Strong convergence of an explicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces

Birol Gunduz and Sezgin Akbulut

STRONG CONVERGENCE OF AN EXPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN CONVEX METRIC SPACES

BIROL GUNDUZ AND SEZGIN AKBULUT

Received 30 November, 2012

Abstract

In this paper, we study strong convergence of an iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces. We prove some strong convergence theorems for this iterative algorithm. Our results improve and extend the corresponding results of Kettapun et al. [2].

2010 Mathematics Subject Classification: 47H05; 47H09; 47H10
Keywords: iteration process, convex metric spaces, asymptotically quasi-nonexpansive mappings, common fixed point, strong convergence.

1. Introduction and basic definitions

Throughout this paper, \mathbb{N} denotes the set of natural numbers and $I=\{1,2, \ldots, k\}$, the set of first k natural numbers. Denote by $F(T)$ the set of fixed points of T and by $F:=\bigcap_{i=1}^{k} F\left(T_{i}\right)$ the set of common fixed points of a finite family $\left\{T_{i}: i \in I\right\}$.

Takahashi [10] introduced initially a notion of convex metric space and studied the fixed point theory for nonexpansive mappings in such a setting. Later on, many authors discussed the existence of the fixed point and the convergence of the iterative processes for various mappings in convex metric spaces.

We recall some definitions in a metric space (X, d).
Definition 1. Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. The map T is said to be:
(1) Nonexpansive if $d(T x, T y) \leq d(x, y)$ for all $x, y \in X$.
(2) Quasi-nonexpansive if $d(T x, p) \leq d(x, p)$ for all $x \in X$ and $p \in F(T)$.
(3) Asymptotically nonexpansive [1] if there exists $k_{n} \in[0, \infty)$ for all $n \in \mathbb{N}$ with $\lim _{n \rightarrow \infty} k_{n}=0$ such that $d\left(T^{n} x, T^{n} y\right) \leq\left(1+k_{n}\right) d(x, y) \forall x, y \in X$.
(4) Asymptotically quasi-nonexpansive if there exists $k_{n} \in[0, \infty)$ for all $n \in \mathbb{N}$ with $\lim _{n \rightarrow \infty} k_{n}=0$ such that $d\left(T^{n} x, p\right) \leq\left(1+k_{n}\right) d(x, p) \forall x \in X, \forall p \in$ $F(T)$.

From above definitions, the following diagram of implications holds and none of arrows is reversible (see, for example, [1, 2, 6, 12]).

$$
\begin{array}{lll}
\text { Nonexpansive } & \Longrightarrow & \text { Quasi-nonexpansive } \\
\Downarrow & & \Downarrow \\
\text { Asymptotically nonexpansive } & \Longrightarrow & \text { Asymptotically } \\
& & \text { quasi-nonexpansive }
\end{array}
$$

Definition 2 ([10]). A convex structure in a metric space (X, d) is a mapping $W: X \times X \times[0,1] \rightarrow X$ satisfying, for all $x, y, u \in X$ and all $\lambda \in[0,1]$,

$$
d(u, W(x, y ; \lambda)) \leq \lambda d(u, x)+(1-\lambda) d(u, y)
$$

A metric space together with a convex structure is called a convex metric space.
A nonempty subset C of X is said to be convex if $W(x, y ; \lambda) \in C$ for all $(x, y ; \lambda)$ $\in C \times C \times[0,1]$.

Definition 3 ([3]). Let (X, d) be a metric space and q be a fixed element of X. A q-starshaped structure in X is a mapping $W: X \times X \times[0,1] \rightarrow X$ satisfying, for all $x, y \in X$ and all $\lambda \in[0,1]$,

$$
d(q, W(x, y ; \lambda)) \leq \lambda d(q, x)+(1-\lambda) d(q, y)
$$

A metric space together with a q-starshaped structure is called a q-starshaped metric space.

Clearly, a convex metric space is a q-starshaped metric space but the converse is not true in general.

The convex metric space is a more general space and each normed linear space is a special example of a convex metric space. But there are many examples of convex metric spaces which are not embedded in any normed linear space.

Example 1 ([7]). Let $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0\right\}$. For each $x=\left(x_{1}, x_{2}\right)$, $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and $\lambda \in[0,1]$, we define a mapping $W: X \times X \times[0,1] \rightarrow X$ by

$$
W(x, y ; \lambda)=\left(\lambda x_{1}+(1-\lambda) y_{1}, \frac{\lambda x_{1} x_{2}+(1-\lambda) y_{1} y_{2}}{\lambda x_{1}+(1-\lambda) y_{1}}\right)
$$

and define a metric $d: X \times X \rightarrow[0, \infty)$ by

$$
d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{1} x_{2}-y_{1} y_{2}\right| .
$$

Then (X, d, W) is a convex metric space, but it is not a normed space.
In 2008, Khan et al. [4] introduced an iterative process for a finite family of mappings as follows:

Let C be a convex subset of a Banach space X and let $\left\{T_{i}: i \in I\right\}$ be a family of self-mappings of C. Suppose that $\alpha_{i n} \in[0,1]$, for all $n=1,2, \ldots$ and $i=1,2, \ldots, k$.

For $x_{1} \in C$, let $\left\{x_{n}\right\}$ be the sequence generated by the following algorithm:

$$
x_{n+1}=\left(1-\alpha_{k n}\right) x_{n}+\alpha_{k n} T_{k}^{n} y_{(k-1) n},
$$

$$
\begin{align*}
y_{(k-1) n} & =\left(1-\alpha_{(k-1) n}\right) x_{n}+\alpha_{(k-1) n} T_{k-1}^{n} y_{(k-2) n}, \\
y_{(k-2) n} & =\left(1-\alpha_{(k-2) n}\right) x_{n}+\alpha_{(k-2) n} T_{k-2}^{n} y_{(k-3) n}, \tag{1.1}\\
& \vdots \\
y_{2 n} & =\left(1-\alpha_{2 n}\right) x_{n}+\alpha_{2 n} T_{2}^{n} y_{1 n} \\
y_{1 n} & =\left(1-\alpha_{1 n}\right) x_{n}+\alpha_{1 n} T_{1}^{n} y_{0 n},
\end{align*}
$$

where $y_{0 n}=x_{n}$ for all n. The iterative process (1.1) is the generalized form of the modified Mann (one-step) iterative process by Schu [8], the modified Ishikawa (twostep) iterative process by Tan and Xu [11], and the three-step iterative process by Xu and Noor [13].

In [3], Khan and Ahmed transformed this process into convex metric spaces.
Recently, Kettapun et al. [2] introduced a new iteration process for a finite family of mappings as follows:

$$
\begin{align*}
x_{1} & \in C, x_{n+1}=\left(1-\alpha_{k n}\right) y_{(k-1) n}+\alpha_{k n} T_{k}^{n} y_{(k-1) n}, \\
y_{(k-1) n} & =\left(1-\alpha_{(k-1) n}\right) y_{(k-2) n}+\alpha_{(k-1) n} T_{k-1}^{n} y_{(k-2) n}, \\
y_{(k-2) n} & =\left(1-\alpha_{(k-2) n}\right) y_{(k-3) n}+\alpha_{(k-2) n} T_{k-2}^{n} y_{(k-3) n}, \tag{1.2}
\end{align*}
$$

$$
\begin{aligned}
& y_{2 n}=\left(1-\alpha_{2 n}\right) y_{1 n}+\alpha_{2 n} T_{2}^{n} y_{1 n}, \\
& y_{1 n}=\left(1-\alpha_{1 n}\right) y_{0 n}+\alpha_{1 n} T_{1}^{n} y_{0 n},
\end{aligned}
$$

where $y_{0 n}=x_{n}$ for all n.
Equivalence of the iteration schemes (1.1) and (1.2) is a problem worth investigating, assuming that the same point $x_{1} \in C$ is initiated for various mappings.

Now, we transform iteration process (1.2) to the case of a family of asymptotically quasi-nonexpansive mappings in convex metric spaces as follows:

Definition 4. Let (X, d) be a convex metric space with convex structure W and T_{i} : $X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings. Suppose that $\alpha_{i n} \in[0,1]$, for all $n=1,2, \ldots$ and $i=1,2, \ldots, k$. For any given $x_{1} \in X$, we define iteration process $\left\{x_{n}\right\}$ as follows.

$$
\begin{align*}
x_{n+1} & =W\left(T_{k}^{n} y_{(k-1) n}, y_{(k-1) n}, \alpha_{k n}\right), \\
y_{(k-1) n} & =W\left(T_{k-1}^{n} y_{(k-2) n}, y_{(k-2) n}, \alpha_{(k-1) n}\right), \\
y_{(k-2) n} & =W\left(T_{k-2}^{n} y_{(k-3) n}, y_{(k-3) n}, \alpha_{(k-2) n}\right), \tag{1.3}\\
y_{2 n} & =W\left(T_{2}^{n} y_{1 n}, y_{1 n}, \alpha_{2 n}\right), \\
y_{1 n} & =W\left(T_{1}^{n} y_{0 n}, y_{0 n}, \alpha_{1 n}\right)
\end{align*}
$$

where $y_{0 n}=x_{n}$ for all n.
Lemma 1 ([5]). Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three nonnegative sequences satisfying

$$
\sum_{n=0}^{\infty} b_{n}<\infty, \sum_{n=0}^{\infty} c_{n}<\infty, a_{n+1}=\left(1+b_{n}\right) a_{n}+c_{n}, n \geq 0
$$

Then
i) $\lim _{n \rightarrow \infty} a_{n}$ exists,
ii) if $\liminf _{n \rightarrow \infty} a_{n}=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

Remark 1. It is easy to verify that Lemma 1 (ii) holds under the hypothesis $\limsup _{n \rightarrow \infty} a_{n}=0$ as well. Therefore, the condition (ii) in Lemma 1 can be reformulated as follows:
$i i)^{\prime}$ if either $\liminf _{n \rightarrow \infty} a_{n}=0$ or $\limsup _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
The following proposition was proved by Khan and Ahmed [3] for one family of asymptotically quasi-nonexpansive mappings.

Proposition 1 ([3]). Let X be a convex metric space and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F:=\bigcap_{i=1}^{k} F\left(T_{i}\right)$. Then, there exist a point $p \in F$ and a sequence $\left\{r_{n}\right\} \subset[0, \infty)$ with $\lim _{n \rightarrow \infty} r_{n}=0$ such that

$$
d\left(T_{i}^{n} x, p\right) \leq\left(1+r_{n}\right) d(x, p)
$$

for all $x \in K$, for each $i \in I$.

2. MAIN RESULTS

We begin with a technical result.
Lemma 2. Let (X, d, W) be a convex metric space with convex structure W and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \varnothing$. Suppose that $\sum_{n=1}^{\infty} r_{n}<\infty$ and $\left\{x_{n}\right\}$ is as in (1.3). Then
(i) $d\left(x_{n+1}, p\right) \leq\left(1+r_{n}\right)^{k} d\left(x_{n}, p\right)$, for all $p \in F$ and for each $n \in N$,
(ii) there exists a constant $M>0$ such that, for all $n, m \in N$ and for every $p \in F$, $d\left(x_{n+1}, p\right) \leq M d\left(x_{n}, p\right)$.

Proof. (i) For all $p \in F$, we have from Proposition 1 that

$$
\begin{aligned}
d\left(y_{1 n}, p\right) & =d\left(W\left(T_{1}^{n} y_{0 n}, y_{0 n}, \alpha_{1 n}\right), p\right) \leq \alpha_{1 n} d\left(T_{1}^{n} y_{0 n}, p\right)+\left(1-\alpha_{1 n}\right) d\left(y_{0 n}, p\right) \\
& \leq \alpha_{1 n}\left(1+r_{n}\right) d\left(x_{n}, p\right)+\left(1-\alpha_{1 n}\right) d\left(x_{n}, p\right) \\
& \leq\left(1+\alpha_{1 n} r_{n}\right) d\left(x_{n}, p\right) \\
& \leq\left(1+r_{n}\right) d\left(x_{n}, p\right)
\end{aligned}
$$

Assume that $d\left(y_{j n}, p\right) \leq\left(1+r_{n}\right)^{j} d\left(x_{n}, p\right)$ holds for some $1 \leq j \leq k-2$. Then

$$
\begin{aligned}
d\left(y_{(j+1) n}, p\right) & =d\left(W\left(T_{j+1}^{n} y_{j n}, y_{j n}, \alpha_{(j+1) n}\right), p\right) \\
& \leq \alpha_{(j+1) n} d\left(T_{j+1}^{n} y_{j n}, p\right)+\left(1-\alpha_{(j+1) n}\right) d\left(y_{j n}, p\right) \\
& \leq \alpha_{(j+1) n}\left(1+r_{n}\right) d\left(y_{j n}, p\right)+\left(1-\alpha_{(j+1) n}\right) d\left(y_{j n}, p\right) \\
& \leq\left(1+r_{n}\right) d\left(y_{j n}, p\right) \\
& \leq\left(1+r_{n}\right)\left(1+r_{n}\right)^{j} d\left(x_{n}, p\right) \\
& =\left(1+r_{n}\right)^{j+1} d\left(x_{n}, p\right)
\end{aligned}
$$

Therefore, by mathematical induction, we obtain

$$
\begin{equation*}
d\left(y_{i n}, p\right) \leq\left(1+r_{n}\right)^{i} d\left(x_{n}, p\right), \text { for } i=1,2, \ldots, k-1 \tag{2.1}
\end{equation*}
$$

Now, we have from (2.1) that

$$
\begin{aligned}
d\left(x_{n+1}, p\right) & =d\left(W\left(T_{k}^{n} y_{(k-1) n}, y_{(k-1) n}, \alpha_{k n}\right), p\right) \\
& \leq \alpha_{k n} d\left(T_{k}^{n} y_{(k-1) n}, p\right)+\left(1-\alpha_{k n}\right) d\left(y_{(k-1) n}, p\right) \\
& \leq \alpha_{k n}\left(1+r_{n}\right) d\left(y_{(k-1) n}, p\right)+\left(1-\alpha_{k n}\right) d\left(y_{(k-1) n}, p\right) \\
& \leq\left(1+r_{n}\right) d\left(y_{(k-1) n}, p\right) \\
& \leq\left(1+r_{n}\right)\left(1+r_{n}\right)^{k-1} d\left(x_{n}, p\right) \\
& =\left(1+r_{n}\right)^{k} d\left(x_{n}, p\right) .
\end{aligned}
$$

(ii) If $t \geq 0$, then $1+t \leq e^{t}$ and so, $(1+t)^{k} \leq e^{k t}, k=1,2, \ldots$. Thus, from part (i), we get

$$
\begin{aligned}
d\left(x_{n+m}, p\right) & \leq\left(1+r_{n+m-1}\right)^{k} d\left(x_{n+m-1}, p\right) \\
& \leq \exp \left\{k r_{n+m-1}\right\} d\left(x_{n+m-1}, p\right) \leq \cdots \leq \exp \left\{k \sum_{i=1}^{n+m-1} r_{i}\right\} d\left(x_{n}, p\right) \\
& \leq \exp \left\{k \sum_{i=1}^{\infty} r_{i}\right\} d\left(x_{n}, p\right)
\end{aligned}
$$

Setting $M=\exp \left\{k \sum_{i=1}^{\infty} r_{i}\right\}<\infty$, completes the proof.
Lemma 3. Let (X, d, W) be a convex metric space with convex structure W and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \varnothing$. Suppose that $\sum_{n=1}^{\infty} r_{n}<\infty$ and $\left\{x_{n}\right\}$ is as in (1.3). If $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ where $d(x, F)=\inf \{d(x, p): p \in F\}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. We use Lemma 2 (ii) to prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. From $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$, for each $\varepsilon>0$ there exists $n_{1} \in N$ such that

$$
d\left(x_{n}, F\right)<\frac{\varepsilon}{M+1} \forall n \geq n_{1} .
$$

Thus, there exists $q \in F$ such that

$$
\begin{equation*}
d\left(x_{n}, q\right)<\frac{\varepsilon}{M+1} \forall n \geq n_{1} \tag{2.2}
\end{equation*}
$$

Using Lemma 2 (ii) and (2.2), we obtain

$$
\begin{aligned}
d\left(x_{n+m}, x_{n}\right) & \leq d\left(x_{n+m}, q\right)+d\left(x_{n}, q\right) \leq M d\left(x_{n}, q\right)+d\left(x_{n}, q\right) \\
& =(M+1) d\left(x_{n}, q\right) \\
& <(M+1)\left(\frac{\varepsilon}{M+1}\right)=\varepsilon
\end{aligned}
$$

for all $n, m \geq n_{1}$. Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence.
We now state and prove the main theorem of this section.
Theorem 1. Let (X, d, W) be a convex metric space with convex structure W and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \varnothing$. Suppose that $\sum_{n=1}^{\infty} r_{n}<\infty$ and $\left\{x_{n}\right\}$ is as in (1.3). Then if $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ where $d(x, F)=\inf \{d(x, p): p \in F\}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
(i) $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=\limsup _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ if converges to a unique point in F.
(ii) $\left\{x_{n}\right\}$ converges to a unique point in F if X is complete and either $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ or $\limsup \sin _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$.

Proof. (i) Let $p \in F$. Since $\left\{x_{n}\right\}$ converges to $p, \lim _{n \rightarrow \infty} d\left(x_{n}, p\right)=0$. So, for a given $\varepsilon>0$, there exists $n_{0} \in N$ such that

$$
d\left(x_{n}, p\right)<\varepsilon \forall n \geq n_{0}
$$

Taking infimum over $p \in F$, we have

$$
d\left(x_{n}, F\right)<\varepsilon \forall n \geq n_{0}
$$

This means $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ so that

$$
\lim \inf _{n \rightarrow \infty} d\left(x_{n}, F\right)=\lim \sup _{n \rightarrow \infty} d\left(x_{n}, F\right)=0
$$

(ii) Suppose that X is complete and $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ or $\limsup _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. Then, we have from Lemma 1 (ii) and Remark 1 that $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. From the completeness of X and Theorem 3, we get that $\lim _{n \rightarrow \infty} x_{n}$ exists and equals $q \in X$, say. Moreover, since the set F of fixed points of
asymtotically quasi-nonexpansive mappings is closed $q \in F$ from $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)$ $=0$. That is, $q \in F$. Hence $\left\{x_{n}\right\}$ converges to a unique point in F.

Remark 2. Since a Banach space and each of its convex subsets are convex metric spaces, so Theorem 1 reduces toTheorem 3.2 in [2]. Also, Corollary 3.3 of Kettapun, Kananthai and Suantai [2] is special case of Theorem 1.

3. Applications

Now, we give a couple of applications of Theorem 1.
Theorem 2. Let (X, d, W) be a complete convex metric space with convex structure W and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \varnothing$. Suppose that $\sum_{n=1}^{\infty} r_{n}<\infty$ and $\left\{x_{n}\right\}$ is as in (1.3). Assume that the following two conditions hold.

$$
\begin{equation*}
\text { i) } \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{3.1}
\end{equation*}
$$

ii) the sequence $\left\{y_{n}\right\}$ in X satisfying $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0$ implies

$$
\begin{equation*}
\lim \inf _{n \rightarrow \infty} d\left(y_{n}, F\right)=0 \text { or } \lim \sup _{n \rightarrow \infty} d\left(y_{n}, F\right)=0 \tag{3.2}
\end{equation*}
$$

Then $\left\{x_{n}\right\}$ converges to a unique point in F.
Proof. From (3.1) and (3.2), we have that

$$
\lim \inf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 \text { or } \lim \sup _{n \rightarrow \infty} d\left(x_{n}, F\right)=0
$$

Therefore, we obtain from Theorem 1 (ii) that the sequence $\left\{x_{n}\right\}$ converges to a unique point in F.

Theorem 3. Let (X, d, W) be a complete convex metric space with convex structure W and $T_{i}: X \rightarrow X$ be a finite family of asymptotically quasi-nonexpansive mappings satisfying $\lim _{n \rightarrow \infty} d\left(x_{n}, T_{i} x_{n}\right)=0$ with $F \neq \varnothing$. Suppose that $\sum_{n=1}^{\infty} r_{n}<\infty$ and $\left\{x_{n}\right\}$ is as in (1.3). If one of the following is true, then the sequence $\left\{x_{n}\right\}$ converges to a unique point in F.
i) If there exists a nondecreasing function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$, $g(t)>0$ for all $t \in(0, \infty)$ such that $d\left(x_{n}, T_{i} x_{n}\right) \geq g\left(d\left(x_{n}, F\right)\right)$ for all $n \geq 1$ (see Senter and Dotson [9])
ii) There exists a function $f:[0, \infty) \rightarrow[0, \infty)$ which is right continuous at 0 , $f(0)=0$ and $f\left(d\left(x_{n}, T_{i} x_{n}\right)\right) \geq d\left(x_{n}, F\right)$ for all $n \geq 1$.

Proof. First suppose that (i) holds. Then

$$
\lim _{n \rightarrow \infty} g\left(d\left(x_{n}, F\right)\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}, T_{i} x_{n}\right)
$$

So, $\lim _{n \rightarrow \infty} g\left(d\left(x_{n}, F\right)\right)=0$; and properties of g imply $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$.

Now all the conditions of Theorem 1 are satisfied, therefore by its conclusion $\left\{x_{n}\right\}$ converges to a point of F.

Next, assume (ii). Then

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right) \leq \lim _{n \rightarrow \infty} f\left(d\left(x_{n}, T_{i} x_{n}\right)\right)=f\left(\lim _{n \rightarrow \infty} d\left(x_{n}, T_{i} x_{n}\right)\right)=f(0)=0
$$

Again in this case, $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. Thus $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ or $\limsup { }_{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. By Theorem $1,\left\{x_{n}\right\}$ converges to a point of F.

Remark 3. In the Banach space setting, Theorem 3 reduces to the improvement of Theorem 4.1 in [2].

Remark 4. We can prove all the results obtained so far in the context of a qstarshaped metric space with suitable changes. We leave the details to the reader.

REFERENCES

[1] K. Goebel and W. A. Kirk, "A fixed point theorem for asymptotically nonexpansive mappings," Proc. Am. Math. Soc., vol. 35, pp. 171-174, 1972.
[2] A. Kettapun, A. Kananthai, and S. Suantai, "A new approximation method for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces," Comput. Math. Appl., vol. 60, no. 5, pp. 1430-1439, 2010.
[3] A. R. Khan and M. A. Ahmed, "Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications," Comput. Math. Appl., vol. 59, no. 8, pp. 2990-2995, 2010.
[4] A. R. Khan, A.-A. Domlo, and H. Fukhar-Ud-Din, "Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces," J. Math. Anal. Appl., vol. 341, no. 1, pp. 1-11, 2008.
[5] Q. Liu, "Iterative sequences for asymptotically quasi-nonexpansive mappings with error member," J. Math. Anal. Appl., vol. 259, no. 1, pp. 18-24, 2001.
[6] W. V. Petryshyn and T. E. jun. Williamson, "Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings,"J. Math. Anal. Appl., vol. 43, pp. 459-497, 1973.
[7] G. S. Saluja and H. K. Nashine, "Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces," Opusc. Math., vol. 30, no. 3, pp. 331-340, 2010.
[8] J. Schu, "Weak and strong convergence to fixed points of asymptotically nonexpansive mappings," Bull. Aust. Math. Soc., vol. 43, no. 1, pp. 153-159, 1991.
[9] H. F. Senter and W. G. jun. Dotson, "Approximating fixed points of nonexpansive mappings," Proc. Am. Math. Soc., vol. 44, pp. 375-380, 1974.
[10] W. Takahashi, "A convexity in metric space and nonexpansive mappings. I," Kōdai Math. Semin. Rep., vol. 22, pp. 142-149, 1970.
[11] K.-K. Tan and H.-K. Xu, "Fixed point iteration processes for asymptotically nonexpansive mappings," Proc. Am. Math. Soc., vol. 122, no. 3, pp. 733-739, 1994.
[12] Y.-X. Tian, "Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings," Comput. Math. Appl., vol. 49, no. 11-12, pp. 1905-1912, 2005.
[13] B. Xu and M. Aslam Noor, "Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces," J. Math. Anal. Appl., vol. 267, no. 2, pp. 444-453, 2002.

Authors' addresses

Birol Gunduz
E-mail address: birolgndz@gmail.com
Department of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan, 24000,

Turkey.

Sezgin Akbulut

E-mail address: sezginakbulut@atauni.edu.tr
Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey.

