-
Using the “Additionally” part in item (3.16.1), we obtain Sy, ..y, _1x,sSy;...y»

< 8y, .. yn—1(Geavy,)- Furthermore, we find Sy, _.y,.Sy . yu_1x0 < Syioyn—ix, V

Sylm)’n‘

If y; AM(xnVVi_,, 1Y) =0,(j =1,...,m). Then, using induction on n — (m + 1)
and the above proof for the case of y; A (x, Vyn) =0,(j =1,...,n—1), we may
gain Sy, y,_1xn V Syly, = Syl---ym(XnVV?:mHyi)' Applying the “Additionally”
part in item (3.16.2), we gain Sy, ..y, Sy1.vn_1x0 < Sy1evn—1xn ¥V Sy1eyn-

When h(y,) > 2. Applying with the result above, we find i (x,) > 2. In virtue
of S2 AS3 < 8y,..y, = S3 and item (3.14), we obtain S, A S3 = Sy,..y,_,z, In
which z, < y, and z, € L\ (A(L) U0). At the same time, we may attain Z, < X,
since S2 A S3 < Sy,..y,_1x,- This follows 2, = x Ay, € L\ (A(L)UO0). Fur-
thermore, we reveal Sy, ..y,_1z, < Sy1...yn_1xn Sy1...yn- Thus, for any VI y; <
p <xn,v:."=y1ykl. <g<ypand{j; |i=1,...my}.{ki|i=1,....my} C{l,....n—
1}, there is sx € {1,....n =13\ {ji | i = 1,...myx}, sy €{l,....n =1} \{k; | i =
1,...,my} satisfying ys A p # 0, ys, Aq # 0. Owing to items (3.16.2) and (3.1), we
confirm S5, 53 < S, vV S3 = S}’1~~~ym(xn\/\/7=m+1yj)‘ O

Combining Lemma 6 with Lemma 7, we may express the following theorem.

Theorem 2. Let L be an atomistic complete finite lattice with |F?| > 2. Then
Cls(L) is a geometric lattice if and only if L satisfies items from (3.8) to (3.16).

4. CONCLUSION

To sum up our results, we make the following remarks.
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(1) Though some of conditions in items from (3.8) to (3.16) seem to be complex,
they are actually expressed in a detailed and applicable way. In addition they com-
plete the check process, since items from (3.8) to (3.16) are suitable for finite cases.
Additionally, from Lemma 7, or from the results of Section 2, we can confirm that
items from (3.8) to (3.16) are necessary and essential when we decide the geometry
of Cls(L) for an atomistic complete finite lattice L.

(2) It is well known that an atomistic complete lattice is finite or infinite. The-
orem 1 and Theorem 2 together answer the open problem of S.Radeleczki for finite
cases. In fact, Theorem 1 is also true for infinite atomistic complete lattice. How-
ever, many preparatory works for Theorem 2 of this paper are proved with inductive
method. This illustrates that Theorem 2 cannot be directly generalized to the infinite
case. Even though, we may hope that the results of this paper will assist the solution
of S.Radeleczki’s open problem for infinite cases. We intend to pursue this line of
research in the future.
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