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AsstracT. We prove a generalization of the Wallis formula which is connected with
the generalized (denoted byr(n), n > 0 is real) introduced by Elbert in [1].
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1. |NTRODUCTION

The infinite product of the form

. 22 42 (2k)2
T _ {llmk_>oo T3 35 _(2k_(%2('(22k)+21k) (1)
=i 24 46 -2)
2 |liMe2- 5 -5 e

is known as the Wallis formula (or product) [5]. This formula is the most remarkable
expression for the number. The formula is proved in an elementary way on the
basis of recurrence formula ¢fsin®(t) dt.

In this paper we give a generalization and prove it similarly as in the original case.

2. THE MAIN RESULT

Theorem (Generalized Wallis formula)Letn > 0 be an arbitrary real number. Then

. : 1k 21y
7T(n) _ {Ilmk—wo n Hi:l % 5 (2)
- 9. 1 rrk-1 i (i+1)(n+1)
2 limys oo n% [Tis; [(i+1)(n4lll)t1][(:+1)(n+1)—”]
where
T
sinzl5

In the case where = 1, (2) is the original Wallis formula (1).
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Proof. Consider the half-linear flerential equation
Yl YT =0, y=y(¥), (-0 < X< ), (3)

wherey™ = |y|" - signy, n > 0.

In [1] Elbert introduced the generalized sine funct®y{x) as the solution of the
differential equation (3) satisfying the initial conditiop®) = 0, 4’(0) = 1. The
functionSy(X) is periodic with the period2 and

A

0<Sp(x) <1 forO0< x<g

n (7
sp)-n sif3)-
Itis proved that the generalized Pythagorean formula holds
ISnOI™ +1SHO)M = 1 @)

First we show the following simple integral formula
fr(n) @
Set)dt = —— f s ™Dydt (@ >n+1). (5)

and

0
From the dfferential equation (3), we have

* 1 Sk
f Sp(t)dt = —HS{P + const (6)

By partial integration we obtain from (6) and (4) that

fo Se(t) dt = fo S (1) Se(t) dt =

= f Se(t) dt = f S (t) S (t) dt =
0
a(n) a(n)

f 7 ge-m gy g4 f " semdt (7)
0

Rearranging (7) we obtain (5).
From (6), we get )
. 1
ST (tydt = = (8)

In the cases where = k(n+1) ande = k(in+1)+n,(k=1,2,...), we obtain from
(5) the relations
ﬂm

f Sk gt = & k” s(k DO ) dit ©)
0 0
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and
2 k (2
f Sﬁ(n+1)+n(t) dt - _ f Sgk—l)(n+1)+n(t) dt, (10)
0 K+ v 0
wherev = L v e (0,1).
Repeating (9) and (10) and using (8) we get
# o A 17 1=
f ssmdt= == [ | —,  k=12..) (11)
0 2 0y
and
71_(222 k(n+1) 1 K i
f ST dt = = | | —. (12)
0 n ) 1 +v

In the case whera = 1, formulas (11) and (12) are the well-known recurrence
formulas k(n + 1) is the evenk(n + 1) + nis the odd equivalent of the index).
Since 0< Sp(X) < 1 on(O, ’@) we have

fo sk gt < fo * gk D) g

()
< f T sleDe gt k=1,2,...). (13)
0

By (11) and (12), formula (13) can be written in the form

Ak<@<8k k=1,2,...), (14)
where
k .
1 i
and
k-1 -
1 ii+1
By = = 1—[ : ( _ ) . (16)
Vigfi+1-%]li+1-+]
Clearly,
k+
B = —— Ac. (a7
The sequencé is strictly increasing because
i(n+ 1) ,
m>l (|—l,2,...,k).

Hence, by (14), the limit lina,., Ak exists.
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The sequencB is strictly decreasing because
i(i+1) i+
[i+1-%]li+1-v] i(+1)+%

<1 (=12....k-1)

By (14), the limit lim_. Bx exists.
We estimate the flierence oBy andAy, (14) and (17)

vA(n)
k 2 °
With increasingn, Bx—Ax can be diminished, 55(21) can be approximated with op-
tional accuracy with théy, By sequence, that is

O
am A= == = im Be.

O<Bk—Ak:EAk< (18)

which proves our theorem. O
Remark.The integrals (11) and (12) may be computed by using the gamma-functions.

Second ProofWe take
#(n)

I(n, @) = f " st (19)
0
Considerpn(t), the inverse function oB,(t) . From (4),
den® _ 1 O<t<1). (20)

dt "Y1 -+l

From (19), using the substitutian= S,(t)™*, we get

1 1 a=n 1

I(n,a) = mfo el (1 —7) ™1 dr. (21)

Consider the Euler first integral [2]

1
B(X, y) = f 11 - 1)y dt (22)

0
wherex, y are positive. This integral can be evaluated using gamma-function:

_ I(I'(y)

BOCY) = T ) (23)

In the right side of (20), there is the Euler first integral. Using (23), we get

1 I(E)rEh)
+1 [‘(L)

I(na) = (@ > 0). (24)
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Inthe casex = k(n+1)+n, (k=1,2,,), we have
1 T+ Dr()
N+1 r(k+ ).

n+1

I(n,k(n+1)+n) =

Using the elementary formula for the gamma-function
XO(X) = T(x+ 1), (25)
we get
I(n,k(n+1)+n):} L
niti+v
which is equivalent to (12). l& = k(n + 1), applying (22), we obtain
T (k+:5)T ()

r'(n+1).

I(nk(n+ 1)) =

In view of (25), we have

I(n’k(n+1)):nilr(nil)r(nzl)ﬁi_iv' (26)

i=1

With the help of the Euler functional equation

T(OT(L - X) = Si:ﬂx,

nilr(nzl)r(nz:l): ;r(zn)'

Substituting this into (26), we obtain (11). O

and (2a), we get
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