Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 1, pp. 171-181 DOI: 10.18514/MMN.2014.644

> ‘no&s K
UVERSTag MiskoLOIVENS:

On Iyengar-type inequalities via
quasi-convexity and quasi-concavity

M. Emin Ozdemir



Miskolc Mathematical Notes HU e-ISSN 1787-2413
. Vol. 15 (2014), No. 1, pp. 171-181

ON IYENGAR-TYPE INEQUALITIES VIA QUASI-CONVEXITY
AND QUASI-CONCAVITY

M. EMIN OZDEMIR

Received 30 November, 2012

Abstract. In this paper, we obtain some new estimations of Iyengar-type inequality in which
quasi-convex(quasi-concave) functions are involved. These estimations are improvements of
some recently obtained estimations. Some error estimations for the trapezoidal formula are given.
Applications for special means are also provided.
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1. INTRODUCTION

If it is necessary to bound one quantity by another, the classical inequalities are
very useful for this purpose. This first book called “Inequalities” written by Hardy,
Littlewood and Polya at Cambridge University Press in 1934 represents the first ef-
fort to systemize a rapidly expanding domain. In this sense, the second important
book “Classical and New Inequalities in Analysis” is written by D.S. Mitrinovié,
J.E.Pecari¢ and A .M. Fink. The third book ”Analytic Inequalities” is written by D.S.
Mitrinovi¢, and the other book ”Means and Their Inequalities” is written by Bullen,
D.S. Mitrinovié, D.S. Vasic, PM.

Today inequalities play a significant role in the development in all fields of Math-
ematics. They have applications in a variety of applied Mathematics. For example,
convex functions are tractable in optimization because local optimality guarantees
global optimality. In recent years a number of authors have discovered new integral
inequalities for convex, s—convex, logarithmic convex, h—convex, quasi-convex,
m—convex, («, m)—convex, co-ordinated convex, Godunova-Levin and P —functions.

On November 22, 1881, Hermite (1822-1901) sent a letter to the Journal Math-
esis. This letter was published in Mathesis 3 (1883,p.82) and in this letter an inequal-
ity presented which is well-known in the literature as Hermite-Hadamard integral
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inequality :

a+b 1 P f(a)+ f(b)
f( : )sm/ fxyax < L OELO) (1)

where f : I C R — R is a convex function on the interval / of a real numbers and
a,b € I with a < b. If the function f is concave, the inequality in (1.1) is reversed.

That is ,
a+b 1 fa)+ f (D)
f( 5 )Zm/l; f(x)dXZ—z .

For recent results, generalizations and new inequalities related to the inequality (1.1)

S€e ([ 9Ty 19Oy - ) — ])
Then left hand side of Hermite-Hadamard inequality (L H H ') can also be estimated
by the inequality of Iyengar.

S @+ f(b) b _Mb-a) [f b)— f (@]
2 _b—a/a Sy s —— =) (1.2
where
M=sup{ S )= 1) ;x#y}
x—y

In [9], Daniel Alexandru Ion proved the following inequalities of Iyengar type for
differentiable quasi —convex functions:

f@+f®) 1 [P
7 _b—a/a f(x)dx

where f :[a,b] — R is differentiable function on (a,b), and | f'| is quasi —convex
on [a,b] witha < b.

(b—a)

(sup{| /" (@)

Jf @) a3)

=

and
f@+f®) 1 (P
‘ 3 _b—a/a f(x)dx (1.4)
__ (-0 22t

T2(p+ D)7 (Sup{‘f/(“)}ﬁ,lf’(b)}ﬁ}) s

where f : [a,b] — Ris differentiable function on (a,b), and | f’ |ﬁ is
quasi—convex on [a,b] witha < b.

We give some necessary definitions and mathematical preliminaries for
quasi—convex functions which are used throughout this paper.

Definition 1 (see [16]). A function f : [a,b] — R is said to be guasi—convex on
[a,b] if

fAx+(A-=21)y) <max{f (x).,f(»)}. (1.5)
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holds for all x,y € [a,b] and A € [0, 1]. For additional results on quasi —convexity,
see [17]. Clearly, any convex function is guasi —convex function. Furthermore, there
exists quasi —convex functions which are not convex. See [9] :

1, tel[-2,-1]

§()= 12, te(-1,2]

is not a convex function on [—2,2] ,but it is a guasi —convex function on [—2, 2] .If we
choose g : [-2,2] > R, g(-2)=1, g(2) =4 and fora = %, a=-2,b=0, we get
glaa+(1-a)b)=g(-1) =landag (@) +(1-a)g(h) = 38(~2)+38(0) = 5.

Thus it is not convex but it is guasi —convex function for all @ € [0, 1],
g(—a2+(1—w)2) <max{g(—2),g(2)} = max{l,4} = 4.

The main purpose of this paper is to point out new estimations of the inequality in
(1.2), but now for the class of quasi —convex functions.
In order to prove our main results we need the following lemma (see [2]).

Lemma 1. Let f : 1 C R — R be a twice differentiable mapping on 1°, a,b € 1
with a < b and f" be integrable on |a,b]. Then the following equality holds:

b b bh— 2 1
f(a)‘;f()_bia/a f(x)dx=( 2a) /Ot(l_t)f”(ta—i—(l—t)b)dt.

The main results of this paper are given by the following theorems.

2. RESULTS

Theorem 1. Let f : 1° C [0,00) — R, be a twice differentiable mapping on I1°,
such that f" € Lla,b), a,b € I witha <b. If | f"|? is quasi—convex on [a,b] for
q > 1, then the following inequality holds:

@+ e 1
> _b—a/a f(x)dx 2.1
<(b—a)2 qg—1 T 1
L (G ) " BerraeD)

« (max {| @7 | 7B}

where % + é =l and B (,) is Euler Beta Function:

1
,B(X,Y)=/ lx_l(l—t)y_ldl, x,y>0.
0
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Theorem 2. Let f : 1° C [0,00) — R, be a twice differentiable mapping on I°,
such that f" € Lla,b], a,b € I witha <b. If | f"|? is quasi—convex on [a,b] for
q > 1, then the following inequality holds:

fl@+fb) 1 [P
' 5 — _a/a f(x)dx

(2.2)

q—1

5(5—4‘1)2 ((61+1)2(61+2)) © (max{ls @l ol })é

Theorem 3. With the assumptions of Theorem I, we obtain another

fl@+fky 1 b
[CECRNR g

=5 D (62 p+ ) (max {1 @[7. | "B

Proof of Theorem 1. Using Lemma 1 and the well known Holder’s inequality for

q>1,

f@+f® 1 [P
5 — _a/a f(x)dx

qg—1

h—a)? Loy N 7 [ ! " g
<! 2a) (/0 tq_‘dt) Uo P A=nT|f (I“Jr(l_t)b)}th]

where % + % =1
On the other hand, since | f”|? is quasi—convex on [a,b], we know that for any

t €]0,1] }
q

"

| /" (ta+ (1—1)b)|? < max {|f”(a)

Therefore, we obtain

f@+f®)_ / oy

2

q

(b 2“) (/0 1= 1dt) 3 |:/0 tp(l_t)q|f”(za+(1—t)b)‘qdl:|q

g—1

002 ([ 550) 7 [[ s ot o]

2
qg—1

b— 2 -1 g 1 i 1 é
¢ 2a) (2qq—p—1) (B(p+1.g+1)7 (max{}f @[".17 (b)}q})

1
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which completes the proof. 0

Corollary 1. In Theorem 1, if we choose M = Supxe(a,p) | f"(x)| < 0o, we get

S @)+ f(b) I

‘ > _b—a/a f(x)dx
_(b—a)? g—1 \7 L
<O () T B g,

Proof of Theorem 2. From Lemma 1 and the well known power-mean inequality
we obtain

f@+f®) 1 (P
7 _b—a/a f(x)dx
2
f(b_a) /lt(l—t)\f”(za+(1—z)b)\dr
0

1-1 !

2 a ‘
s(b_za) (/lfdz) (/lru_oq|f“(za+<1—t>b>\qd’)
0 0

SRl (f 1tdt)1_; ([ (107 (max {7 f//(b)|q})dt);
| )

C(b—a)® (1) 1 7 )
-576)  (Grges) (e

— )2 s L
:(b 4a) ((q+1)2(q+2)) (maxﬂf” f”(b)|q})

The proof of Theorem 2 is completed. O

4

Corollary 2. Under the assumptions of Theorem 2,

Q=

Case i: Since limg— o (m)q =l andlim,_,+ (m) =1 we
have

! < ( 2 )q <1 €[1,00)
— _— , q ,00).
3 (¢g+1(g+2)

Therefore,

f(a)+f(b) [ £ () dx

In (2.3),

)

"

q});

(2.3)

(nmx“f”m)
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o if | |1 is decreasing, we get

f@+fp) 1 P (- a) //
=t AT
o if | "1 is increasing , we get

2

b
f@+fk) 1 [ 7@ < <o D\ o).
b—a a

Case ii: If we choose M = Supxeap) | f"(x)| < oo in (2.2), then the inequality
in (2.1) is better than the inequality in (2.2).

Proof of Theorem 3. From Lemma 1 with properties of modulus we get

f@+f®) 1 [°
‘ _b—a/a f(x)dx

5 2.4)

<(b—a)2
=2

/1t(1—t)\f”(ta+(1—t)b)|dt.
0

Now, if we use the following weighted version of Holder’s inequality [6, p. 117]:

‘ [ r©g6mas)| < ( [ If(s)l”h(s)ds)p ( [ |g<s)|q11(s)ds)" @.5)
I I I

for p>1,p~ 1 4+ ¢! =1, h is nonnegative on / and provided all the other integrals

exist and are finite.
If we rewrite the inequality (2.4) with respect to (2.5) with | f
quasi—convex on [a,b] for all ¢ € [0, 1], we get

f@+f®) 1 (°
_b—a/a f(x)dx

,,|q is

2
2

b-a)

-2

1
/0t(l—t)|f”(m+(1—t)b)\dz
_(b—a)®

/l(l—t)\f”(za+(1—t)b)\rdz
0

=0 (Vo N[ Y
= ([O (1—1) tdt) (/0 |/ (ta+ (1—=1)b)| tdl)

X " q " q é
B2+ 1) (ma {1 (a)2| £ ®)] })

_ (- a)

The proof of Theorem 3 is completed. t
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Corollary 3. In Theorem 3, if we choose M = Supxe(a.p) | f"(x)| < 00, we get

b 1 —
f@+)( )_b_a/a f | = & 2 Vet
Remark 1. From Theorems 1-3, we get
b
f(a)+f(b)_ ! / f(x)dx| <min{vy,vp,v3}
2 —a J,

where

V1 =

R

4

q})é
q})é

3. ERROR ESTIMATES FOR THE TRAPEZOIDAL RULE

)

2 2q—p—

q—1

_ (b= a)

1 "

(b a) ( q— ) (ﬂ(p-i—lC]+1))qx(maX{‘f"(a)

1)(q+2)) " (maxf

and
(b—a)

1
21+

4

(BC.p+1)7 (max{| (@)

U3 =

Let d be a partition a = x¢ < X1 < X3 < ... < X5 = b of the interval [a,b] and
consider the quadrature formula

b
/ fx)dx =T;(f.d)+Ei(f.d), i=12,..,n—1 (3.1)

where

n—1 . .
nnd) =y T ()
=0

for the Trapezoidal version and

n—1 . )
Ralfid) =3 f (M) G =)
i=0

for the Midpoint formula and E; (f,d) denotes the associated approximation errors.

Proposition 1. Suppose that all the assumptions of Theorem 1 are satisfied for
every division d of [a,b], we have

qg—1

1 —1 q 1
|E(f’d)|§§(2qq_ﬁ) B(p+1,g+1))4
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=

xnfoc,-ﬂ—xz-)S(maxﬂf”(xl-){q, frenl})”
i=0

Proof. Applying Theorem 1 on the subinterval (x;+1,x;),i =1,2,...,n—1 of the
partition and by using the quasi —convexity of | f”'|?, we obtain

S&i)+ f(xig1) 1 Yitl F(x)dx

2 (Xig1—x7) Jy

)2
<(xl+1 Xi)
- 2

X (max {!f”(x,-)

Hence in (3.1), we have

qg—1 T 1
(2q—p—l) B(p+1l.g+1)«

Fanl?).

q
’

b
/ Fe)dx—T(f.d)

n—1 Xit1 . .
S rn - I ‘
i=0 ‘Y%

n—1 Xit1 . .
< / + F)dx — S (xi) +2f(xz+1) (Xit1—x1)
i=0 "%
1 q—1 a 1
=5 m) B(p+1.q+1))4
n—1 1
x> i —x) (max {| 7G| | e |})
i=0
0

Proposition 2. Suppose that all the assumptions of Theorem 2 are satisfied for
every division d of |a,b], we have

1 2 i
0=y (G )

Frnl))”.

n—1
XY (xip1—xi)? (max {!f”(?ﬁ')!q,
i=0
Proof. The proof immediately follows from Theorem 2 and by applying a similar

argument to Proposition 1. 0

Proposition 3. Suppose that all the assumptions of Theorem 3 are satisfied for
every division d of [a,b], we have

ECA] <5 (B (. p+1)7
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-1 1
S LS @I 1B
XY (xjp1—xi)? (max{ ) .
;o 1

2

Proof. The proof immediately follows from Theorem 3 and by applying a similar
argument to Proposition 1. 0

4. APPLICATIONS TO SPECIAL MEANS

Let us consider the special means for real numbers a,b (a # b). We take
1. Arithmetic mean:
b
A(a.b) = % abeR
2. Logarithmic mean:

L(a.b) = la| # |b|.a,b #0,a,b € R.

Infa|—In|b|’
3. Generalized log-mean:

pntl _gn+l
m] , ne€Z\{—1,0},a,b € R,a #b.
Proposition 4. Leta,b € R,a <b andn € N, n > 2. Then we have

nin—1)(b—a)?
2

Ly(a,b) = [

|A(a”.b") — Ly(a.b)| <

g—1

x (q—_l)q (B(p+1.q+1)7 (max a7, |b|(n_2)q}); |

2g—p—1
Proof. The assertion follows from Theorem 1 applied to the guasi —convex map-
ping f(x) = x", x € R. d

Proposition 5. Leta,b € R,a <b andn € N, n > 2. Then we have

2
A" b~ Lta.p) = "D

) ((q - 1)2(61 +2))q (max {jal =27, |b|(n_2)q}); ‘

Proof. The assertion follows from Theorem 2 applied to the guasi —convex map-
ping f(x) =x", x € R. O

Proposition 6. Leta,b € R,a <b andn € N, n > 2. Then we have
nin—1)(b—a)?
Hl+5

|Aa".b") = Ly (a.b)| <
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x(B(2,q + 1))% (max{|a|(n—2)q ’ |b|(n—2)¢I})clz '

Proof. The assertion follows from Theorem 3 applied to the guasi —convex map-
ping f(x) =x", x € R. O
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