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A. The extremality problem representation of the Lax type [1] is studied in
detail for some class of Hamilton-Jacobi equations in the many-dimensional case.
The regularity properties of solutions of the Cauchy problem in the class of convex
lower semicontinuous functions are established. A generalisation to a wider class
of functions is obtained.

The Hamilton-Jacobi equation on the sphere is considered, and its exact solu-
tions are found in terms of a Lax type extremality problem. Some generalisation of
the results for the general case of many-dimensional Hamilton-Jacobi equations is
obtained by using the Fan-Brouwder fixed point techniques in a Banach space.

Mathematics Subject Classification:Primary 34A30, 34B05; Secondary 34B15

Keywords: extremality problem, Lax type representation, Hamiltonian dynamical
systems, fixed point problem, exact solutions

1. T    :
 BSC- 

1.1. Introduction. It is well-known that equations like

ut + f (t, x; u,∇u) = 0 (0.1)

for u : �n × �+ → � with f : �+ × J(1)(�n) → � being some fixed mapping on
the jet-manifoldJ(1)(�n;�) are calledHamilton–Jacobi equations, and are related
to the motion of certain mechanical systems. As was shown earlier in [1–3], these
equations possess the stabilisation property ast → ∞, namely, a solution to (0.1) for
any Cachy datau|t=0+ = v from some appropriate class of functions tends to these
Cauchy data.
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In case the mappingf : J(1)(�n;�) → � is smooth and does not depend on
variables (t, x) ∈ �+ × �n and functionu : �n × �+ → �, S. Kruzhkov [8–9]
obtained the following analytical representation for the solution to (0.1) with the
smooth Cauchy datav : �n→ � :

u(x, t) = v(x− t∇ f (p0)) + t
[〈p0,∇ f (p0)〉 − f (p0)

]
, (0.2)

whereu|t=0+ = v and the functionp0 = ∇v (x− t∇ f (p0)) .
In this work, we develop the theory of equations like (0.1) for some special kinds

of mappingsf : J(1)(�n;�)→ �, namely,

ut + f (x; u,∇u) = 0 (0.3)

and demonstrate the inf-type extremality structure of their solutions which was first
observed by P. Lax (see [1]). In particular, we prove that this inf-type extremality
structure really gives rise to solutions of (0.3) for the Cauchy data from the class
BSC(�n) of convex lower semicontinuous functions on�n. In tparticular, for the
case where

f (x; u,∇u) :=
1
2
〈∇u,∇u〉 , u ∈ BSC(�n),

we prove in Section 1 the aforementioned Lax result and give its generalisation to a
wider class of Cauchy data.

In Section 2, we study the extremality structure of solutions to equations (0.3)
which reduce to a fixed point problem and show its well-posedness. Another gen-
eralisation considered in this work is related to a Hamilton-Jacobi equation (0.3) on
then-dimensional sphere�n. The corresponding inf-type extremality solution to this
Hamilton-Jacobi equation is proved to exist also for the BSC-class of functions on
�n.

1.2. Problem setting.The review article [1] devoted to viscosity solutions of first
and second order partial differential equations contains the following exact formula,
suggested by P. Lax,

u(x, t) = inf
y∈�n

{
v(y) +

1
2t
‖x− y‖2

}
, (1.1)

for the solutions to the Hamilton–Jacobi nonlinear partial differential equation:

∂u
∂t

+
1
2
‖∇u‖2 = 0, u|t=0+ = v, (1.2)

with Cauchy datav ∈ BSC(�n) being chosen as a properly convex and lower semi-
continuous function. Here,‖·‖ = 〈·, ·〉 is the usual norm in�n, n ∈ �, andt ∈ �+ is a
positive evolution parameter. It is also stated in [1] that there is no exact proof of the
Lax formula (1.1) based on general properties of the Hamilton-Jacobi equation (1.2).

The present section is devoted to such an exact proof of the Lax formula (1.1) and
to the study of some of its properties.
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1.3. Analysis of the Hamilton-Jacobi dynamics.Consider the following canonical
Hamiltonian system associated naturally [2] with (1.2):

dx
dt

=
∂H0

∂p
,

dp
dt

= −∂H0

∂x
, (2.1)

where the Hamiltonian functionH0 ∈ C2(T(�n);�) is

H0(x, p) =
1
2
‖p‖2 (2.2)

for (x, p) ∈ T∗(�n), T∗(�n) being the canonical phase space of coordinates. The
solution to (2.1) with Cauchy data at (x0, p0) ∈ T∗(�n) is given for all t ∈ �+ as
follows:

x = x0 + p0t, p = p0. (2.3)

Introduce now the so-called “action function”u : �n × �+ → � which can be
defined [2] locally as

du = −H0(x, p)dt + 〈p, dx〉 , (2.4)

where, by (2.3),p = (x− x0)/t, and letu|t=0+ = v ∈ BSC(�n). From (2.4) one obtains
immediately that

∂u
∂t

= −H0(x, p),
∂u
∂x

= p (2.5)

for all points (x, p) ∈ T∗(�n). Substituting (2.2) into (2.5), one gets the following.

Lemma 1.1. The action functionu : �n × �+ → � satisfies exactly the Hamilton-
Jacobi equation (1.2), that is

∂u
∂t

+
1
2
‖∇u‖2 = 0, u|t=0+ = v. (2.6)

Now we shall proceed to computing an expression for the action functionu :
�n ×�+ → �, defined by (2.4). From (2.4) one finds that

u(x, t) =

∫ t

0
dτ

(
du
dτ

)∣∣∣∣∣∣ x=x0+p0τ
p=p0

+ v(x0)|x=x0+p0t =

=

∫ t

0
dτ

(〈
p,

dx
dτ

〉
− H0(x, p)

) ∣∣∣∣∣ x=x0+p0τ
p=p0

+ v(x0)|x=x0+p0t =

=

(
1
2
‖p0‖2t + v(x0)

) ∣∣∣∣∣
x=x0+p0t

. (2.7)

Since, due to (2.5), at a fixedx ∈ �n, the function

∂u(x, t)
∂x

|t=0+ = p0(x), (2.8)
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is defined, wherep0 : �n → �n is some mapping naturally defined from (2.3), (2.8)
and (2.7), one arrives at the formula

u(x, t) = v (x− p0(x0)t) +
t
2
‖p0(x0)‖2. (2.9)

Here, for somex0 ∈ C(�n ×�+;�n), the equation

x0 = x− tp(x0)

holds, giving an unwieldy solution to the Hamilton-Jacobi equation (2.6). The ex-
pression (2.9) can be easily transformed into the following useful form:

u(x, t) = v(ξ) +
1
2t
‖x− ξ‖2, (2.10)

where the mappingξ : �n × �+ → �n is defined as a solution to the functional
equations

ξ(x, t) := x− tp0(ξ(x, t)), p0(x) :=
∂u(x, t)
∂x

∣∣∣∣∣
t=0+

(2.11)

for anyx ∈ �n, andt ∈ �+.
For the expression (2.10) to be interpreted more exactly, it is useful to recall that

Hamiltonian equations (2.1) are completely equivalent to the following shortened
extremal Lagrange action principle:

δũ[x0; x̃, t]
∣∣∣∣∣ x̃|τ=0+ =x0∈�n

x̃|τ=t=x∈�n

x̃∈C1(�+;�n)

= 0, ũ[x0; x̃, t] :=
∫ t

0
dτL0(x̃,

·
x̃) + v(x0), (2.12)

where, by definition, the Lagrangian function is

L0(x̃,
·
x̃) :=

〈
p,
·
x̃
〉 − H0(x̃, p)| ·

x̃=∂H0(x̃,p)/∂p
. (2.13)

Based on (2.4) and (2.13), one infers easily that the extremum expression

ũ(x, t) := inf x0∈�n

{
v(x0) +

1
2t
‖x− x0‖2

}

= v(ξ̃) +
1
2t

∥∥∥x− ξ̃
∥∥∥2

(2.14)

holds if it is assumed that the infimum in the parenthesis exists and is attained at a
unique pointx0 = ξ̃(x, t) for fixed x ∈ �n andt ∈ �+. For the above motivation to be
validated, we shall study in detail properties of the solutionξ̃ = ξ̃(x, t) to the extremal
problem (2.14) aiming to prove thatξ̃(x, t) = ξ(x, t) for anyx ∈ �n andt ∈ �+, where

ξ(x, t) := x− tp0(ξ(x, t)), p0(x) :=
∂u(x, t)
∂x

|t=0+ ,

as it was found in (2.11).
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1.4. Analysis of the extremality problem. Let us consider the problem (2.14) in
the case when a functionv : �n → � is properly convex and semicontinuous from
below, that isv ∈ BSC(�n). Then the following lemma (similar to lemma A5 in [1])
is true.

Lemma 1.2. There exists a unique solutionx0 = ξ̃(x, t) ∈ �n to the extremum prob-
lem(2.14)characterised by the inequality

1
t

〈
ξ̃ − x, ξ̃ − y

〉
≤ v(y) − v(ξ̃) (3.1)

for all y ∈ �n, t ∈ �+.

Proof. We first prove the inequality (3.1) assuming the existence of a solution to
(2.14). Let us take any

z = ξ̃ + ϑ(y − ξ̃) = ϑy + (1− ϑ)ξ̃,

whereϑ ∈ (0, 1). Then one easily obtains the inequality

v(ξ̃) +
1
2t
‖x− ξ̃‖2 ≤ v(ξ̃ + ϑ(y − ξ̃))

+
1
2t

〈
ξ̃ + ϑ(y − ξ̃) − x, ξ̃ + ϑ(y − ξ̃) − x

〉

≤ (1− ϑ)v(ξ̃) + ϑv(y) +
1
2t

〈
ξ̃ − x, ξ̃ − x

〉

+
1
t
ϑ
〈
ξ̃ − x, y − ξ̃

〉
+
ϑ2

2t

〈
y − ξ̃, y − ξ̃

〉
, (3.2)

whence we find that

v(ξ̃) − v(y) +
1
t

〈
ξ̃ − x, ξ̃ − y

〉
≤ ϑ

2t
‖y − ξ̃‖2, (3.3)

for any ϑ ∈ (0,1). Passing to the limit in (3.3) asϑ → 0, one gets exactly the
inequality (3.1).

Now we shall proceed to the proof of the existence of a solution to (2.4). We use a
standard minimizing sequenceξ̃ j ∈ �n, j ∈ �+, satisfying the inequality

v(ξ̃ j) +
1
2t

〈
ξ̃ j − x, ξ̃ j − x

〉
≤ ũ(x, t) +

1
j

(3.4)

for any j ∈ �+ and prove first that it is a Cauchy sequence.
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One deduces now that

‖ξ̃ j − ξ̃i‖2 = 2‖ξ̃ j − x‖2 + 2‖ξ̃i − x‖2 − 4

∥∥∥∥∥∥∥
ξ̃ j + ξ̃i

2
− x

∥∥∥∥∥∥∥

2

≤

≤ 4t

[
1
i

+
1
j

+ 2ũ(x, t) − v(ξ̃ j) − v(ξ̃ j)

]
+ 8t

v

ξ̃ j + ξ̃i

2

 − ũ(x, t)

 ≤

≤ 4t

(
1
i

+
1
j

)
, (3.5)

using inequalities (3.4) and the convexity ofv ∈ BSC(�n). Inequality (3.5) means
that for any fixedt ∈ �+, there exists the limit element limj→∞ ξ̃ j = ξ̃ ∈ �n, by
virtue of the completeness of the Euclidean space�n. On the other hand, the lower
semicontinuity ofv : �n→ � yields

ũ(x, t) ≤ v(ξ̃) +
1
2t
‖ξ̃ − x‖2

≤ lim inf
j→∞

(
v(ξ̃ j) +

1
2
‖ξ̃ j − x‖2

)
≤ ũ(x, t), (3.6)

which implies the following identity related to (2.14):

ũ(x, t) ≡ v(ξ̃) +
1
2t
‖ξ̃ − x‖2. (3.7)

The uniqueness of the solutionξ̃ ∈ �n of problem (2.14) for fixedx ∈ �n and
t ∈ �+ is proved as follows. If̃ξ1 andξ̃2 ∈ �n are two different solutions of (2.14),
then it follows from (3.1) that

v(ξ̃1) − v(ξ̃2) +
1
t

〈
ξ̃1 − x, ξ̃1 − ξ̃2

〉
≤ 0,

v(ξ̃2) − v(ξ̃1) +
1
t

〈
ξ̃2 − x, ξ̃2 − ξ̃1

〉
≤ 0,

(3.8)

for anyt ∈ �+. Summing inequalities (3.8), one gets readily that

1
t
‖ξ̃1 − ξ̃2‖ ≤ 0 (3.9)

for any t ∈ �+ and, hence,̃ξ1 ≡ ξ̃2. Thus, the solutioñξ : �n ×�+ → � of problem
(2.14) is unique. �

Now we shall investigate differential properties of the solutioñξ : �n ×�+ → �,
which will be used essentially in the main required equalityξ̃ = ξ, thus ensuring that
the extremum function ˜u : �n×�+ → � belongs to BSC(�n) and coincides with the
solutionũ : �n ×�+ → � of problem (1.2).

The following lemma is almost obvious from inequality (3.1).
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Lemma 1.3. The mappings̃Pt : �n → �n and (1 − P̃t) : �n → �n, where, by
definition,P̃tx := ξ̃(x, t) for anyt ∈ �+, are Lipschitzian, that is, for anyx, y ∈ �n

‖P̃tx− P̃ty‖ ≤ ‖x− y‖, ‖(1− P̃t)x− (1− P̃t)y‖ ≤ ‖x− y‖. (3.10)

Proof. From (3.1) one easily obtains

‖P̃tx− P̃ty‖2 + ‖(1− P̃t)x− (1− P̃t)y‖2 ≤ ‖x− y‖2, (3.11)

which yields inequalities (3.10). �

Consider now the minimum function ˜u : �n ×�+ → � for problem (2.14), which
is realized at a unique elementξ̃ = P̃t ∈ �n, t ∈ �+. We can formulate the following
useful lemma.

Lemma 1.4. The mapping̃ut : �n → �n defined as̃ut(x) := ũ(x, t) for any x ∈ �n,
with t ∈ �+ fixed, is convex and differentiable with respect tox ∈ �n, and satisfies
the equality

∇ũt(x) =
1
t

(
x− P̃t(x)

)
. (3.12)

Moreover, ast → 0+, for anyx ∈ �n the following limits exist:

lim
t→0+

ũt(x) = v(x), lim
t→0+

P̃t(x) = x. (3.13)

Proof. We first verify equalities (3.13) making use of the following Fenkhel charac-
terisation [3] of convex lower semicontinuous functions:A function f : �n → �

is convex and lower semicontinuous if it coincides with its second conjugate via a
Fenkhel function, that is f ∗∗(x) = f (x), x ∈ �N, where, by definition,

f ∗(p) := sup
x∈�n
{〈x, p〉 − f (x)} , (3.14)

for any f : �n→ � andp ∈ �n. Since (2.14) yields

ũ(x, t) ≤
{
v(y) +

1
2t
‖y − x‖2

}∣∣∣∣∣∣
y=x

= v(x)

for any x ∈ �n, t ∈ �, we get the following chain of inequalities using the semicon-
tinuity of the functionv : �n→ �:

1
2t

∥∥∥ξ̃(x, t) − x
∥∥∥2 ≤ v(x) + v∗(p) − 〈p, x〉 + 〈p, x− ξ(x, t)〉 ≤

≤ 1
4t

∥∥∥ξ̃(x, t) − x
∥∥∥2

+ v(x) + v∗(p) − 〈p, x〉 + t‖p‖2. (3.15)

Whence one arrives at the inequality
∥∥∥ξ̃(x, t) − x

∥∥∥2 ≤ 4t
(
v(x) + v∗(p) − 〈p, x〉 + t‖p‖2

)
, (3.16)

which means evidently that limt→0+ ξ̃(x, t) = x for all x ∈ �n.



164 N. K. PRYKARPATSKA, D. L. BLACKMORE, A. K. PRYKARPATSKY, AND M. PYTEL-KUDELA

Note that this result can also be obtained by making use of inequality (3.1) and the
convexity of the functionv : �n→ �.

Since the functionv : �n → � is convex and lower semi-continuous, one can
write the following chain of inequalities:

ũ(x, t) ≤
{
v(y) + ‖x− y‖2 1

2t

} ∣∣∣∣
y=x

= v(x) ≤ lim inf
t→0+

v(ξ̃(x, t)) =

= lim inf
t→0+

{
ũ(x, t) − 1

2t
‖x− ξ̃‖2

}
≤ lim inf

t→0+
ũ(x, t). (3.17)

Thus, applying the lim supt→0+ operation to the left hand side of (3.17), one gets
easily that

lim sup
t→0+

ũ(x, t) ≤ ν(x) ≤ lim inf
t→0+

ũ(x, t),

hence the limit
lim
t→0+

ũ(x, t) = v(x)

exists. To prove now equality (3.12), we note that the inequality

ũ(x, t) − ũ(y, t) ≤
〈

1
t
(x− ξ̃(x, t)), x− y

〉
(3.18)

holds for anyx, y ∈ �n and fixedt ∈ �+. From (3.18) and (3.10), applying the change
of variablesx� y, one arrives at the following inequality:

ũ(x, t) − ũ(y, t) ≥
〈

1
t
(y − ξ̃(y, t)), x− y

〉
=

〈
1
t
(x− ξ̃(x, t)), x− y

〉
+

+

〈
1
t
(y − x + ξ̃(x, t) − ξ̃(y, t)), x− y

〉
=

〈
1
t
(x− ξ̃(x, t)), x− y

〉
+

+

〈
1
t
(1− P̃t)y − 1

t
(1− P̃t)x, x− y

〉
≥

〈
1
t
(x− P̃i x), x− y

〉
− 1

t
‖x− y‖2. (3.19)

It follows from (3.19) that, for allx, y ∈ �n andt ∈ �+,
∣∣∣∣ũ(x, t) − ũ(y, t) −

〈
1
t (1− P̃i)x, x− y

〉∣∣∣∣ ≤ 1
t
‖x− y‖2, (3.20)

that is,
1
t
(1− P̃t)x = ∇ũ(x, t),

which is the result desired. As a consequence of expressions (3.12) and (2.14), one
obtains the equality

lim
t→0+
∇ũ(x, t) = p̃0(x) ≡ x− ξ̃(x, t)

t
(3.21)

for all x ∈ �n and t ∈ �+, defining a certain function ˜p0 : �n → �n. The latter
proves exactly thatξ(x, t) ≡ ξ̃(x, t) andu(x, t) ≡ ũ(x, t) for all x ∈ �n, t ∈ �+ if only
one identifiesp0(x) = p̃0(x), x ∈ �n. �
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Summing up the results above, we obtain the following characterisation theorem.

Theorem 1.5. The solution of the extremum problem(2.14) realized at the point
ξ̃ = ξ̃(x, t) ∈ �n is a convex, lower semicontinuous functionũ : �n × �+ → �

coinciding exactly with expression(2.10) containing the vectorξ = ξ(x, t) ∈ �n

equal to the vector̃ξ = ξ̃(x, t) ∈ �n constructed above.

Having stated in Theorem 1.5 the identity between two expressions (2.10) and
(2.14), we obtain our ultimate theorem.

Theorem 1.6. The extremum Lax expression(1.1)solves the Hamilton–Jacobi equa-
tion (1.2) for the Cauchy data from the class of convex lower semicontinuous func-
tionsBSC(�n).

2. T     :
 BSC- 

2.1. A general description of results.This subsection deals with the study of the
validity of the Lax formula (1.1) of Section 1 for the solution to Hamilton-Jacobi
nonlinear partial differential equation (1.2), Section 1, with the Cauchy datav : �n→
� being a lower semicontinuous function which is not necessarily convex. We shall
prove that the Lax formula solves the Cauchy problem (1.2), Section 1, at any point
x ∈ �n andt ∈ �+ fixed, save for an exceptional set of pointsQ of theFδ type having
Lebesgue measure zero.

2.2. Problem setting and formulation of results.Suppose thatn ∈ �+ and define
BSC(�n) as the set of all lower semicontinuous functionsv : �n→ � for which

v−(y) = o(‖y‖2) (1.1)

as‖y‖ → ∞, wherev− := 1
2(|v| − v) andy ∈ �n. Let us putΛ := �n × �+ and let

Bloc(Λ) be the set of all locally bounded functionsu : Λ → �. Consider now the
following essentially nonlinear operator

u(x) := L(v)(x, t) = inf
y∈�n

{
v(y) +

1
2t
‖x− y‖2

}
(1.2)

from BSC(�n) toBloc(Λ), wherez := (x, t) ∈ Λ is an arbitrary point.

Remark2.1. It follows from (1.1) that

L(v)(z) ≤ v(0) +
‖x‖2
2t

, (1.3)

and therefore,L : BSC(�n)→ Bloc(Λ), that is operator (1.2) is well-defined.
Below we prove the Lax formula (1.1), Section 1, for the solution to the Hamilton-

Jacobi equation (1.2), Section 1, that is, the formulau(z) = L(v)(z) for almost allz ∈ Λ

does solve the Cauchy problem (1.2), Section 1. Namely, we develop a background
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for stating the Lax formula (1.1), Section 1, and prove the validity of Theorem 2.2
below.

Theorem 2.2. Let v ∈ BSC(�n) andu = L(v). Then:

(i) The functionu ∈ Bloc(Λ) ∩ Lip1,loc(Λ) and, for almost all(x, t) ∈ Λ, is
differentiable in the usual sense;

(ii) The set of points where the functionu : Λ → � is not differentiable is
contained in some exceptional setQ of typeFδ having Lebesgue measure
zero;

(iii) The derivatives∂u/∂t and∇u are continuous onΛ \ Q;
(iv) For all (x, t) ∈ Λ \ Q, the functionu : Λ → � solves the Cauchy problem

(1.2), Section 1;
(v) For all x ∈ �n, we havelimt→0+ u(x, t) = v(x).

2.3. Regularity properties of the operatorL. We divide ourproof of Theorem 2.2
into several steps and formulate some regularity lemmas.

Definition 2.3. For anyz ∈ Λ, we put

Az :=

{
y0 ∈ �n : ψ(z; y0) = inf

y∈�n
ψ(z; y)

}
, (2.1)

where

ψ(z; y) := v(y) +
‖x− y‖2

2t
, (2.2)

for z = (x, t) ∈ Λ, and, for arbitraryK ⊂ Λ, we set

A(K) :=
⋃

z∈KAz. (2.3)

Remark2.4. Sincev ∈ BSC(�n), we see that the mappingψz : �n 3 y 7→ ψ(z; y) ∈ �
is also lower semicontinuous and, hence, the setsAz, z ∈ ∆, are nonempty. In the
sequel, for the sake of convenience, we put

r(z; y) =
‖x− y‖2

2t
, (2.4)

wherey ∈ �n andz = (x, t) ∈ Λ.

Lemma 2.5. SupposeK is a nonempty compact subset ofΛ. ThenA(K) is nonempty
and compact in�n. In particular, for arbitraryz ∈ Λ, the setAz is compact.

Proof. Let us first prove that the setA(K) is bounded. In accordance with the notation
above, we have that, for allz ∈ Λ,

u(z) = inf
y∈�n

ψ(z; y). (2.5)

Thus, having taken into account (2.1) and (2.2), one gets that

A(K) =
{
y ∈ �n : ∃ z ∈ K ψ(z; y) = u(z)

}
. (2.6)
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From (2.6) one easily deduces that for anyy ∈ A(K)

inf
z∈K

ψ(z; y) ≤ sup
z∈K

u(z),

whence, by virtue of the local boundedness ofu : Λ→ � (see Remark 1.1), it follows
that there exists a constantc0 ∈ �+ such that, for anyy ∈ A(K),

inf
z∈K

ψ(z; y) ≤ c0. (2.7)

It is also evident that there exist constantsc1, c2 ∈ �+ such that

inf
z∈K

r(z; y) ≥ c1‖y‖2 − c2. (2.8)

From (2.7) and (2.8) it follows that for anyy ∈ A(K)

v(y) + c1 ‖y‖2 − c2 ≤ inf
z∈K
ψ(z; y) ≤ c0,

and therefore, for anyy ∈ A(K)

c1‖y‖2 − v−(y) ≤ c0 + c2. (2.9)

The last inequality, in view of condition (1.1), implies the boundedness of the set
A(K).

We shall now prove that the setA(K) is closed. Let a sequence{ym ∈ �n : m ∈
�+} ⊂ A(K) be convergent and ˜y := limm→∞ ym. From (2.5) and (2.6) we get that
there exists a sequence{zm ∈ K : m ∈ �+} such that, for anyy ∈ �n andm ∈ �+,

ψ(zm; ym) ≤ ψ(zm; y). (2.10)

Taking, if necessary, a suitable subsequence, we may assume that the sequence{zm ∈
K : m ∈ �+} is also convergent. Puttingz := limm→∞ zm and taking into account that
v ∈ BSC(�n), one concludes immediately that, for anyy ∈ �n,

ψ(z; y) = v(y) + r(z; y) ≤ lim
k→∞

ψ(zk, yk) ≤ lim
k→∞

ψ(zk, y) =

= v(y) + lim
k→∞

r(zk; y) = v(y) + r(z; y) + ψ(z; y).

Thus, for anyy ∈ �n, we haveψ(z; y) ≤ ψ(z; y), that is,y ∈ Az ⊂ A(K). Sincez ∈ K,
this proves the lemma. �

Lemma 2.6. The functionu : Λ→ � (2.5)belongs to the spaceLip1,loc(Λ) of locally
Lipschitzian functions.

Proof. Let us fix an arbitrary closed ballK ⊂ Λ and takez1, z2 ∈ K, y1 ∈ Az1, y2 ∈ Az2.
Then

u(z1) = v(y1) + r(z1; y1),

u(z2) = v(y2) + r(z2; y2),
(2.11)
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and, by the definition of infimum, we get

u(z1) ≤ v(y2) + r(z1; y2),

u(z2) ≤ v(y1) + r(z2; y1).
(2.12)

From (2.11) and (2.12) it follows immediately that

u(z1) − u(z2) ≤ r(z1; y2) − r(z2; y2),

u(z2) − u(z1) ≤ r(z2; y1) − r(z1; y1),

whence the inequality

|u(z1) − u(z2)| ≤ max
j=1,2
|r(z1; y1) − r(z2; y j)|

≤ sup
y∈A(K)

|r(z1; y) − r(z2; y)|. (2.13)

follows.
Sincer ∈ C∞(Λ×�n;�) andA(K) is compact by virtue of Lemma 1.1, we deduce

that there exists a constantc ∈ �+, depending only on the ballK, such that for any
z1, z2 ∈ K, y ∈ A(K) one has

|r(z1; y) − r(z2; y) ≤ c‖z1 − z2‖.
Thus, our lemma is proved. �

Lemma 2.7. For all x ∈ �n,

lim
t→0+

u(x, t) = v(x).

Proof. Take anyx ∈ �n, t1 ≤ t2 ∈ �+ andzj := (x, t j) ∈ Λ, j = 1,2. Then, for any
y ∈ �n, we haveψ(z1; y) ≥ ψ(z2; y) and, hence,

u(x, t1) ≥ u(x, t2) (2.14)

for anyx ∈ �n andt1 ≤ t2 ∈ �+. It is also evident that, for anyx ∈ �n andt ∈ �+,

u(x, t) ≤ v(x). (2.15)

Now, from (2.14) and (2.11), we easily get that for allx ∈ �n the limit v(x) =

limt→0+ u(x, t) exists and satisfies inequality

v(x) ≤ v(x). (2.16)

Let now x ∈ �n and a sequence{t j ∈ �+ : j ∈ �+} be convergent to zero. Put
zk := (x, tk) ∈ Λ, k ∈ �+ and choose a sequence{yk ∈ �n : k ∈ �+} with yk ∈ Azk,
k ∈ �+. Then evidently for allk ∈ �+, x ∈ �n

u(x, tk) = v(yk) + r(zk; yk). (2.17)

Using the same considerations as in Lemma 1.1 when proving the boundedness of
the setA(K), it easy to see that{yk ∈ �n : k ∈ �+} is also bounded. Passing to a
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subsequence if necessary, we may assume that the sequence{yk ∈ �n : k ∈ �+} is
convergent.

Put y := limk→∞ yk. Then, by virtue of the lower semicontinuity of the function
v ∈ BSC(�n), we obtain

lim
k→∞

v(yk) ≥ v(y). (2.18)

Hence the sequence{v(yk) : k ∈ �+} is bounded from below. As a result, using (2.17)
and (2.18), one arrives at the boundedness of the sequence{r(zk; yk) : k ∈ �+}, which
leads to the following limit relations:

‖x− y‖2 = lim
k→∞
‖x− yk‖2 = lim

k→∞
2tkr(zk; yk) = 0.

Thus it is evident thaty ≡ x ∈ �n. Due to (2.17), we see thatu(x, tk) ≥ v(yk) for any
x ∈ �n, tk ∈ �+ andyk ∈ Azk, k ∈ �+, and consequently, taking into account (2.14)
and the equalityy ≡ x ∈ �n, one gets the following limit relations:

v(x) = lim
k→∞

u(x, tk) ≥ lim
k→∞

v(yk) ≥ v(y) = v(x).

This obviously implies thatv(x) ≥ v(x) for any x ∈ �n. Thus, on account of (2.16),
the required assertion is proved. �

Lemma 2.8. Take{Km ⊂ Λ : m ∈ �+} as a sequence of embedded compact subsets
of Λ, where, for anym ∈ �+, Km ⊂ Km+1. Then

∞⋂

j=0

A(K j) = A


∞⋂

j=0

K j

 .

Proof. Let us setK :=
⋂∞

j=0K j andB :=
⋂∞

j=0 A(K j). It is evident that it is sufficient
to prove the inclusionB ⊂ A(K). By virtue of Lemma 1.1, the setB is compact.
Suppose also here thatB , ∅, and choosey ∈ B. Evidently there exists a sequence
{yk ∈ �n : k ∈ �+} such thaty := limk→∞ yk andym ∈ A(Km), m ∈ �+. It follows
from the consideration above that there exists a sequence{zm ∈ Km m ∈ �+} such that
ym ∈ Azm for anym ∈ �+. Clearly, the sequence may be assumed to be convergent.

Let limt→∞ zm = z; it is evident thatz ∈ K. Using Definition (2.2) and taking into
account the continuity of the mappingu : Λ→ �, one obtains

ψ(z; y) = v(y) + r(z; y) ≤ lim
m→∞ v(ym) + lim

m→∞ r(zm; ym) =

= lim
m→∞ψ(zm; ym) = lim

m→∞u(zm) = u(z),

which yields the equalityψ(z; y) = u(z) for z ∈ K, or y ∈ Az ⊂ A(K), thus proving the
lemma. �
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2.4. Analysis of the exceptional setQ. Denote now by diamM the diameter of a
setM in a metrics space. Let us seta(z) := diamAz for anyz ∈ Λ and put

Q := {z ∈ Λ : a(z) > 0}. (3.1)

One of the crucial points in the proof of Theorem 2.2 is based on the following
statement.

Proposition 2.9. The setQ is a set of typeFδ, and it has Lebesgue measure zero.

The proof of Proposition 2.9 follows from the lemmas formulated and proved be-
low.

Denote by�n−1 the unit sphere in�n and forz ∈ Λ, e ∈ �n−1, put

Ae
z := {λ = 〈w,e〉 : w ∈ Az}, Ge := {x, t) ∈ Λ : 〈x, e〉 = 0}, (3.2)

and define, fore ∈ �n−1, the mapping

Λ 3 z 7−→ ae(z) := diamAe
z ∈ �+. (3.3)

In addition, for any fixede ∈ �n−1 andz ∈ Ge, we define the mappings

� 3 ξ 7−→ ce,z(ξ) = diamAe
z+(ξe,0) ∈ �+,

� 3 ξ 7−→ c+
e,z(ξ) = supAe

z+(ξe,0) ∈ �, (3.4)

� 3 ξ 7−→ c−e,z(ξ) = inf Ae
z+(ξe,0) ∈ �.

Lemma 2.10. The mappingsa, ae, ce,z, c+
e,z, and−c−e,z are upper semicontinuous for

anye ∈ �n−1 andz ∈ Ge.

Proof. Take, for instance, the mapping a:Λ → �+. For the other mappings, the
proof is completely similar.

Let {zm ∈ Λ : m ∈ �+} and limm→∞ zm = z ∈ Λ. Let us putK := {z} ∪ {zm :
m ∈ �+}. SinceK is compact, we see that, due to Lemma 1.1,A(K) is also compact.
Thus, for anym ∈ �+, a(zm) = diamAzm ≤ diamA(K) < ∞, whence it follows that
the sequence{a(zm) ∈ � : m ∈ �+} is bounded.

Put
α := lim

m→∞a(zm); (3.5)

then there exists a subsequence{zmp ∈ Λ : p ∈ �+} for which

α := lim
p→∞a(zmp) (3.6)

together with sequences{yp ∈ A(Kp) : p ∈ �+} and{ỹp ∈ A(Kp) : p ∈ �+, Kp :=
{z} ∪ {zmj : j = p,∞} satisfying for allp ∈ �+ the condition

a(zmp) = ‖yp − ỹp‖. (3.7)

It is evident that, without loss of generality, we may assume that the sequences{yp ∈
A(Kp) : p ∈ �+ and{ỹp ∈ A(Kp) : p ∈ �+} are convergent.
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Put y = limp→∞ yp and ỹ = limp→∞ ỹp. Then, taking into account Lemma 2.8,
one obtains thaty, ỹ ∈ ⋂∞

p=0 A(Kp) = A
(⋂∞

p=0 Kp
)

= Az. Having used relations
(3.5)–(3.7), one arrives at the relation

lim
m→∞a(zm) = lim

p→∞ ‖yp − ỹp‖ = ‖y − ỹ‖ ≤ diamAz = a(z),

which evidently proves the lemma. �

Let us now define, for an arbitrarye ∈ �n−1 (see (3.3)), the set

Qe := {z ∈ Λ : ae(z) > 0}. (3.8)

Lemma 2.11. The setsQ andQe are sets ofFδ type, that is, they are at most count-
able unions of closed sets in�n+1. In particular, the setsQ and Qe are Lebesgue
measurable.

Proof. We confine ourselves to the case of the setQ. The proof for the setQe is
completely similar.

The mappinga : Λ → �+ is upper semicontinuous, hence, the following sets are
closed for allm ∈ �+:

Qm =

{
(x, t) ∈ Λ : a(z) ≥ 1

m+ 1
, t ≥ 1

m+ 1

}
.

Now the obvious equalityQ =
⋃∞

m=0 Qm proves the lemma. �

Lemma 2.12. For arbitrary e ∈ �n−1, z ∈ Ge, the set

Pe,z := {ξ ∈ � : ce,z(ξ) , 0} (3.9)

is countable.

Proof. Fix e ∈ �n−1 andz = (x, t) ∈ Ge and put, for the sake of convenience,c(ξ) :=
ce,z(ξ) andc±(ξ) := c±e,z(ξ) for ξ ∈ �, andP := Pe,z. We also set, for anyξ ∈ �,
∆ξ := (c−(ξ), c+(ξ)).

It is evident that|∆ξ | = c+(ξ) − c−(ξ) = c(ξ) for anyξ ∈ �, where|∆ξ | = diam∆ξ,
andP = {ξ ∈ � : ∆ξ , ∅}. This means that the lemma follows if one proves that, for
anyξ , η ∈ �, we have∆ξ ∩ ∆η = ∅.

Putzξ := z+ (ξe, 0), zη = z+ (ηe, 0) andξ < η. Then for anyy ∈ �n

ψ(zη; y) − ψ(zξ; y) =
1
2t

(
‖x− y + ηe‖2 − ‖x− y + ξe‖2

)

=
1
2t

(η − ξ)(η + ξ − 2 〈y,e〉). (3.10)

Since the setAzξ is compact and

c+(ξ) = sup{〈y,e〉 : y ∈ Azξ },
it follows that there exists an elementy ∈ Azξ such that〈y,e〉 = c+(ξ).
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Put now
Eξ := {y ∈ �n : 〈y,e〉 < c+(ξ)}.

Sinceξ ∈ �n is fixed, it is easy to see that for ally ∈ Eξ

1
2t

(η − ξ)(η + ξ − 2 〈y,e〉) < 1
2t

(η − ξ)(η + ξ − 2 〈y,e〉), (3.11)

whence, by virtue of (3.10), (3.11) and the inequalityψ(zξ; y) ≥ ψ(zξ; y) valid for any
y ∈ �n, one obtains

ψ(zη; y) > ψ(zξ; y) +
1
2t

(η − ξ)(η + ξ − 2 〈y,e〉) = ψ(zη; y).

Thus, for anyξ < η, we haveAzη ⊂ �n \ Eξ, which results in the inequalityc−(η) ≥
c+(ξ). The latter is equivalent to the equality

∆ξ ∩ ∆η = ∅

for anyξ , η ∈ �, so the lemma is proved. �

Lemma 2.13. The setQ has zero Lebesgue measure.

Proof. Let e ∈ �n−1 andχQe be the characteristic function of the corresponding set
Qe. It follows from Lemma 2.11 that the functionχQe is locally integrable inΛ. Let
K0

e andK be compact sets inGe and�, respectively, and

Ke :=
{
z+ (ξe,0) ∈ �n+1 : z ∈ K0

e, ξ ∈ K
}
.

The Fubini theorem [5, 6] implies that∫

Ke

χQedµn+1 =

∫

K0
e

dµn(x)
∫

K
χQe(z+ (ξe,0))dµ1(ξ) (3.12)

for anye ∈ �n−1, whereµk is the Lebesgue measure in�k, k ∈ �+. It is now easy to
see that for arbitrarye ∈ �n−1, z ∈ Ge,{

ξ ∈ � : χQe(z+ (ξe, 0) , 0
}

=
{
ξ ∈ � : ce,z(ξ) , 0)

}
= Pe,z.

By virtue of Lemma 2.12, the setPe,z, at fixede ∈ �n−1, z ∈ Ge, is countable, and
therefore, forz ∈ Ge, we have∫

K
χQe(z+ (ξe,0))dµ1(ξ) = 0.

Hence, using (3.12) and the conditionχQe ≥ 0, one concludes that the functionχQe

is equal to zero almost everywhere onK. Taking into account the arbitrariness of the
compact setsK0

e andK, one easily gets thatχQe is equal to zero almost everywhere

onΛ. Fix now an arbitrary orthonormal basis
{
ej ∈ �n−1 : j = 1, n

}
in the space�n. It

is easy to see, by (3.1) and (3.8), thatQ =
⋃

j∈1,n Qej . By virtue of the results proved

above, each setQej , j = 1, n, is of zero Lebesgue measure and, hence, the setQ has
zero Lebesgue measure as well. This proves the lemma. �
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By using Lemmas 2.11 and 2.13, one readily obtains the proof of Proposition 2.9.

2.5. Analysis of the differential operator L. For Theorem 1.3 to be proved com-
pletely, we introduce a functionρ : Λ→ �n such that for anyz ∈ Λ

Λ 3 z :→ ρ(z) ∈ Az. (4.1)

The existence of such a function (4.1) follows from the axiom of choice [3].
Define the differential operator

Hu =
∂u
∂t

+
1
2
‖∇u‖2, (4.2)

where mappingu : Λ→ � is differentiable almost everywhere onΛ.

Lemma 2.14. A functionρ : Λ → �n satisfying condition(4.1) is continuous at all
pointsz ∈ Λ \ Q.

Proof. Takez ∈ Λ \ Q and choose a convergent sequence{zm ∈ Λ : m ∈ �+} such
that limm→∞ zm = z. Owing to Lemma 2.7, the sequence

{ρ(zm) ∈ �n : m ∈ �+}
is bounded.

Fix now an arbitrary convergent subsequence{ρ(zmk) ∈ �n : k ∈ �+} of the
sequence{ρ(zm) ∈ �n : m ∈ �+}. The lemma will be proved if we show that

lim
k→∞

ρ(zmk) = ρ(z). (4.3)

For anyy ∈ �n andk ∈ �+,

v(ρ(zmk)) + r(zmk; ρ(zmk)) ≤ v(y) + r(zmk; y), (4.4)

whence, passing to the limit ask→ ∞, one gets

v(y) + r(z; y) ≤ v(y) + r(z; y), (4.5)

where, by definition, limk→∞ ρ(zmk) = y. From (4.5) it follows thaty ∈ Az. Since
z ∈ Λ\Q and the setAz is a singleton, one concludes immediately thaty = ρ(z). Thus
the lemma is proved. �

Lemma 2.15. The functionu := L(v) is differentiable at all pointsz ∈ Λ \ Q and

(Hu)(z) = (Hr)(z; y)|y=ρ(z) = 0. (4.6)

Proof. Choosez ∈ Λ \ Q, e ∈ �n, and a sequence{τk ∈ �+ : k ∈ �+} convergent
to zero. Put alsozk := (z + τke) ∈ Λ, k ∈ �+. From the definition of the function
u = L(v) one obtains the inequalities

u(z) ≤ v(ρ(zk) + r(z; ρ(zk)),

u(zk) ≤ v(ρ(z) + r(zk; ρ(z))
(4.7)
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for all k ∈ �+. As a result of (4.7), having taken into account that, for allk ∈ �+,

u(z) = v(ρ(z) + r(z; ρ(z)),

u(zk) = v(ρ(zk) + r(zk; ρ(zk)),

one gets, also for allk ∈ �+, the following inequalities:

u(z+ τke) − u(z)
τk

≤ r(z+ τke; ρ(z)) − r(z; ρ(z))
τk

,

u(z+ τke) − u(z)
τk

≥ r(z+ τke; ρ(zk)) − r(z; ρ(zk))
τk

.

(4.8)

Lemma 2.14 now implies that limk→∞ ρ(zk) = ρ(z). Taking this into account and
passing in (4.8) to the limit whenk→ ∞, one arrives at the relation

lim
k→∞

u(z+ τke) − u(z)
τk

=
∂

∂τ
r(z+ τe; ρ(z)|τ=0. (4.9)

Since the right hand side of equality (4.9) is independent of the choice of the sequence
{τk ∈ �+ : k ∈ �+}, the mappingτ 7→ u(z + τe) is differentiable at zero, and the
equality

∂

∂τ
u(z+ τe)|τ=0 =

∂

∂τ
r(z+ τe; ρ(z)|τ=0

is true for allz ∈ Λ \ Q. Thus, we obtain the proof of the lemma. �

The final steps of proof of Theorem 2.2.It is now easy to complete the proof of The-
orem 1.2. The validity of (i) follows from Lemmas 2.6 and 2.15; (ii) follows from
Proposition 2.9 and Lemma 2.15; (iv) follows from Lemma 2.15; and (v) follows
from Lemma 2.15.

To prove statement (iii) of Theorem 2.2, we note that Lemma 2.15 implies that the
relation

∇u(z) = ∇r(z; y)|y=ρ(z), (4.10)

it true for all z ∈ Λ \ Q. From Lemma 2.14 (by the continuity of the mapping
ρ : Λ \ Q → �n) and (4.10) we now immediately obtain assertion (iii). Thus, the
theorem is proved completely. �

2.6. Generalizations of the inf-type Lax formula. There are many applications in
modern mathematical physics of the following nonlinear Hamilton-Jacobi type first
order partial differential equation:

∂u
∂t

+
1
2
‖∇u‖2 +

βu
2
‖x‖2 +

1
2
< Jx, x >= 0, (5.1)

wheret ∈ �+, β ∈ �+, andJ : �n → �n is a diagonal positive definite matrix, with
the Cauchy data

u|t=0+ = v ∈ BSC(�n). (5.2)

It is natural to seek for a generalisation of the Lax formula (0.1) to represent the
solution of the Cauchy problem (5.1), (5.2) by using the dynamical systems approach
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developed in Section 1 (see also [4, 7]). As a result of such an analysis, we obtain
an inf-type representation for problem (5.1), (5.2), which is described below. Some
related results concerning generalised solutions to Hamilton-Jacobi equations can be
also found in [8, 9].

Proposition 2.16.The Cauchy problem (5.1), (5.2) admits the following inf-type fixed
point problem representation:

u(x, t) = inf
y∈�n
{v(y) + Pu(x, t; y)}, (5.3)

where, by definition, for any(z; y) ∈ Λ ×�n the nonlocal functional

P(z; y) : BSC(�n;�) 3 u→ Pu(z; y) ∈ �
is given by

Pu(x, t; y) :=
1
4

d
dτ
‖α(τ|x, t; y)‖2

∣∣∣∣∣
t

0+
− β

16
(‖x‖4 − ‖y‖4), (5.4)

and the mappingα : �+ × (Λ × �n) → �n is the functional solution to the follow-
ing nonlinear second order ordinary differential equation (with respect to the first
variableτ ∈ �+):

α̈ + βu(α, τ)α + β‖α‖2 ·α = −Jα, α|τ=0+ = y, α|τ=t = x, (5.5)

for anyy, x ∈ �n and fixedu : Λ→ �.

Letting β → 0+ in the exact expressions (5.3)–(5.5), we get that the fixed point
problem (5.3) becomes that of the Lax type exact form. Consider the fixed point
problem (5.3) and discuss conditions under which it possesses a unique solutionu ∈
BSC(�n;�) satisfying the Cauchy data

lim
t→0+

u(x, t) = v(x)

for all x ∈ �n.
For the infimum expression (5.3) to exist at almost all pointsz := (x; t) ⊂ Λ, one

needs to find conditions at which the functionPu(z; ·) : �n → � will be convex and
lower semicontinuous at eachu ∈ BSC(�n;�). Since

Pu(z; y) =
1
2

〈
α̇(t|z; y), α(t|z; y

〉
− 1

2

〈
α̇(0|z; y), α(0|z; y)

〉
− β

16

(
‖x‖4 − ‖y‖4

)
,

whereα = (α1, α2, . . . , αn)T ∈ �n and for everyj = 1, n the set of equations

α̈ j + βu(α, τ)α j + β‖α‖2α̇ j = −ω2
jα j , α j |τ=0+ = y j , α j |τ=t = x j , (5.6)
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holds, whereω2
j ∈ �+, j = 1, n, are some fixed eigenvalues of the matrixJ : �n →

�n in (5.1), one gets easily from (5.6) that

Pu(z; y) =
1
2

∫ t

0
‖α̇‖2ds− β

2

∫ t

0
‖α‖2(u(α; s) + 〈α̇, α〉)ds−

− 1
2

∫ t

0
〈Jα, α〉ds− β

16
(‖x‖4 − ‖y‖4) (5.7)

for all (z; y) ∈ Λ ×�n. Thereby, making use of expression (5.7) (forβ ∈ �+), we can
claim thatPu(z; ·) ∈ BSC(�n), and that the mappingPv : BSC(�n) → BSC(�n) is
well-defined, where, for anyu ∈ BSC(�n),

Pv(u) := inf
y∈�n
{v(y) + Pu(z; y)}. (5.8)

In view of (5.8) and (5.3), we arrive at the following fixed point problem:

Pv(u) = u (5.9)

for u ∈ BSC(�n) with an arbitrary, but fixed, functionv ∈ BSC(�n).
In relation to the nonlinear mapping (5.8) one can define the topological space

Bloc(�n) of all locally bounded functionsu : Λ × �n → � with the topology of
uniform consequence over all compact subsets ofΛ × �n. For the further analysis
of problem (5.9), we need the Fan-Browder fixed point theorem [11], which reads as
follows.

Theorem 2.17. In a topological vector spaceB, letPv be a continuous mapping of
B into B such that there exists a non-empty subsetA ⊂ B satisfying the following
condition:

The setB \
(⋃

u∈APvu
)

is either compact or empty, and the subsetconvA is
compact.

Then there exists a pointu ∈ B such thatu = Pvu.

Keeping in mind the conditions above, we define, for anyv ∈ BSC(�n), the subset

Av :=
⋃

u∈Bloc(�n)

Pv(u) ⊂ Bloc(�
n) (5.10)

and formulate the following two lemmas.

Lemma 2.18. The setconvAv ⊂ Bloc(�n) is compact and convex inBloc(�n) for any
v ∈ BSC(�n).

Lemma 2.19. The setB \
(⋃

u∈AvPvu
)

is compact inBloc(�n) for anyv ∈ BSC(�n).

In connection with these lemmas, we introduce the following sets,A = Av and
B = Bloc(�n), and formulate the following statement.
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Proposition 2.20. The fixed point problem(5.9)with an arbitrary, but fixed, function
v ∈ BSC(�n) restricted to the topological spaceBloc(�n), is uniquely solvable, with
the solution belonging to the spaceBSC(�n). Moreover, this solution satisfies the
standard viscosity condition

v(x) = lim
u→0+

u(x, t)

for all (x, y) ∈ Λ.

Thereby, the Hamilton-Jacobi equation (5.1) with Cauchy data from the functional
space BSC(�n) possesses a unique solution representable as the fixed point problem
(5.3), (5.4), which is solvable for anyv ∈ BSC(�n).

In the case where the Cauchy data belong to the space BSC(�n), where�n is the
N-dimensional sphere imbedded smoothly into the space�N+1, and∇u ∈ T∗(�N),
the Hamilton-Jacobi equation (1.2) on the sphere�n defines [12] the evolution of
a functionu ∈ BSC(�N), which can be also represented in the Lax inf-type form.
Below we will analyse this problem making use of some results from Section 1.

2.7. Solution of extremality problem on�N. As is well-known, the following ex-
tended finite-dimensional Hamiltonian system is closely related to the Hamilton-
Jacobi equation (I.1.2) on the sphere�N:

dq/dτ = ∂H(q, p)/∂p, dp/dτ = −∂H(q, p)/∂q, (6.1)

whereH(q, p) = 1/2‖p‖2 ‖q‖2 , (q, p) ∈ T∗(�N+1), τ ∈ �+. This system is considered
together with the following constraints:

(q, p) ∈ T∗(�N) :=
{
q ∈ �N+1 : ‖q‖2 − 1 = 0, 〈q, p〉 = 0

}
.

From (6.1) we find that, forτ ∈ (0, t], on T∗(�N+1),

dq/dτ = p‖q‖2 , dp/dτ = − ‖p‖2 q. (6.2)

Having taken the Cauchy dataq|τ=0+ = y ∈ �N, q|τ=t = x ∈ �N, from (6.2), one easily
obtains that, for allt ∈ �+, the expression

‖p‖ = t−1 arccos〈y, x〉 (6.3)

is independent ofτ ∈ (0, t]. Consider now the following extremality expression for
the Hamilton-Jacobi equation (1.2), Section 1, extended in a natural way on the entire
space�N+1:

ũ(x, t) = inf{
q(τ)∈�N : q|τ=0+ =y∈�N,

q|τ=t=x∈�N
}

{
v(y) +

∫ t

0
dτ(〈p,dq/dt〉 − H(q, p))

}

= inf
y∈�N

{
v(y) +

t
2
‖p(t; x, t|y)‖2

}
, (6.4)
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where we have putq = q(τ; x, t|y), p = p(τ; x, t|y) for τ ∈ (0, t], x, y ∈ �N, and made
use of the equalityd ‖p‖ /dτ = 0 implied by equations (6.2).

On the other hand, for the quantity‖p‖ ∈ �N+1, we have formula (6.3), which,
together with (6.4), leads us to the inf-type Lax expression

ũ(x, t) = inf
y∈�N

{
v(y) +

1
2t

arccos2 〈y, x〉
}
, (6.5)

which we suggest as a “candidate” for a solution of the Hamilton-Jacobi equation
(1.2), Section 1, on the sphere�N with the Cauchy datav ∈ BSC(�N). The required
equality

ũ(x, t) = u(x, t),

for almost allx ∈ �N andt ∈ �+, can be obtained by an argument similar to that in
Section 1. Here, we shall consider the case wherev ∈ BSC(�N).

2.8. Analysis of the extremality problem on�N. Here we shall prove the equality

ũ(x, t) = u(x, t)

for all x ∈ �N and t ∈ �+, based on the properties of the Cauchy data for (1.2),
Section 1, and the exact inf-type expression (6.5). It is easy to show [3, 4] that there
exists a point̃ξ(x, t) ∈ �N, such that

ũ(x, t) = v(ξ̃(x, t)) +
1
2t

arccos2
〈
ξ̃(x, t), x

〉
, (7.1)

for any x ∈ �N and a fixedt ∈ �+. At the same time, one can show that the exact
solutionu : �N × �+ → � satisfies the following expression involving differential
forms:

du(x, t) = 〈p(x, t), dx〉 − 1/2‖p(x, t)‖2 dt, (7.2)

which is completely equivalent to the Hamilton-Jacobi equation (1.2), Section 1,
where p : �N × �+ → �N+1 fulfils (6.2). Thus, based on (6.2) and (7.2), one
gets easily that

u(x, t) = v(ξ(x, t)) +

∫ t

0
(du(q(τ; x, t|y)), t)/dτ)dτ =

= v(ξ(x, t)) + 1/2
∫ t

0
dτ ‖p(τ; x, t|y)‖2 , (7.3)

that is, for allx ∈ �N and fixed t ∈ �+, we have

u(x, t) = v(ξ(x, t)) +
1
2t

arccos2 〈ξ(x, t), x〉 . (7.4)

Here,ξ : �N × �+ → �N is a mapping defined as follows:

(x− ξ 〈x, ξ〉) 〈ξ, x〉 = tp0(ξ)(1− 〈x, ξ〉)1/2, (7.5)
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where the functionp0 : �N → �N+1 satisfies the following relation implied by (7.3):

∇u(ξ, t)|t=0+ := p0(ξ), (7.6)

depending only on the Cauchy datav ∈ BSC(�N). Therefore, it is sufficient to prove
the equality for allx ∈ �N andt ∈ �+, and that will yield the required equality

ũ(x, t) = u(x, t).

It is easy to establish the following lemma.

Lemma 2.21. Expression(7.1) is �N 3 x-differentiable for eacht ∈ �+, and the
following equality holds:

∇ũ(ξ̃, t)|t=0+ = p̃0(ξ̃), (7.7)

where the relation
(
x− ξ̃〈x, ξ̃

〉) 〈
ξ̃(x, t), x

〉
= t p̃0(ξ̃)

(
1− 〈

x, ξ̃
〉)1/2

, (7.8)

is fulfilled for anyx ∈ �N andt ∈ �+.

In view of (7.8) and (7.6), we conclude that, with

p0(x) = p̃0(x),

for anyx ∈ �N, the equalitỹξ(x, t) = ξ(x, t) holds for allt ∈ �+. This means, by (7.1)
and (7.2), that the inf-type Lax expression (6.4) solves the Hamilton-Jacobi equation
(1.2), Section 1, on the sphere�N.

The argument above proves the following statement.

Proposition 2.22. Theinf -type expression

u(x, t) = inf
y∈�N

{
v(y) +

1
2t

arccos2 〈x, y〉
}
,

solves the Hamilton-Jacobi equation(1.2), Section1, on the sphere�N with the
Cauchy datav ∈ BSC(�N) having the standard limit solution property.

It is also easy to see that the method suggested above can be applied to the prob-
lem of finding an inf-type solution of an oscillator Hamilton-Jacobi equation on the
sphere�N. This problem will produce an inf-type solution based on properties of the
well-known K. NeumannN-oscillator dynamical system, whose complete Liouville-
Arnold integrability was proved by J. Moser [10, 12].
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