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AsstrAct. The extremality problem representation of the Lax type [1] is studied in
detail for some class of Hamilton-Jacobi equations in the many-dimensional case.
The regularity properties of solutions of the Cauchy problem in the class of convex
lower semicontinuous functions are established. A generalisation to a wider class
of functions is obtained.

The Hamilton-Jacobi equation on the sphere is considered, and its exact solu-
tions are found in terms of a Lax type extremality problem. Some generalisation of
the results for the general case of many-dimensional Hamilton-Jacobi equations is
obtained by using the Fan-Brouwder fixed point techniques in a Banach space.
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1. THE EXTREMALITY PROBLEM FUNCTIONAL ANALYSIS:
CONVEX BSC-cLASS SOLUTIONS

1.1. Introduction. Itis well-known that equations like
u + f(t,x;u,vu) =0 (0.1)

foru: R"x R, — R with f : R, x JD(R") - R being some fixed mapping on

the jet-manifold)JM(R"; R) are calledHamilton—-Jacobi equationsand are related

to the motion of certain mechanical systems. As was shown earlier in [1-3], these
eguations possess the stabilisation property-aso, namely, a solution to (@) for

any Cachy datali-o+ = v from some appropriate class of functions tends to these
Cauchy data.
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In case the mapping : JD(R™R) — R is smooth and does not depend on
variables {;,x) € R, x R" and functionu : R" x R, — R, S. Kruzhkov [8-9]
obtained the following analytical representation for the solution ta)(&ith the
smooth Cauchy data: R" — R :

u(x. t) = v(x = tV(po)) + t[(po. V(po)) - f(Po)]. (0.2)

whereuli-g- = v and the functiormpg = Vo (X — tVf(po)) .
In this work, we develop the theory of equations like (0.1) for some special kinds
of mappingsf : JO(R"; R) — R, namely,

U+ f(Xu,Vu) =0 (0.3)

and demonstrate the inf-type extremality structure of their solutions which was first
observed by P. Lax (see [1]). In particular, we prove that this inf-type extremality
structure really gives rise to solutions of (0.3) for the Cauchy data from the class
BSC(R") of convex lower semicontinuous functions ®4%. In tparticular, for the
case where

f(x;u,Vu) := %(Vu,Vu), ue BSCR"),

we prove in Section 1 the aforementioned Lax result and give its generalisation to a
wider class of Cauchy data.

In Section 2, we study the extremality structure of solutions to equations (0.3)
which reduce to a fixed point problem and show its well-posedness. Another gen-
eralisation considered in this work is related to a Hamilton-Jacobi equation (0.3) on
the n-dimensional spher&". The corresponding inf-type extremality solution to this
Hamilton-Jacobi equation is proved to exist also for the BSC-class of functions on
s".

1.2. Problem setting. The review article [1] devoted to viscosity solutions of first
and second order partialftBrential equations contains the following exact formula,
suggested by P. Lax,

, 1 5
u(et = inf {”(y) + X =yl } (11)
for the solutions to the Hamilton—Jacobi nonlinear partifiedential equation:
ou 1 2
_ -V = = .
5 T ollVUlf =0 U0 =0, (1.2)

with Cauchy data € BSC(R") being chosen as a properly convex and lower semi-
continuous function. Herd;|| = (-, -) is the usual norm iflR", n € Z, andt € R, is a
positive evolution parameter. It is also stated in [1] that there is no exact proof of the
Lax formula (1.1) based on general properties of the Hamilton-Jacobi equation (1.2).

The present section is devoted to such an exact proof of the Lax formula (1.1) and
to the study of some of its properties.
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1.3. Analysis of the Hamilton-Jacobi dynamics.Consider the following canonical
Hamiltonian system associated naturally [2] with (1.2):

dx_ oMo dp__iHo

dt~ dp’ dt  a4x’ 1)
where the Hamiltonian functiodg € C(T(R"); R) is
1
Ho(x, p) = 5IpI” (22)

for (x,p) € T*(R"), T*(R") being the canonical phase space of coordinates. The
solution to (2.1) with Cauchy data ato( po) € T*(R") is given for allt € R, as
follows:
X=X+ pot, P=po. (2.3)
Introduce now the so-called “action function”: R" x R, — R which can be
defined [2] locally as
du= —Hp(x, p)dt+ (p,dx), (2.4)

where, by (2.3)p = (X— Xg)/t, and letuli—o+ = v € BSC[R"). From (2.4) one obtains
immediately that

ou ou
= _H = = 2.5
ot O(Xy p)’ PT% ( )

for all points , p) € T*(R"). Substituting (2.2) into (2.5), one gets the following.
Lemma 1.1. The action functionu : R" x R, — R satisfies exactly the Hamilton-
Jacobi equation (1.2), that is

ou 1

=t é||Vu||2 =0, Ul = . (2.6)

Now we shall proceed to computing an expression for the action funation
R" x R; — R, defined by (2.4). From (2.4) one finds that

t
u(xt) = j(; dr (%J) + U(XO)|x:x0+pot =

X=X9+PQT
P=Po

Lol

Since, due to (2.5), at a fixede R", the function

ou(x, t)
oX

= + v — =
X ;g;gof (X0)|x Xo+ Pot

~ (1m0l o)

2.7)
X=Xo+ Pot

=0+ = Po(X), (2.8)
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is defined, whergy : R" — R" is some mapping naturally defined from (2.3), (2.8)
and (2.7), one arrives at the formula

t
U(x, ) = 0 (x= Po(xo)t) + 5lIPoCxa)l> (29)
Here, for someg € C(R" x R, ; R"), the equation
X0 = X — tp(Xo)

holds, giving an unwieldy solution to the Hamilton-Jacobi equation (2.6). The ex-
pression (2.9) can be easily transformed into the following useful form:

u(x,t) = v(é) + %le — €%, (2.10)

where the mapping : R" x R, — R" is defined as a solution to the functional

equations

ou(x, t)
oX

£(x.1) == x=tpo(é(x. 1)), po(x) := (211)

foranyx € R", andt € R,.

For the expression (2.10) to be interpreted more exactly, it is useful to recall that
Hamiltonian equations (2.1) are completely equivalent to the following shortened
extremal Lagrange action principle:

t=0*

oU[Xo; X, 1] =0, U[xo; X, 1] := ft drLo(X, 5?) + v(Xo), (2.12)
0

N+ =xgeRN
Klr=t=xeRN
%eCL(R4;RN)

where, by definition, the Lagrangian function is

Lo(% %) 1= (P. ) = Ho(% P11 .00 (2.13)

Based on (2.4) and (2.13), one infers easily that the extremum expression

- . 1
U(X, t) = IanOE]R” {U(XO) + E”X _ XOHZ}
1

<@+ 3 |x-

holds if it is assumed that the infimum in the parenthesis exists and is attained at a
unique pointxg = £(x, t) for fixed x € R" andt € R, For the above motivation to be
validated, we shall study in detail properties of the solufienZ(x, t) to the extremal
problem (2.14) aiming to prove thagx, t) = £(x, t) for anyx € R" andt € R, where

£x ) = X-tpole(x D). Bol) 1= oo

as itwas found in (2.11).

(2.14)
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1.4. Analysis of the extremality problem. Let us consider the problem (2.14) in
the case when a functian: R" — R is properly convex and semicontinuous from
below, that is» € BSC(R"). Then the following lemma (similar to lemma A5 in [1])
is true.

Lemma 1.2. There exists a unique solutiog = &(x, t) € R" to the extremum prob-
lem(2.14)characterised by the inequality

1, ~ ~
TE-xE-y) <vi) @ (31)
forally e R", t e R,.

Proof. We first prove the inequality (3.1) assuming the existence of a solution to
(2.14). Let us take any

z=¢+09(y &) =9y + (1 -9,

whered € (0,1). Then one easily obtains the inequality

~ 1 ~ . .
o@) + S IX - &7 < € + 0y - §))
1 - ~ ~ ~
t o (E+ 00 -8 - xE+ -8 -x)
~ 1 - ~
< (1= 9)(@) + doly) + 5 (E-x&-x)
LoEoxy-B+ L (-Ey-8). G2
t Y ot VTS YT R
whence we find that
~ 1 ~ ~ ’0 N2
@) — o) + 7 (E-xE-y) < Sly - &P (33)
for any 9 € (0,1). Passing to the limit in (3.3) a8 — 0, one gets exactly the
inequality (3.1).

Now we shall proceed to the proof of the existence of a solution to (2.4). We use a
standard minimizing sequenége R", j € Z,, satisfying the inequality

v(EjH%@j -x&-x) < “(X’t”% (34)

for any j € Z, and prove first that it is a Cauchy sequence.
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One deduces now that
~ 2
Ej+ &

2
L8t [0(5" ;‘f‘ ] — (%, t)) <

< 4t(% + %) (3.5)

€} — &7 = 2IE; — XI? + 2I& - x> - 4

<4t i}+ % + 20(x, 1) —U(E,-)—v(éj)

using inequalities (3.4) and the convexitywof BSC(R"). Inequality (3.5) means
that for any fixedt € R, there exists the limit element lim. & = € € R", by
virtue of the completeness of the Euclidean spR€eOn the other hand, the lower
semicontinuity o : R" — R yields

% 0 < o) + 518 - X
< limin (u(gj) + %HEJ- - x||2) < T(x 1), (3.6)
which implies the following identity related to (2.14):
1% 0 = o®) + 51 - X1 @7)
The uniqueness of the solutighe R" of problem (2.14) for fixedk € R" and

t € R, is proved as follows. IEl andéz € R" are two diferent solutions of (2.14),
then it follows from (3.1) that

~ ~ 1,- -~
v - &) + {{E-xE-B) <0,

! (3.8)
v(&2) — v(&y) + n <fz - X & - §1> <0,
for anyt € R,. Summing inequalities (3.8), one gets readily that
1.~ -
f”fl -&ll<0 (39)
for anyt € R, and, hencef; = &,. Thus, the solutiog : R" x R, — R of problem
(2.14) is unique. O

Now we shall investigate ffierential properties of the solutigh: R” x R, — R,
which will be used essentially in the main required equality &, thus ensuring that
the extremum function TR"x R, — R belongs to BSAR") and coincides with the
solutiond’: R" x R, — R of problem (1.2).

The following lemma is almost obvious from inequality (3.1).
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Lemma 1.3. The mapping®; : R" - R"and(1- P) : R" - R", where, by
definition,P;x := &(x, t) for anyt € R,, are Lipschitzian, that is, for any, y € R"

IPex—Pull <llx—yll,  I(L-Pyx—(L-Pyyll <lIx-yll. (3.10)

Proof. From (3.1) one easily obtains
IPex — Peyl® +11(1 = P)x — (1 - Powl® < lIx—yll%, (3.11)
which yields inequalities (3.10). O

Consider now the minimum functian:"R" x R, — R for problem (2.14), which
is realized at a unique element P; € R", t € R,. We can formulate the following
useful lemma.

Lemma 1.4. The mappindk : R" — R" defined adi(x) := {(x,t) for anyx € R",
witht € R, fixed, is convex and gierentiable with respect ta € R", and satisfies
the equality

- 1 ~
Vi(x) = 7 (x=Pu(x). (3.12)
Moreover, ag — 0%, for anyx € R" the following limits exist:

lim G() =09, lim Pi(X) = x. (3.13)

Proof. We first verify equalities (3.13) making use of the following Fenkhel charac-
terisation [3] of convex lower semicontinuous functiowsfunction f : R" - R
is convex and lower semicontinuous if it coincides with its second conjugate via a
Fenkhel functionthat isf**(x) = f(X), x € RN, where, by definition,

f*(p) 1= sup{(x, p) - (%)}, (3.14)

XeR"

forany f : R" - R andp € R". Since (2.14) yields
- 1
000 < fut)+ 3o -we}| = o9
y=X
for anyx € R", t € R, we get the following chain of inequalities using the semicon-
tinuity of the functiorv : R" - R:

1 ,~
o E0< 1) - X7 < v(¥) + v (P) = (P, X) + (P, X — £(X, 1)) <

< 4%H5(X’ ) = X" + 009 + v (p) — (P, %) + tpIP.  (3.15)

Whence one arrives at the inequality

1) = X" < 4t (609 + v (p) = (p. X + tlpI?). (3.16)

which means evidently that limg: £(x,t) = x for all x € R".
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Note that this result can also be obtained by making use of inequality (3.1) and the
convexity of the function : R" — R.

Since the functionn : R" — R is convex and lower semi-continuous, one can
write the following chain of inequalities:

mst{m»+w—m?%}bx=dmsnmmm@uﬁ)=

T N 1 ~ o
= Ilmgjf {u(x,t) - Enx—fll } < |I{116I;]f i(x,t). (3.17)

Thus, applying the limsyp,. operation to the left hand side of (3.17), one gets
easily that

lim supii(x, t) < v(X) < Iitmgnf d(x, t),

t—0+ —0*
hence the limit
tIirg+ 0(x, t) = v(x)

exists. To prove now equality (3.12), we note that the inequality

a(x, 1) = Uy, t) < <%(X — &(x. 1)), x— y> (3.18)

holds for anyx, y € R" and fixedt € R,. From (3.18) and (3.10), applying the change
of variablesx 2 y, one arrives at the following inequality:

0060 - 8049 > (T~ E ) x - ) = (T Ex ). x-)
(405 B0 - B 00 x- ) = (T Ex ) x-0)
(1= Po - 1= Poxx- ) (T Pogux-y) - k- . (319

It follows from (3.19) that, for alk, y € R" andt € R,

a0t - 8.0 - (22— Bxx—) < =

_tnx—yw, (3.20)

that is, L
Y(l — I?)t)X = VU(X, t),

which is the result desired. As a consequence of expressions (3.12) and (2.14), one
obtains the equality .

. —&(xt
lim V(x,) = Po(x) = %(X) (321)
for all x € R" andt ¢ ]R+,~defining a certain functiopp™: R" — R". The latter
proves exactly thag(x, t) = £(x,t) andu(x, t) = T(x,t) for all x € R", t € R, if only
one identifiegpp(X) = Po(X), x € R". m|
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Summing up the results above, we obtain the following characterisation theorem.

Theorem 1.5. The solution of the extremum problg14) realized at the point
£ = &xt) € R"is a convex, lower semicontinuous function R" x R, — R
coinciding exactly with expressiaf2.10) containing the vectot = &(x,t) € R"
equal to the vectof = £(x, t) € R" constructed above.

Having stated in Theorem 1.5 the identity between two expressions (2.10) and
(2.14), we obtain our ultimate theorem.

Theorem 1.6. The extremum Lax expressi@nl)solves the Hamilton—Jacobi equa-
tion (1.2) for the Cauchy data from the class of convex lower semicontinuous func-
tionsBSC(R").

2. THE EXTREMALITY PROBLEM FUNCTIONAL ANALYSIS REVISITED;
THE BSC-CLASS SOLUTIONS

2.1. A general description of results. This subsection deals with the study of the
validity of the Lax formula (1.1) of Section 1 for the solution to Hamilton-Jacobi
nonlinear partial dferential equation (1.2), Section 1, with the Cauchy datR" —

R being a lower semicontinuous function which is not necessarily convex. We shall
prove that the Lax formula solves the Cauchy problem (1.2), Section 1, at any point
x € R"andt € R, fixed, save for an exceptional set of poiqi®f the Fs type having
Lebesgue measure zero.

2.2. Problem setting and formulation of results. Suppose that € Z, and define
BSC(R") as the set of all lower semicontinuous functionsR" — R for which

v (y) = o(llyll?) (11)
1

as|lyll = oo, wherev™ := 5(jo| - v) andy € R". Let us putA := R" x R, and let
Bioc(A) be the set of all locally bounded functions: A — R. Consider now the
following essentially nonlinear operator

. 1
u(¥) := L)(x.t) = inf {”(y) + o lx - yllz} 12
yeR" 2t
from BSCR") to Bioc(A), wherez := (x,t) € A is an arbitrary point.
Remark2.1 It follows from (1.1) that

112
L)@ < v(0) + > (1.3)
and thereforel. : BSCR") — Bioc(A), that is operator (1.2) is well-defined.
Below we prove the Lax formula (1.1), Section 1, for the solution to the Hamilton-
Jacobi equation (1.2), Section 1, that is, the fornu@i = L(v)(2) for almostallze A

does solve the Cauchy problem (1.2), Section 1. Namely, we develop a background
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for stating the Lax formula (1.1), Section 1, and prove the validity of Theorem 2.2
below.

Theorem 2.2. Letv € BSC(R") andu = L(v). Then:

() The functionu € Bioc(A) N Lipyoc(A) and, for almost all(x,t) € A, is
differentiable in the usual sense;

(i) The set of points where the function: A — R is not djferentiable is
contained in some exceptional $@tof typeFs having Lebesgue measure
zero;

(i) The derivativegu/adt andVu are continuous o \ Q;

(iv) Forall (x,t) € A\ Q, the functionu : A — R solves the Cauchy problem
(1.2), Section 1;

(v) Forall x e R", we havdim_,o+ u(x, t) = v(x).

2.3. Regularity properties of the operatorL. We divide ourproof of Theorem 2.2
into several steps and formulate some regularity lemmas.

Definition 2.3. For anyz € A, we put

A= {yo eR": ¥(Zyo) = ,'QII ¥(z, y)}, (21)
where
0z = otg) + B 22
forz= (x,t) € A, and, for arbitrank c A, we set
AK) := UZGKAZ. (2.3)

Remark2.4. Sincev € BSC[R"), we see that the mapping : R" >y — ¥(zy) e R
is also lower semicontinuous and, hence, the gtz € A, are nonempty. In the
sequel, for the sake of convenience, we put

_ Ix—yl?

r(zy) TR (2.4)
wherey € R" andz = (x,t) € A.

Lemma 2.5. Suppos« is a honempty compact subsetofThenA(K) is nonempty
and compact irR". In particular, for arbitraryz € A, the setA; is compact.

Proof. Let us first prove that the s&{K) is bounded. In accordance with the notation
above, we have that, for ale A,

ui2 = inf y(zy). (2.5)
yeR"
Thus, having taken into account (2.1) and (2.2), one gets that
AK)={yeR":3zeK u(zy) =u@@}. (2.6)



INF-TYPE EXTREMALITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 167

From (2.6) one easily deduces that for any A(K)

izi‘& ¥(z y) < supu(2),

zeK

whence, by virtue of the local boundedness ofA — R (see Remark 1.1), it follows
that there exists a constamte R, such that, for any € A(K),

inf y(z y) < co. (2.7)
zeK
It is also evident that there exist constagitsc, € R, such that
inf r(z y) > cillyll® - co. (2.8)
zeK
From (2.7) and (2.8) it follows that for anye A(K)
v(y) + c1lyli? - c2 < iNfy(z y) < co,
zeK
and therefore, for any € A(K)
callyll® - v™(y) < co + Ca. (2.9)

The last inequality, in view of condition (1.1), implies the boundedness of the set
A(K).

We shall now prove that the s&{K) is closed. Let a sequen¢g, € R" : me
Z.} c A(K) be convergent ang = limmn.. ym. From (2.5) and (2.6) we get that
there exists a sequen{®, € K : me Z.} such that, for any € R"andme Z,,

U (Zm; ym) < ¥(Zm; y). (2.10)

Taking, if necessary, a suitable subsequence, we may assume that the séguence
K: me Z,}is also convergent. Putting:= lim_,. zn and taking into account that
v € BSC(R"), one concludes immediately that, for apg R",

Wz 7) = 0@) +1(z7) < im Y@y < im Y(z.y) =
= o(y) + lim (@i y) = o) +1(Zy) + ¥(Z ).

Thus, for anyy € R", we havey(z y) < ¥(z y), thatis,y € A; c A(K). Sinceze K,
this proves the lemma. O

Lemma 2.6. The functioru: A — R (2.5)belongs to the spadep, ,.(A) of locally
Lipschitzian functions.

Proof. Let us fix an arbitrary closed bafl c A and takezy, 2 € K, y1 € Az y2 € Ay
Then
U(z1) = v(ya) + r(z; ya),

U(Z2) = oly2) +1(22;y2), (2.11)
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and, by the definition of infimum, we get

U(z1) < ov(y2) + r(z; y2),

2.12
U(z2) < o(y) + (223 ). (212)
From (2.11) and (2.12) it follows immediately that
U(z1) - u(z) < r(z;y2) — r(z; y2),
U(z) — u(z) < r(z;y1) — r(z; va),
whence the inequality
u(z1) - u(z2)l < m%(lf(zli y1) — (22 yj)l
i=1
2.13
< sup |r(z1;y) - r(z; y)l. ( )
yeA(K)

follows.

Sincer € C*(A xR"; R) andA(K) is compact by virtue of Lemma 1.1, we deduce
that there exists a constan& R, depending only on the bail, such that for any
21,2 € K, y € A(K) one has

Ir(z1;y) = r(z2;y) < Tllz - Z|l.
Thus, our lemma is proved. m]
Lemma2.7. For all xe R",
lim u(x, t) = v(X).
lim u(x.t) = v(x)

Proof. Take anyx € R", t; < t; € R, andzj := (x.tj) € A, j = 1,2. Then, for any
y € R", we havey(z; y) > ¥(z; y) and, hence,

u(x, t1) > u(x, tp) (2.14)
foranyx € R" andt; < t; € R,. Itis also evident that, for any € R" andt € R,
u(x, t) < o(x). (2.15)

Now, from (2.14) and (2.11), we easily get that for alle R" the limit v(x) =
lim¢_,o+ U(X, t) exists and satisfies inequality
o(X) < v(X). (2.16)
Let nowx € R" and a sequencg; € R, : j € Z.} be convergent to zero. Put
z = (X t) € A, k € Z, and choose a sequengg € R" : Kk € Z.} with yx € A,
k€ Z.. Then evidently foralk € Z,, x € R"
u(x, t) = v(yk) + 1z yw- (217)

Using the same considerations as in Lemma 1.1 when proving the boundedness of
the setA(K), it easy to see thdyx € R" : k € Z,} is also bounded. Passing to a
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subsequence if necessary, we may assume that the sedquercR" : ke Z,} is
convergent.

Puty := lim_ yk. Then, by virtue of the lower semicontinuity of the function
v € BSC(R"), we obtain

lim v(yd = v(@)- (218)

Hence the sequend¢&yy) : k € Z. } is bounded from below. As a result, using (2.17)
and (2.18), one arrives at the boundedness of the seqingey) : k e Z.}, which
leads to the following limit relations:

Il = FiI* = lim JIx = yidl® = lim 2t (zc; yi) = O.

Thus it is evident tha§ = x € R". Due to (2.17), we see thatx, ty) > v(yk) for any
x € R", tx € R, andyk € Ay, k € Z,, and consequently, taking into account (2.14)
and the equality = x € R", one gets the following limit relations:

o(x) = lim u(x, t) > lim v(yi) > v(y) = v(X).

This obviously implies thai@(x) > v(x) for any x € R". Thus, on account of (2.16),
the required assertion is proved. O

Lemma 2.8. Take{K,, € A : me Z,} as a sequence of embedded compact subsets
of A, where, foranyne Z,, K, € Kipyz. Then

ﬁA(KJ‘) = A[ﬁ Kj].
j=0 j=0

Proof. Let us seK := Nj1,K; andB := N2y A(K)). Itis evident that it is sfiicient

to prove the inclusioB c A(K). By virtue of Lemma 1.1, the sd® is compact.

Suppose also here thBt+ @, and choosg € B. Evidently there exists a sequence

{y« € R": k € Z,} such thaty := limy_. yx andym € A(Ky), m e Z,. It follows

from the consideration above that there exists a seqyaneK,,, m e Z. } such that

ym € Az, foranyme Z, . Clearly, the sequence may be assumed to be convergent.
Let limi_ Zn = Z itis evident thatz € K. Using Definition (2.2) and taking into

account the continuity of the mapping A — R, one obtains

Yz y) = vy) +1(Zy) < IIM vlym) + M 1(Zm; ym) =
= lIm y(Zm; ym) = lim u(zm) = u(2),

which yields the equality(z; y) = u(2) for z€ K, ory € A; c A(K), thus proving the
lemma. O
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2.4. Analysis of the exceptional sef. Denote now by dianM the diameter of a
setM in a metrics space. Let us s#t) ;= diamA; for anyz € A and put
Q:={ze A:a(2) >0} (3.1)
One of the crucial points in the proof of Theorem 2.2 is based on the following
statement.
Proposition 2.9. The seQ is a set of typd-5, and it has Lebesgue measure zero.

The proof of Proposition 2.9 follows from the lemmas formulated and proved be-
low.
Denote by$"! the unit sphere ilR" and forze A, e € $"1, put

A=1=we :weh), Ge:={xt)eA:(xe) =0} (3.2)
and define, foe € $"1, the mapping
A 3 2+ ag(2) := diamAS € R,. (3.3)

In addition, for any fixede € $"~1 andz € Ge, we define the mappings
R 3 £ +— Cez(¢) = diamAS, o) € R,
R 3 & — ¢ (é) = SUPAS, 100 € R, (3.4)
R 3 & C (&) = inf A, o0y € R.

Lemma 2.10. The mappings, &, Cez, C,, and—Cg, are upper semicontinuous for
anyee S"1landze Ge.

Proof. Take, for instance, the mapping A: — R,. For the other mappings, the
proof is completely similar.

Let{zne A : me Z,} and limp.Zm = Z € A. Letus putk = {Z U {zy :
me Z.,}. SinceK is compact, we see that, due to Lemma RA(K) is also compact.
Thus, for anym € Z,, a(zn) = diamA;, < diamA(K) < o, whence it follows that
the sequencg(zn) € R: me Z,} is bounded.

Put o
= nIqim a(zm); (35)
then there exists a subsequefzg € A : p € Z,} for which
= Igim a(zm,) (3.6)

together with sequencég, € A(Kp) : p € Z,} and{yp € A(Kp) : p€ Z,, K =
{Z} U{zy, 1 | = P, o0} satisfying for allp € Z, the condition
a(Zm,) = llyp — Fpll. (3.7)

It is evident that, without loss of generality, we may assume that the sequgpces
A(Kp) : pe Z, and{yj, € A(Kp) : p € Z,} are convergent.
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Puty = limp,.yp andy = limp_. ip. Then, taking into account Lemma 2.8,
one obtains thay,y € ﬂ‘;j’:OA(Kp) = A(ﬁ‘;’zo Kp) = A,. Having used relations
(3.5)—(3.7), one arrives at the relation

Jim azm) = 1M llyp = Gell = lly - §il < diamA; = a2,
which evidently proves the lemma. O
Let us now define, for an arbitrage $" (see (3.3)), the set
Q°:={ze A:a2 >0} (3.8)

Lemma 2.11. The set®) and Q° are sets of; type, that is, they are at most count-
able unions of closed sets R™!. In particular, the set€Q and Q° are Lebesgue
measurable.

Proof. We confine ourselves to the case of the ®@etThe proof for the se€F® is
completely similar.

The mapping : A — R, is upper semicontinuous, hence, the following sets are
closed for allme Z,.:

Qm={(x,t)eA:a(z)2 ! t> 1 }

m+1 ~“m+1

Now the obvious equalit® = [ J,,_, Qm proves the lemma. O

Lemma 2.12. For arbitrary e € §"-1 7z e G, the set

Pez = {£ € R: Cez(¢) # 0} (3.9)
is countable.

Proof. Fix e e $"1 andz = (x,t) € Ge and put, for the sake of conveniencé) :=
Cez(€) andc®(€) = Cg,(¢) for ¢ € R, andP := Pe;. We also set, for any € R,

A¢ = (C(8).¢*(&).

It is evident thatA,| = c*(¢) — c™(¢) = c(¢) for anyé € R, where|A,| = diamAg,
andP = {¢ e R : A¢ # @}. This means that the lemma follows if one proves that, for
anyé #n € R, we haveA: N A, = @.

Putz: := z+ (£e,0), z, = z+ (e, 0) and¢ < n. Then for anyy € R"

1
Wz 9) ~ U@ y) = 5 (Ix =y + nell? ~ Ix -y + £elf?)

1
=5 1= +&-2(.€). (3.10)
Since the sedy, is compact and

it follows that there exists an elemepe A;, such thaty, e) = c* ().
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Put now
E: :={y €R": (y,€) < (&)}
Since¢ € R" is fixed, it is easy to see that for aglle E,

1 _ 1
1= +&-2@.8) < 5=+ -2(.€), (311)
whence, by virtue of (3.10), (3.11) and the inequalit¥; y) > y(z:;y) valid for any
y € R", one obtains
-1 _ _
Uz y) > Wz 9) + 50— ) + & = 2(5.€) = ¥(27)-

Thus, for any¢ < n, we haveA; c R"\ E, which results in the inequality™ (i) >
c*(£). The latter is equivalent to the equality

Ag N A’l =Q
foranyé # n € R, so the lemma is proved. O
Lemma 2.13. The selQ has zero Lebesgue measure.

Proof. Lete € §"1 andyqe be the characteristic function of the corresponding set
Q°. It follows from Lemma 2.11 that the functigny. is locally integrable im\. Let

K¢ andK be compact sets iB. andR, respectively, and
Ke:={z+((e0)e R™ 1 ze KQ, £eK].
The Fubini theorem [5, 6] implies that

fK orlins = fK , fK X2+ (€0.0))duy €) (312)

for anye € $"1, wherey, is the Lebesgue measurelRf, k € Z,. It is now easy to
see that for arbitrarg € $"1, z e Ge,

{6 R xqe(z+ (0 0) % 0) = £ € R Ceylé) # 0)} = Pe.

By virtue of Lemma 2.12, the sé¥,, at fixede € 8§17 e G, is countable, and
therefore, forz € G, we have

fK Yoz + (€2 0)dha (&) = O,

Hence, using (3.12) and the conditipg. > 0, one concludes that the functigge
is equal to zero almost everywhere kinTaking into account the arbitrariness of the
compact set&? andK, one easily gets thatqe is equal to zero almost everywhere

onA. Fix now an arbitrary orthonormal bagis € $"-1: j =1,n}inthe spac®". It
is easy to see, by (3.1) and (3.8), tkat Ujeﬁ Q¢i. By virtue of the results proved

above, each s&®®, j = 1, n, is of zero Lebesgue measure and, hence, th@ $ets
zero Lebesgue measure as well. This proves the lemma. O
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By using Lemmas 2.11 and 2.13, one readily obtains the proof of Proposition 2.9.

2.5. Analysis of the dfferential operator L. For Theorem 1.3 to be proved com-
pletely, we introduce a functigm: A — R" such that for ang € A

A>32:—> p(2 € A, (4.1)
The existence of such a function (4.1) follows from the axiom of choice [3].

Define the diferential operator
ou 1

Hu=—+ -
a2
where mappingl : A — R is differentiable almost everywhere an

IVull?, (4.2)

Lemma 2.14. A functionp : A — R" satisfying conditior(4.1) is continuous at all
pointsze A\ Q.

Proof. Takez € A \ Q and choose a convergent sequefgee A : m e Z.} such
that limn. Zn = z Owing to Lemma 2.7, the sequence

{p(zm) eR" :me Z,)

is bounded.
Fix now an arbitrary convergent subsequefie@n,) € R" : k € Z,} of the
sequencéo(zyn) € R": me Z,}. The lemma will be proved if we show that

im p(zm) = p(2). (4.3)
For anyy € R"andk € Z,,
v(p(ZmJ) + 1(Zm: p(Zm)) < v(y) + 1@ y), (4.4)
whence, passing to the limit &s— co, one gets
o(y) +1(zy) < ov(y) +r(zy), (4.5)

where, by definition, lilL. p(zm) = y. From (4.5) it follows thaty € A;. Since
ze A\ Qand the sef; is a singleton, one concludes immediately thatp(2). Thus
the lemma is proved. O

Lemma 2.15. The functioru := L(v) is differentiable at all pointz € A \ Q and
(HU)@ = (HN)(Z Y)ly=p(@ = 0. (4.6)

Proof. Choosez € A\ Q, e € §", and a sequendex € R, : k € Z,} convergent
to zero. Put alsay := (z+ 7«€) € A,k € Z,. From the definition of the function
u = L(v) one obtains the inequalities

U@ < o(p(zd) + 1z p(z).

U(z) < v(p(2) + 126 p() @1
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forallk e Z,. As aresult of (4.7), having taken into account that, fokallZ, ,

u(2 = v(p(2) + r(z p(2),
u(zq) = v(p(zd) + 1z p(z),
one gets, also for ak € Z, the following inequalities:
Uz +7ve) —u@ _ r(z+7«€&p(2) - 1z p(2)
Tk Tk
uz+ 7€) —u@ _ rz+ e p(a)) — 1z pz))
Tk Tk
Lemma 2.14 now implies that li;m.., po(z) = p(2). Taking this into account and
passing in (4.8) to the limit whek— oo, one arrives at the relation

Uz + 7€) ~u@) _ %r(z + 7€ p(Jlr=0. (4.9)

(4.8)

lim

k—oo Tk
Since the right hand side of equality (4.9) is independent of the choice of the sequence
{rk € Ry : k € Z,}, the mappingr — u(z + 7€) is differentiable at zero, and the
equality

9 2+ @m0 = —r(z+ 76 P
or or
is true for allze A \ Q. Thus, we obtain the proof of the lemma. O

The final steps of proof of Theorem 2IRis now easy to complete the proof of The-
orem 1.2. The validity of (i) follows from Lemmas 2.6 and 2.15; (i) follows from
Proposition 2.9 and Lemma 2.15; (iv) follows from Lemma 2.15; and (v) follows
from Lemma 2.15.
To prove statement (iii) of Theorem 2.2, we note that Lemma 2.15 implies that the

relation

Vu(2) = Vr(z y)ly:p(z), (4.10)
it true for allz € A\ Q. From Lemma 2.14 (by the continuity of the mapping
o A\ Q — R") and (4.10) we now immediately obtain assertion (iii). Thus, the
theorem is proved completely. O

2.6. Generalizations of the inf-type Lax formula. There are many applications in
modern mathematical physics of the following nonlinear Hamilton-Jacobi type first
order partial diferential equation:

ou 1 pu - 1 _
E'ﬁ'é 7”)(” +§ < JIx,x>=0, (51)
wheret € Ry, 8 € R,, andJ : R" — R" is a diagonal positive definite matrix, with
the Cauchy data

2
IVull* +

Ui=o+ =V € BSCQR”) (52)
It is natural to seek for a generalisation of the Lax formula (0.1) to represent the
solution of the Cauchy problem (5.1), (5.2) by using the dynamical systems approach
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developed in Section 1 (see also [4, 7]). As a result of such an analysis, we obtain
an inf-type representation for problem (5.1), (5.2), which is described below. Some
related results concerning generalised solutions to Hamilton-Jacobi equations can be
also found in [8, 9].

Proposition 2.16. The Cauchy problem (5.1), (5.2) admits the following inf-type fixed
point problem representation:

u(x,t) = yiqun{v(y) + Pu(X t; )}, (5.3)

where, by definition, for anfz; y) € A x R" the nonlocal functional
P(zy) : BSCR";R) > u— Py(zy) € R

is given by

t
Pu(X.t;y) := %%II&(Tlx,t;y)llz p UXI* = 1y, (5.4)

o 16

and the mapping : R, x (A x R") — R" is the functional solution to the follow-
ing nonlinear second order ordinary ffgrential equation (with respect to the first
variabler € R,):

@+ pu(e. ) + BllallPe = e, ale—or =y, =t =X, (5.9)
for anyy, x € R" and fixedu: A — R.

Letting 3 — 07 in the exact expressions (5.3)—(5.5), we get that the fixed point
problem (5.3) becomes that of the Lax type exact form. Consider the fixed point
problem (5.3) and discuss conditions under which it possesses a unique solation
BSC(R"; R) satisfying the Cauchy data

tILrQ+ u(x, t) = v(x)

for all x e R".

For the infimum expression (5.3) to exist at almost all pomts (x;t) c A, one
needs to find conditions at which the functiBp(z -) : R" — R will be convex and
lower semicontinuous at eache BSC[R"; R). Since

Puzy) = %(d(uz; y), atizy) - %(o‘z(0|z; y),a(0Z y)) - %(nxn“—uyn“),

wherea = (a1, as, . ..,an)" € R" and for everyj = 1, n the set of equations

@j + pu(a, Taj + fllall*ej = —wjaj, ajl=or =yj, @jl=t=%j,  (5.6)
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holds, wherev? € Ry, j = 1,n, are some fixed eigenvalues of the mattix R" —
R"in (5.1), one gets easily from (5.6) that

: 1t ege B r2pn :
Puz) = 5 [ litPds=5 [ talf(ue: 9 + G onds-

1t B 4 4
-2 fo o,y ds— P - i) (5.7)

for all (z y) € A x R". Thereby, making use of expression (5.7) ffiar R, ), we can
claim thatPy(z -) € BSC(R"), and that the mapping§, : BSCR") — BSC[R") is
well-defined, where, for any € BSCR"),

P,(u) := inf {v(y) + Pu(z v)}. (5.8)
yeR"
In view of (5.8) and (5.3), we arrive at the following fixed point problem:
Py(u) =u (5.9)

for u e BSC(R") with an arbitrary, but fixed, functiome BSC(R").

In relation to the nonlinear mapping (5.8) one can define the topological space
Bioc(R") of all locally bounded functionsi : A x R" — R with the topology of
uniform consequence over all compact subseta of R". For the further analysis
of problem (5.9), we need the Fan-Browder fixed point theorem [11], which reads as
follows.

Theorem 2.17.1n a topological vector spacs, let#, be a continuous mapping of
$ into B such that there exists a non-empty subset B satisfying the following
condition:

The setB \ (U,zPuu) is either compact or empty, and the sulzsetvA is
compact.

Then there exists a poilte 8 such thati = P,U.
Keeping in mind the conditions above, we define, for amyBSC(R"), the subset

A= | Pu) c Bioc®Y (5.10)
ueBioc(R")

and formulate the following two lemmas.

Lemma 2.18. The setonvA, c Bioc(R") is compact and convex iBioc(R") for any
v € BSCR").

Lemma 2.19. The setB \ (Uyea, Poll) is compact irBioc(R") for anys € BSCR™).

In connection with these lemmas, we introduce the following s&ts, A, and
B = Bioc(R"), and formulate the following statement.
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Proposition 2.20. The fixed point problertb.9) with an arbitrary, but fixed, function
v € BSC(R") restricted to the topological spad®.c(R"), is uniquely solvable, with
the solution belonging to the spaBSC(R"). Moreover, this solution satisfies the
standard viscosity condition

v(X) = JLFE u(x, t)

forall (x,y) € A.

Thereby, the Hamilton-Jacobi equation (5.1) with Cauchy data from the functional
space BSAR") possesses a unique solution representable as the fixed point problem
(5.3), (5.4), which is solvable for anye BSCR").

In the case where the Cauchy data belong to the spaceSB5@hereS" is the
N-dimensional sphere imbedded smoothly into the sfRite', andVu € T*(SN),
the Hamilton-Jacobi equation (1.2) on the sph&tedefines [12] the evolution of
a functionu € BSC@N), which can be also represented in the Lax inf-type form.
Below we will analyse this problem making use of some results from Section 1.

2.7. Solution of extremality problem on$N. As is well-known, the following ex-
tended finite-dimensional Hamiltonian system is closely related to the Hamilton-
Jacobi equation (1.1.2) on the sph&fé

dg/dr = 0H(q, p)/dp, dp/dr = -6H(q, p)/dq, (6.1)

whereH(q, p) = 1/2|Ipll% llal?, (g, p) € T*(RN*1), € R,. This system is considered
together with the following constraints:

(@ p) e T*(S") := {ge RN 1 gl - 1= 0, (g, p) = 0}.
From (6.1) we find that, for € (0,t], on T*(RN+1),

do/dr = pligi®, dp/dr = - ipl*q. (6:2)
Having taken the Cauchy datfi_o+ = y € SN, gl.—t = x € $N, from (6.2), one easily
obtains that, for alt € R, the expression
lIpll = t™* arccosty, x) (6.3)

is independent of € (0,t]. Consider now the following extremality expression for
the Hamilton-Jacobi equation (1.2), Section 1, extended in a natural way on the entire
spaceRN*+!:

t
i(x,t) = inf {v(y) + f dr((p, dg/dt) — H(q, p))}
{a@esN : dl,_g+ =yesN, 0
qlT:t:XESN}

= inf o) + 3 IpE X UIE). (6.4
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where we have pul = q(; X, tly), p = p(z; %, tly) for € (0,t], X,y € SN, and made
use of the equalitd||p|| /dr = 0 implied by equations (6.2).

On the other hand, for the quantifp|| € RN*1, we have formula (6.3), which,
together with (6.4), leads us to the inf-type Lax expression

b(x,t) = inf {U(y) + X arceo? (y, x)}, (6.5)
yesN 2t

which we suggest as a “candidate” for a solution of the Hamilton-Jacobi equation
(1.2), Section 1, on the sphe$& with the Cauchy data € BSCGN). The required
equality
G(x 1) = u(xt),
for almost allx € SN andt € R,, can be obtained by an argument similar to that in
Section 1. Here, we shall consider the case wher8SCSN).
2.8. Analysis of the extremality problem onSN. Here we shall prove the equality
U(x,t) = u(x, t)

for all x € SN andt € R,, based on the properties of the Cauchy data for (1.2),
Section 1, and the exact inf-type expression (6.5). Itis easy to show [3, 4] that there
exists a poing(x, t) € $N, such that

(% 1) = vE(x, 1) + %arcco% (E(x.1).x), (7.1)

for anyx € SN and a fixedt € R,. At the same time, one can show that the exact
solutionu : SN x R, — R satisfies the following expression involvingfdirential
forms:

du(x, t) = (p(x 1), dx) — 1/2|Ip(x, t)]12 dt, (7.2)

which is completely equivalent to the Hamilton-Jacobi equation (1.2), Section 1,
where p : SN x R, — RN*! fulfils (6.2). Thus, based on (6.2) and (7.2), one
gets easily that

t
U(x, 1) = o(E(x 1) + fo (du(q(r; . ty)). t)/cr)dr =

t
= () + 1/2 fo drlIp(z: x )2, (7.3)
that is, for allx € $N and fixedt € R,, we have
u(x, t) = o(&(x 1)) + %arcco% &, 1), X) . (7.4)

Here,¢ : SN x R, — SN is a mapping defined as follows:
(X=£OCE) € %) = tPo(é)(L — (X ENM2, (7.5)
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where the functiorpg : SN — RN*1 satisfies the following relation implied by (7.3):

VU(é, D=0+ := Po(é)s (7.6)
depending only on the Cauchy data BSCSN). Therefore, it is sfficient to prove
the equality for alix € SN andt € R, and that will yield the required equality

a(x, t) = u(x, t).
It is easy to establish the following lemma.

Lemma 2.21. Expression(7.1) is SN > x-differentiable for eacht € R,, and the
following equality holds:

VUE, Do+ = Po(€), (7.7)
where the relation

(x= &0 ) (o 0. %) = tho® (1 - (6. B) ", (7.8)
is fulfilled for anyx € SN andt € R,.
In view of (7.8) and (7.6), we conclude that, with

Po(X) = Po(X).
for anyx € SN, the equalityé(x, t) = &(x, t) holds for allt € R,.. This means, by (7.1)
and (7.2), that the inf-type Lax expression (6.4) solves the Hamilton-Jacobi equation
(1.2), Section 1, on the sphes¥.
The argument above proves the following statement.

Proposition 2.22. Theinf-type expression
. 1
u(x, t) = inf {v(y) + — arcco$ (X, y)},
yeSN 2t

solves the Hamilton-Jacobi equatigf.2), Sectionl, on the spheresN with the
Cauchy data e BSC@SN) having the standard limit solution property.

It is also easy to see that the method suggested above can be applied to the prob-
lem of finding an inf-type solution of an oscillator Hamilton-Jacobi equation on the
sphereSN. This problem will produce an inf-type solution based on properties of the
well-known K. NeumanrN-oscillator dynamical system, whose complete Liouville-
Arnold integrability was proved by J. Moser [10, 12].
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