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Abstract. In this note we establish some estimates, involving the Euler Beta function, of the in-

tegral fab (x—a)? (b—x)? f(x)dx for functions when a power of the absolute value is P —convex.
An extension to functions of several variables is also obtained.
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1. INTRODUCTION

Let I be an interval in R. Then f : I — R is said to be convex if

fax+(A=ny)<tf ()+A=1)f(y)

holds for all x,y € I and ¢ € [0, 1].
The notion of quasi-convex functions generalizes the notion of convex functions.
More precisely, a function f : [a,b] — R is said to be quasi-convex on [a, b] if

flx+(A=1)y) < max{f(x), f(»)}

holds for any x,y € [a,b] and ¢ € [0,1]. Clearly, any convex function is a quasi-
convex function. Furthermore, there exist quasi-convex functions which are not con-
vex (see [11]).

The generalized quadrature formula of Gauss-Jacobi type has the form

b m
/ (x—=a)? (=) f()dx = 3 By i f (k) + Ronl f] (L.1)
a k=0

for certain By, , vk and rest term Ry, [ f] (see [22]).

In [17], Ozdemir et al. established several integral inequalities concerning the
left-hand side of (1.1) via some kinds of convexity. Especially, they discussed the
following result connecting with quasi-convex function:
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Theorem 1. Let f : [a,b] — R be continuous on |a,b] such that f € L([a,b]),
0<a<b<oo If fis quasi-convex on [a,b), then for some fixed p,q > 0, we have

b
/ (x—a)P(b—x)? f(x)dx < (b—a)?TTT1 B(p+1,¢ + 1) max{ f(a), /(b)},

where B(x, V) is the Euler Beta function.

Recently, Liu [12] established some new integral inequalities for quasi-convex
functions as follows:

Theorem 2. Let f : [a,b] — R be continuous on |a,b] such that f € L([a,b]),

O0<a<b<ooandletk > 1. If |f|% is quasi-convex on [a,b], for some fixed
p.q >0, then

b
/ (x—a)?(b—x)? f(x)dx

=(b—a)P I [Bkep + 1.kg + DIF (max {| (@) 7T | f@)IFT}) ©

Theorem 3. Let f : [a,b] — R be continuous on |a,b] such that f € L([a,b]),
0<a<b<ooandlet] > 1. If| f|! is quasi-convex on [a,b), for some fixed p,q > 0,
then

b
/ (x—a)? (b— )7 f(x)dx

§(b—a)p+q+lﬂ(l?+ l,g+1) (max{|f(a)|l’|f(b)|l})ll.

On the other hand, Dragomir et al. in [6] defined the following class of functions
of P-convex.

Definition 1. Let / C R be an interval. The function f : I — R is said to belong
to the class P (/) (or to be P-convex) if it is nonnegative and, for all x,y € I and
t €0, 1], satisfies the inequality

fix+1A=0)y) < f(x)+ f(»).

Note that P (/) contain all nonnegative convex and quasiconvex functions. Since
then numerous articles have appeared in the literature reflecting further applications
in this category; see [1,2,4,5,7-10, 13—-16, 18-21,23-26] and references therein.

The main purpose of this note is to establish some new estimates of the integ-
ral | f (x —a)P(b—x)1 f(x)dx for functions when a power of the absolute value is
P —convex. An extension to functions of several variables is also obtained. That is,
this study is a continuation and further generalization of [12, 17] via P-convexity.
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2. NEW INTEGRAL INEQUALITIES VIA P-CONVEXITY

In this section we generalize Theorems 1-3 with a P-convex function setting. For
this purpose, we need the following lemma (see [17, Lemma 2.1]):

Lemma 1. Ler f : [a,b] C [0,00) — R be continuous on [a,b] such that f €
L([a,b)), a < b. Then the equality

b
/ (x—a)?(b—x) f(x)dx = (b—a)P+q+1/1(1—z)Pﬂf(za +(1=1)b)dt
a 0

(2.1)
holds for some fixed p,q > O.

The next theorem gives a new result for P-convex functions.

Theorem 4. Let f : [a,b] — R be continuous on |a,b] such that f € L([a,b]),
0<a<b<oo If|f|is P-convex on [a,b], for some fixed p,q > 0, then

b
[ (x—a)?(b—x)? f(x)dx

<(b—a)? T B(p+ 1.9+ (| f(@]+|f D)), (2.2)
where B(x,y) is the Euler Beta function.

Proof. By Lemma 1, the Beta function which is defined for x,y > 0 as

B(x,y) = /Olzx—l(l—z)y—ldr

and the fact that f is P-convex on [a,b], we have
b 1
/ (x—a)?(b—x) f(x)dx <(b—a)Pt9Tt! / (I=0)Pt9| f(ta+ (1—1)b)|dt
a 0

1
b= [ -2 f@)]+ 1 G)ds
0
=(b—a)?T I B(g+ 1, p+ DS @]+ | f D)),
which completes the proof. U

The corresponding version for powers of the absolute value is incorporated in the
following result.

Theorem 5. Let f : [a,b] — R be continuous on |a,b] such that f € L([a,b]),

0<a<b<ooandletk > 1. If|f|kkTI is P-convex on [a,b], for some fixed p,q > 0,
then

b
/ (x—a)? (b— ) f(x)dx
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k—1

=b-a)? T [Blep + kg + DI (1f@IFT +170)FT) © @3

Proof. By Lemma 1, Holder’s inequality, the definition of Beta function and the
fact that | f |kkTI is P-convex on [a,b], we have

b
f (x—a)? (b— ) f(x)dx

1 tr ol .1
§(b—a)p+q+1[/ (l—t)kptkthi| [/ |f(ta+(1—t)b)|kldt]
0 0

k—1
k

1 1 k k
s(b—a)l’+q+1[ﬂ(kq+1,kp+1)]k[ / (If(a)l’”+|f(b)|k')dt]
0

k—1

1 k. kK \"&
=(b=a)"* T [Blkq + 1kp+ DIF |/ @IFT +1fB)IFT) ©
which completes the proof. g
A more general inequality using Lemma 1 is as follows:

Theorem 6. Let f : [a,b] — R be continuous on [a,b] such that f € L([a,b]),

0<a<b<ooandlet! > 1. If| f|' is P-convex on [a,b], for some fixed p,q > 0,
then

b
/ (r—a)? (b—x)7 f(x)dx

=b-a)" T B(p+1Lg+ 1) (If@I +1f0)') 24

Proof. By Lemma 1, Holder’s inequality, the definition of Beta function and the
fact that | f|' is P-convex on [a, b], we have

b
/ (x—a)?(b—x)? f(x)dx

1 =1 1
:(b—a)P+‘1+1/ [A=0)Pt?) T [(1—=0)Pt9]" f(ta+ (1—1)b)dt
0

| T }

<(b—a)?*t! [ / (1 —z)Prqdz} [ / (1=0)14| f(ta+(1 —t)b)|ldt:|
0 0

<b-a) T g+ 1p+ DT [(I/@F +1f®)N) Ba+1.p+D]"

=b-a)* g+ 1g+ ) (/@] +1/O)N)"

which completes the proof. O
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3. AN EXTENSION TO FUNCTIONS OF SEVERAL VARIABLES

In this section some new integral inequalities for functions of several variables on
convex subsets of R” will be given. First we recall the notion of P-convexity for
functions on a convex subset U of R”.

Definition 2 ([3, Definition 3.1]). The function f : U — R is said to be P-convex
on U if it is nonnegative and, for all x,y € U and A € [0, 1], satisfies the inequality

fAx+1A=2)y) = f(X)+ f(y).
The following proposition will be used throughout this section.

Proposition 1 ([3, Proposition 3.2]). Let U € R be a convex subset of R and
f :U — R be afunction. Then f is P-convex on U if and only if, for every x,y € U,
the function ¢ : [0,1] — R, defined by

p@t) = f(1—1)x+1y),
is P-convex on I with I =[0,1].

We have the following inequalities for functions of several variables on convex
subsets of R”.

Theorem 7. Let U C R be a convex subset of R. Assume that f : U — R isa
P -convex function on U. Then, for every x,y € U and every [a,b] € [0, 1] witha < b,
the following inequality holds:

b
f (t—a)P(b—1) f(1—1)x +1y)dt
<(b—a)’T M B(p+1Lg+ DIf(1—a)x+ay)+ f(1=b)x+by)]. (3.1

Proof. Let x,y € U and every [a,b] € [0,1] witha < b. Since f :U — Rt isa
P -convex function, by Proposition 1 the function ¢ : [0, 1] — R™ defined by

o) == f((1=1)x +1y),
is P-convex on I with I = [0, 1]. Applying Theorem 4 to the function ¢ implies that
b
[ e=are-rrga
a

<(b-a)? 11 B(p+ 1.9+ D(lp@)] + le®d)]).
and we deduce that (3.1) holds. ]

Similarly, we have
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Theorem 8. Let U C R be a convex subset of R and let k > 1. Assume that

fﬁ : U — R* is a P-convex function on U. Then, for every x,y € U and every
[a,b] € [0,1] with a < b, the following inequality holds:

b
/ (t—a)?(b—1) f(1—1t)x +ty)dt

< (b—a)?* 1t [B(kp +1.kq + 1)]*
k—1
k

[/ 5T (A =a)x +ay) + fFT(1=D)x +by)]

Theorem 9. Ler U C R be a convex subset of R and let | > 1. Assume that f' :
U — Rt is a P-convex function on U. Then, for every x,y € U and every [a,b] €
[0, 1] with a < b, the following inequality holds:

b
/ (t—a)?(b—0) f(1—t)x+ty)dt

<(b—a)? M B(p+1,g+ D[f (1 —a)x +ay) + fL(1=b)x +by)].
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