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Abstract. The problem of a multiple player dice tournament is discussed and solved in the paper.
A die has a finite number of faces with real numbers written on each. Finite dice sets are proposed
which have the following property, defined by Schiitte for tournaments: for an arbitrary subset
of k dice there is at least one die that beats each of the k with a probability greater than 1/2.
It is shown that the proposed dice set realizes the Paley tournament, that is known to have the
Schiitte property (for a given k) if the number of vertices is large enough. The proof is based on
Dirichlet’s theorem, stating that the sum of quadratic nonresidues is strictly larger than the sum
of quadratic residues.
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1. INTRODUCTION

The game of rock, paper, scissors is one of the simplest nontransitive tournaments.
The relation between any two elements from the set {rock, paper, scissors} is well
defined. However, the directed graph of three vertices —representing the three ob-
jects, with edges leading from rock to scissors (since rock beats scissors), from scis-
sors to paper, and from paper to rock —is a directed three-cycle. In other words,
there is no optimal choice among the three alternatives, since any of them is beaten
by another one. This game is directly defined to be a paradox.

Similar types of nontransitivity can be observed with certain dice sets. Let us have
a finite set of dice, each die having a finite number of faces (not necessarily with the
same probabilities) and each face having a real number written upon it. Die i beats
die j if, when rolled together repeatedly, the number of cases when the rolled face of
die i is greater than the rolled face of die j is, in the long run, greater than the half
of the number of total cases. In terms of probability theory, dice are considered as
independent discrete random variables, and die X beats die Y if P(X > Y) > 1/2.
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Definition 1. (see, e.g., [28, Def. 5.3]) Let G be a tournament on n vertices. Dice
set {X1,X2,..., Xy} realizes G if P(X; > X;) > 1/2if and only if i — j is an edge
of G.

Section 2 introduces quadratic residues, the Paley tournament and the Schiitte
property. The Paley tournament [21], denoted by P, hereafter, is a complete dir-
ected graph of p vertices without loops, where p = 4m + 3 > 7 is a prime number.
If j —i is a quadratic residue modulo p, then a directed edge is drawn from vertex i
to vertex j, otherwise it is drawn in the opposite direction. Note that the Paley tour-
nament can be defined not only for prime numbers, and not only for prime numbers
in the form of p = 4m 4 3, however, those variants are not used in the paper.

For a given positive integer k, the Schiitte property, denoted by Si, is defined
for directed graphs, and, as a special case, it is applicable to tournaments: for every
k vertices there exists at least one vertex, from which edges go to each of the k
vertices [10]. It follows from the definition that a tournament with property Sy fulfills
property Sy, as well, when k > k’.

Several lower and upper bounds are known for the minimal number n such that
there exists a tournament on n vertices that fulfills property Si. One of them is
directly applied in the paper, provided by Graham and Spencer [14]: if p > k222k=2,
then P, fulfills property Sk.

dieO
/(1,12,20)\
die 1 / / \\ die 6
(2,14,17) (7,10,16)

die 2

(3921\

die3c_______died
(4,11,18) (5,13,15)

die5

(6,8,19)

FIGURE 1. van Deventer’s dice set realizes P-.

Section 3 summarizes a number of nontransitive dice sets, starting with the one by
Steinhaus and Trybula [30]. The multiple player dice tournament problem requires
property Si: for every k dice there exists at least one die in the set that beats each of
the k. A nontransitive dice set for three players (having property S,) is proposed by
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van Deventer [5]. Each die in Figure 1 has three faces with equal probabilities, and
the numbers written on them are given in parentheses. A directed edge is going from
die i to die j if and only if die i wins over die j with probability greater than 1/2, the
tournament resulted in is P7, that is, P7 is realized by the dice set in Figure 1.

Departing from van Deventer’s dice set, the results of the paper are presented in
Section 4. Dice set D, with p dice is proposed for all p = 4m + 3 (m > 1) prime
numbers and it shown that D, realizes P,.

In terms of probability theory again, for any k, a constructive definition of the set
of independent discrete random variables X1, X, ..., X}, is given such that each vari-
able of an arbitrarily chosen subset X;,, X;,, ..., X;, can be simultaneously beaten by
at least one of the other variables. That is, there exists a random variable X, | in
the set such that P(X;, ., > X;;) > 1/2, P(Xi, > Xip) > 1/2, ..., P(Xj,, >
X;,) > 1/2. Moreover, as an unintended secondary result, all probabilities above are
equal.

Section 5 concludes and discusses further research of realizations having fewer
faces and possible relations to voting theory.

2. QUADRATIC RESIDUES, SCHUTTE’S TOURNAMENT PROBLEM AND THE
PALEY TOURNAMENTS

Let p =4m+3 (m > 1) be a prime number. q is called a quadratic residue modulo
D, if ¢ is congruent to a perfect square modulo p —otherwise it is called a quadratic
nonresidue. Three properties of quadratic residues are applied in the paper. The first
two properties refer to the sets of quadratic residues and of quadratic nonresidues
(see, e.g., Theorem 3.1. in the book of Niven and Zuckerman [20]). If g is a quadratic
residue modulo p, then p —gq is a quadratic nonresidue, and vice versa. The set of
nonzero quadratic residues is closed for multiplication (modulo p) by any nonzero
quadratic residue (and the set of quadratic nonresidues is closed for multiplication
by any nonzero quadratic residue). The third property is related to the distribution of
quadratic residues proven by Dirichlet [6—8], starting from Jacobi’s observation [17]:

Theorem 1. For p > 7, the sum of the residues minus the sum of the nonresidues
is a negative number, and it is an odd multiple of p.

Probably the shortest proof of Theorem 1 is due to Moser [19]. For the illustrative
example p = 7, the sum of quadratic residues is (0+)1 + 2+ 4 = 7, while the sum
of quadratic nonresidues is 3 4+ 54 6 = 14, and their difference is 7—14 = —1-7.

Erdds writes in one of his more than twenty papers from 1963 [10, p. 221]:
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“The problem was recently put to me by Professor Schiitte in its
graph-theoretic form: If €™ is a complete directed graph, with
n vertices, which has the property that for every k vertices of YA
there is at least one vertex from which edges go out to each of the
k, we shall say that €™ has the property Si. Schiitte’s problem
is to show that for every k there is a €™ with the property Sy
and to find the least possible n for a given k.”

Let us keep the notations above and let (k) denote the minimal number of n such
that there exists a tournament on n vertices having property Sk .

That f(k) < oo (forall k =1,2,...) is proved first by Erd6s [10], using the prob-
abilistic method, while a geometric proof is given by Alon, Brightwell, Kierstead,
Kostochka and Winkler [1]. It can be noted that Schiitte’s problem has several vari-
ants, e.g., a bipartite version discussed by Borowiecki, Grytczuk, Haluszczak and
Tuza [4].

Lower and upper bounds for f(k) are also known:

F(k)> 2Kt 1 (Brdés [10, p. 221])
F(k)=25"Y(k+2)—1 (Szekeres and Szekeres [32, p- 292])
S (k)

2k 2

limsup >log2 (Erdds[10, p.221])

k

However, exact values of f'(k) are known only for small k. Szekeres and Szekeres
[32, p. 293] showed that f(1) =3, f(2) =7, f(3) = 19.

Definition 2. Let p = 4m + 3 > 7 be a prime number. The Paley tournament on p
vertices, denoted by P, is defined by its incidence matrix M of size p x p as follows:
0 ifi =7,
M, ;= 1 if i —j is a quadratic residue modulo p,
—1 if j —i is a quadratic residue modulo p.

Following from the properties of quadratic residues, P, is well defined. It is a
simple complete directed graph of p vertices (without loops), in which there is a
directed edge from vertex i to vertex j if and only if j —i is a quadratic residue
modulo p. Otherwise (that is, if i — j is a quadratic residue) the directed edge goes
from vertex j to vertex i. A rotational symmetry of P, can be also observed: the
(i + 1)-th row is a shifted copy of the i-th row, and the last element is relocated to
the first position.

The construction is originally given in a linear algebraic way by Paley [21], and,
according to Goethals and Seidel [13, p. 1002], it is represented as graphs by Sachs
[26] and Erd6s and Rényi [ 1]. Graham and Spencer [14] draw P, as directed graph
and give a sufficient condition for fulfilling Sy :

Theorem 2. If p > k222k=2 thep Py has property S.
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Graham and Spencer [14, p. 47] also propose that Pg7 has property S4 and so,
consequently, f(4) < 67. Their conjecture is that f(4) = 67. According to Reid,
McRae, Hedetniemi and Hedetniemi [24] it was computationally verified by Fisher
in 1996 that

Proposition 1. Among the Paley tournaments:

(1) Pe7 is the smallest one having property Sa;
(2) P33y is the smallest one having property Ss;
(3) P1163 is the smallest one having property S.

Fisher’s results are published in [24] as private communication. We tried to confirm
Fisher’s results and succeeded for the first two regarding S4 and S5. However, the
third result was only confirmed in part: it was shown that P, does not have property
S¢ if 4m 43 = p < 1163 is a prime number.

Tyszkiewicz [36] proposed tournaments fulfilling property S; and they are different
from the Paley tournaments.

3. NONTRANSITIVE DICE SETS

Steinhaus and Trybula [30, p. 69] constructed three independent random vari-
ables X, Y, Z as follows: let ¢ > 4 be an arbitrary constant and P(X =c¢—5/3) =
3/8, P(X =c+1)=5/8, P(Y =c+5/3)=3/8, P(Y =c—1)=5/8, P(Z =
c—2/3+/30) =1/16, P(Z = ¢ +2/3+/30) = 1/16, P(Z =) =7/8. Then P(X >
Z)=P(Z>Y)=P( > X)=39/64 > 1/2. As far as we know, it is the first non-
transitive dice set, even if the word ’dice’ is not mentioned in the paper of Steinhaus
and Trybula.

Another construction by Trybula [34, p. 321] is interpreted here as a nontransitive

dice set, shown in Table 1. Let ¢ = @ denote the golden ratio, then its reciprocal
can be written as 1 /¢ = @ ~ (0.618.

] Hdiel\die2\die3\
face 1 with probability 1/¢ 3 2 1
face 2 with probability 1 —1/¢ 0 2 4

TABLE 1. Nontransitive dice set by Trybula.

Die 1 beats die 2, die 2 beats die 3 and die 3 beats die 1, each with probability
1/ > 1/2. It is also stated in [30] and shown in [34] that if the random variables
X,Y,Z are independent and P(X > Y)=P(Y >Z)= P(Z > X),then1/pisa
sharp upper bound for this probability. If the three probabilities are not necessary
equal, then upper bounds can be given for the sum and product of them. Results are
extended to n variables in [35].

In the rest of the paper, all faces have the same probabilities and, therefore, prob-
abilities are not denoted explicitly in the tables.
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Moon and Moser [18, p. 531] constructed an example for three teams, each in-
cluding three players of different skill levels, such that any team is beaten by another
team. A comparison between two teams is calculated from all the individual matches
played by pairs of players. Their construction can also be interpreted as a nontrans-
itive dice set, where a die is associated with a team, and the numbers written on the
faces represent the skill levels of players on that team. One can verify from Table 2
that die 1 beats die 2, die 2 beats die 3 and die 3 beats die 1, with probability 5/9.

y [ die 1 [ die2 | die3 |
face 1 2 1 3
face 2 6 5 4
face 3 7 9 8

TABLE 2. Nontransitive dice set by Moon and Moser.

Efron’s dice set was published by Gardner [12] and, together with dice sets by
Schwenk [29] and Rowett [25], is well explained by Peterson[23] and Pegg [22].

Tenney and Foster [33], Székely [31], Batakci and Singer [2] and Epstein [9,
pp. 195-199] analyzed a number of dice sets and winning probabilities. Grime [15]
constructed and discussed several nontransitive dice sets.

As we saw, the role of the golden ratio had already been realized at the birth of
nontransitive dice sets. The reader will probably not be surprised by the fact that
Fibonacci numbers are also involved in some of the constructions for nontransitive
dice sets. See Savage’s paper [27] and recent results by Schaefer and Schweig [28]
for more details.

As we have seen in Section 1, van Deventer’s dice set realizes P7 having property
S>. In other words, it is a three-player nontransitive dice set: after each of the two
opponents pick a die of their choice, the third player will find a die among the re-
maining dice which beats both opponents’ dice. The dice set is originally presented
as dice cubes of 6 faces, but they are in fact doubles of 3 faces as in Figure 1. The
numbers written on the faces can be divided into three groups 1-7, 8-14 and 15-21,
and they are rewritten with additive terms in Table 3. We keep the way of additive
writing in the rest of the paper.

] HdieO\diel\die2\die3\die4\die5\die6H add \
face 1 0 1 2 3 4 5 6 +1+0-7
face 2 4 6 1 3 5 0 2 +1+1-7
face 3 5 2 6 3 0 4 1 +1+2-7

TABLE 3. van Deventer’s dice set in additive form.

Note that the dice set presented in [1, p. 377], is equivalent to van Deventer’s dice
set. Jackson [16] proposed a dice set of five dice for the three-player game.
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4. CONSTRUCTION OF DICE SET D, THAT REALIZES P,

Hereafter, a construction of dice set D, of p dice is sketched, then it is shown
that it realizes P,. Remember that p = 4m + 3 > 7 is a prime number. Each
die has p(p —1)/2 faces having equal probabilities. The dice set is written as
an array of p(p —1)/2 rows and p columns. Each column is associated with a
die and faces are organized in rows. Quadratic residues modulo p are denoted by
qdo=0.91 = 1,92.93.....9(p—1)/2 as before. Since g1 = 1 for any p, the first p x p
array can be written as in Table 4.

] [ die0 [diel [die2] ... [diep—1] add \
face 1 0 1 2 ... p—1 +0-p
face 2 1 2 3 0 +1-p
face 3 2 3 4 1 +2-p
;facep p‘—l 0 1 p;Z —i—(p—'l)-p

TABLE 4. The first p X p array of dice set D, generated by g1 = 1.

Table 4 is continued by (p —3)/2 arrays, each of which are of size p x p. For
a quadratic residue ¢, (1 <m < (p —1)/2), the construction of the key row is as
follows. 0 is written on face (m — 1)p + 1 of die do such that 0 < dy < p—1 and
do = 0¢y, (mod p), thatis dg = 0. Then, fori =1,2,..., p—1,1i is written on face
(m—1)p+1ofdied; suchthat0 <d; < p—1landd; =iqg, (mod p);

Each key face generates p — 1 additional faces by its shifted copies. The corres-
ponding p X p array is as in Table 5:

face [ die0 |...[diegn |...[die2gm |...[diep—1]  add
m—1p +1 do=0 | ... 1 2 +(m—1)p>?
m—-1p+2 1 2 3 +m—-1p2+p
m—-1)p+3 2 3 4 +(m—1)p%+2p
mp—1 p—=2| .| p—11|.. 0 +mp?—2p
mp p—l 0 1 +mp2—p

TABLE 5. The m-th p x p array of dice set D, generated by g,.
The illustrative example D7 is given in the Appendix.

Proposition 2. Dice set D, constructed in Tables 4-5 realizes Pp.
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Proof. Note that P, is isomorphic to its reversed version. Consequently, if a dice
set realizes the Paley tournament, then it also realizes the reversed Paley tournament
after an appropriate reindexing of the dice. An alternative way of reversing a tour-
nament realized by a set of dice, presumably containing only nonnegative values on
their faces, is to multiply every value by —1, then all edges of the tournament reverse.
On the other hand, it is sufficient to calculate the odds of die O vs. all other dice, due
to the rotational symmetry of P,. The rest of the proof is built up from four steps:

Lemma 1. The probability that die 0 beats die i is smaller than, equal to, larger
than 1/2, if and only if the probability that die 0 beats die i, restricted to the cases
where their same-indexed faces compete to each other, is smaller than, equal to,
larger than 1/2, respectively.

Proof of Lemma 1. Due to the additive terms in the construction s > ¢ implies that
face s beats face ¢ for an arbitrary pair of dice. By symmetry, the number of cases
when different faces of die 0 and die i compete, is equal to the number of cases when
different faces of die i and die 0 compete. The remaining cases are exactly the ones
when the same-indexed faces compete. U

Lemma 2. The odds of die 0 vs. die i, restricted to the cases when their same-

(p-1)/2
indexed faces compete against each other, are equal to |: > vg,ij|
{=1

(p-1)/2
: |: Y. (p—vg,;) | where vy ; denotes the value written on {-th key face of die
=1

i, and the sums are taken over the (p — 1) /2 key faces.

Proof of Lemma 2. First consider only one square array, corresponding to a fixed
key face. Let us restrict the dice to this array only. Then the value written on the key
face of die i shows the number of cases out of p when die i beats die 0, because the
values follow each other in the same order, and differ only in the rotation. Count the
number of cases when die 0 beats die i for every square array corresponding to a key
face and take their sum. O

Lemma 3. Nonzero quadratic residues are written on key faces of die i, where i
is a nonzero quadratic residue. Equivalently, quadratic nonresidues are written on
key faces of dice j, where j is from the set of quadratic nonresidues.

Proof of Lemma 3. Nonzero quadratic residues are written on key faces of dice
indexed by nonzero quadratic residues. By analogy, quadratic nonresidues are written
on key faces of dice indexed by quadratic nonresidues. O

Lemma 4. The probability that die 0 beats die i is greater than 1/2 if and only if
i is a quadratic nonresidue. The probability that die 0 beats die i is smaller than 1/2
if and only if i is a nonzero quadratic residue.
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Proof of Lemma 4. Let i be a quadratic nonresidue. It follows from Lemmas 2
and 3 that the odds of die 0 vs. die i, restricted to the cases when their same-indexed
faces compete to each other, are greater than 1. The number of cases when different
faces die 0 vs. die i compete, is equal to the number of cases when different faces of
die i vs. die 0 compete. Taking the sum, we get that the odds of die O vs. die i are
greater than 1, consequently, the probability that die 0 beats die i is greater than 1/2.
The case of nonzero quadratic residue is analogous, the probability that die O beats
die i is smaller than 1/2. As we see, the crux is in the relation between the sum of
quadratic residues and the sum of quadratic nonresidues. It should be also noted that
the odds of these dice are never equal. Thus, Lemma 1 could be restated without the
case of equality. O

Lemma 4 can be specified for any fixed value of p, but an explicit formula for
the odds is unknown. In case of a minimal tournament P, fulfilling property Sy
given in Proposition 1, the differences of the sum of quadratic residues and the sum
of quadratic nonresidues are —1-7, —1-19, —1-67,—3-331, —7-1163.

Lemmas 1, 2, 3 and 4 complete the proof of Proposition 2. 0

Remark 1. Tt follows from the construction that the sum of faces is the same,

(p> —2p*+ p3 —2p% +2p)/8 for all dice, i.e., each die has the same expected
—2p3+p>—2p+2

lue 27
\%
atue 4p—1)

Proposition 3. If p > k222k=2 then D, is a nontransitive dice set for k + 1
players.

Proof. The claim follows from Theorem 2 and Proposition 2. U

5. CONCLUSIONS

Research can be continued in several directions, one of them has already been
started: finding dice sets that realize P, and have essentially fewer than p(p —1)/2
faces, preliminary results are summarized in [3]. The assumption of the equal prob-
ability of the faces can be relaxed, which is supposed to decrease the number of faces.
One would expect that replacing discrete random variables with continuous ones re-
quires a different methodology. The historical overview of nontransitive dice refer
to the common roots with voting situations, therefore, both areas would benefit from
further comparative studies.
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APPENDIX: DICE SET D7
The construction provided in Section 4 is illustrated for p = 7.

| [dic0 [die 1 [die2 [die3 [die4 |die5 [dic 6] add |

face 1 0 1 2 3 4 5 6 +0-7
face 2 1 2 3 4 5 6 0 +1.7
face 3 2 3 4 5 6 0 1 +2-7
face 4 3 4 5 6 0 1 2 +3.7
face 5 4 5 6 0 1 2 3 +4-7
face 6 5 6 0 1 2 3 4 +5-7
face 7 6 0 1 2 3 4 5 +6-7
face 8 0 4 1 5 2 6 3 +7-7
face 9 1 5 2 6 3 0 4 +8-7
face 10 2 6 3 0 4 1 5 +9-7
face 11 3 0 4 1 5 2 6 +10-7
face 12 4 1 5 2 6 3 0 +11-7
face 13 5 2 6 3 0 4 1 +12.7
face 14 6 3 0 4 1 5 2 +13.7
face 15 0 2 4 6 1 3 5 +14-7
face 16 1 3 5 0 2 4 6 +15-7
face 17 2 4 6 1 3 5 0 +16-7
face 18 3 5 0 2 4 6 1 +17-7
face 19 4 6 1 3 5 0 2 +18-7
face 20 5 0 2 4 6 1 3 +19.7
face 21 6 1 3 5 0 2 4 +20-7

TABLE 6. Dice set D7.

Remark 2. Dice set D7 is obviously much less efficient in minimizing the number
of faces than van Deventer’s dice set, since his dice have 3 faces only (faces 1, 19, 13
in Table 6 are essentially the same as faces 1, 2, 3 in Table 3 —they differ only in the
additive term).

Remark 3. Table 6 is built up from three 7 x 7 arrays, each of which are latin
squares if the additional k x 7 is not considered.
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