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A. A ratio-dependent predator-prey model is considered in which the preda-
tor growth rate depends on past quantities of the prey. Conditions for stability of an
equilibrium and its bifurcation are established when special parameters are taken
into account.
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1. I

In [15, 16, 24], a possible generalisation of the traditional Volterra predator-prey
system is considered,

Ṡ1 = S1 · α(S1) − S2 · V(S1),

Ṡ2 = S2 · K(S1)
(1.1)

where the dot means differentiation with respect to timet, S1(t) andS2(t) are the
quantities (or densities) of preys and predators, respectively. Here,

• α is smooth withα′(S1) < 0, S1 ≥ 0 andα(0) > 0 > lim
+∞ α;

• K andV are nonnegative and increasing, andK(0) = 0 = V(0).

If we replace the argument ofK and V by the ratio ofS1 and S2, then we ar-
rive at a ratio-dependent predator-prey system, which is capable of producing richer
and more reasonable or acceptable dynamics. The substantial difference from the
classical Kolmogorov model [15, 16] is due to the following two facts related to the
system:

(i) Equilibrium abundances are positively correlated along a gradient of enrich-
ment [1];

(ii) These models do not produce the so-called paradox of enrichment (see [11,
pp. 490, 502] and [17, p. 391]), more exactly, it either completely disappears
or enrichment is related to stability in a more complicated way [21].
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A simple ratio-dependent type mathematical model of two-species interaction was
first presented in [10, 19, 21].

Let us consider a model of ratio-dependent type which has the form

Ṡ1 = f1(S1,S2),

Ṡ2 = f2(S1,S2)
(1.2)

with the initial conditionsSi(0) > 0 (i ∈ {1, 2}), where

f1(S1,S2) :=


αS1

(
1− S1

K

)
− βS1S2

εS2+S1
if S2

1 + S2
2 > 0

0 if S1 = S2 = 0

and

f2(S1,S2) :=


−γS2 + δS1S2

εS2+S1
if S2

1 + S2
2 > 0

0 if S1 = S2 = 0.

Here,α > 0 is the intrinsic growth rate ofS1 in the absence of theS2-population
and without environmental limitation. In the absence of theS2-population, theS1-
population grows logistically to the carrying capacityK > 0; the functional response
of theS2-population is of Michaelis–Menten–Holling type with satiation coefficient
or conversion rateδ > 0. The specific mortality

E(S2) = −γS2 (1.3)

of theS2-population in the absence of theS1-population depends on the quantity of
S2. γ > 0 is the death rate of theS2-population.

If we take polar coordinatesx = r cosϕ, y = r sinϕ, then a routine calculation
shows thatfi ∈ C0(�2

+,�
)
, however, it is easy to see thatfi ∈ C1(�2

+,�
)

(i ∈ {1, 2}),
therefore solution of (1.2) with positive initial condition exists and is unique.

Let S1 · M1(S1,S2) := f1(S1,S2) and S2 · M2(S1,S2) := f2(S1,S2), then the
system (1.2) is written in the Kolmogorov form of

Ṡ =

(
S1 · M1(S)
S2 · M2(S)

)
(1.4)

(see [19]), which is useful since one can check the following two properties of this
system:

• M1 and M2 are smooth functions, therefore the positive quadrant of the
phase space [S1,S2] is an invariant region (see [22], pp. 198–203 and 230–
231);
• ∂M1

∂S2
(S1,S2) = − β

ε+S1
< 0 and∂M2

∂S1
(S1,S2) = − δε

(ε+S1)2 > 0 (S1,S2 > 0), i. e.,
in fact the system is a predator-prey system with preyS1 and predatorS2.

The ratio-dependent predator-prey model (1.2) has been studied by several au-
thors recently, and very rich dynamics has been observed. In [10] and later in [2],
the authors restricted their analysis to parameter values that ensure that the origin as
equilibrium behaves as a saddle point and they established conditions for persistence
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of the model, and showed the existence of eight qualitatively different types of sys-
tem behaviours realized for various parameter values. In [13] and later in [26] the
authors studied the analytical behaviour at the origin and showed that this equilib-
rium can be either a saddle point or an attractor of certain trajectories, and shown that
the origin is indeed a critical point of higher order. In [17] the global behaviour of
solutions was investigated and it was showed that if the positive equilibrium is locally
asymptotically stable, then the system does not have any nontrivial positive periodic
solutions.

Now we are going to show that with respect to certain circumstances this model
can have a periodic solution. This happens by incorporating a delay effect into the
systems. For the justification and biological relevance of the delay in ratio-dependent
systems see [6]. In [14] the most famous delay in the predator-equation was intro-
duced, i. e.,K

(
S1(t)
S2(t)

)
was replaced byK

(
S1(t−τ)
S2(t−τ)

)
. Starting from the evidence that in

such a system the present growth rate of a predator depends not only on the present
quantity of food but also on past quantities, we will introduce an infinite distributed
delay into the second equation of system (1.2) for prey density, i. e., we replaceS1

in the second equation by

R(t) :=
∫ t

−∞
S1(τ)ρ(t − τ)dτ, t ∈ [0,+∞), (1.5)

whereρ : �+
0 → �+

0 is the so-calleddensity functionsatisfying the relation
∫ +∞

0
ρ(s)ds= 1. (1.6)

Due to [5, 4, 7, 8, 18, 25], we assume that the influence of the past is fading away
exponentially, i. e.,ρ(t) := a · exp(−at) (a ∈ (0,+∞)) anda

∫ t

−∞ exp(−a(t − τ))dτ =

a
∫ +∞
0

exp(−as) ds = 1 hold. The smallera is, the longer the time interval is in the
past in which the values ofS1 are taken into account, i. e., 1/a is the “measure of the
influence of the past”.

Clearly, if γ < δ <
γβ
β−εα for γ > εα or δ > γ for γ ≤ εα, then (1.2) has three

equilibria, two on the boundary of the positive quadrant: (0,0)T , whose local stability
cannot be directly studied (the system cannot be linearised), (K, 0)T that is unstable
and a unique equilibrium with positive coordinates: (S1,S2)2 := K

αεδ (β(γ − δ) +

δεα)
(
1, δ−γ

γε

)T
which may or may not be stable. To study the local stability of

equilibrium (0, 0)T there are several ways, e. g. via introducing the new variable
S := S1/S2 or making a time scale changedt =: (εS2 + S1)dτ (cf. [17] and [26]).
First we give conditions for the asymptotic stability of the equilibrium of the delayed
system and show that under some conditions the increase of the delay1

a destabilises
the originally stable equilibrium by a Poincaré–Andronov–Hopf bifurcation (see [9]).
While the system without delay has no periodic solutions apart from the trivial one,
this one has.
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2. T   

We consider the model of predator-prey interaction with time delay which is given
by

Ṡ1 = αS1

(
1− S1

K

)
− βS1S2

εS2 + S1

Ṡ1 = −γS2 +
δRS2

εS2 + R

(2.1)

whereR is given by (1.5). Since

Ṙ(t) = a(S1(t) − R(t)) (t ∈ [0,+∞)),

we see that (2.1) is equivalent in its qualitative dynamical behaviour to the three
dimensional system of ordinary differential equations

Ṡ1 = αS1

(
1− S1

K

)
− βS1S2

εS2 + S1

Ṡ1 = −γS2 +
δRS2

εS2 + R
Ṙ = a(S1 − R)

(2.2)

on [0,∞) in the following sense (see also [7]). If (S1,S2) : [0,+∞) → �2 is the
solution of (2.1) corresponding to the continuous and bounded initial functionS̃1 :
(−∞,0] → � and the initial valueS0

2 := S2(0) (i. e.,S1(t) := S̃1(t) (t < 0)), then
(S1,S2,R) : [0,+∞) → �3 is the solution of (2.2) satisfying the initial conditions

S1(0) = S̃1(0), S2(0) = S0
2 andR(0) = R0 := a

∫ 0
−∞ S̃1(τ) exp(aτ) dτ and vice versa.

(Clearly, if the initial valuesS1(0), S0
2 andR0 related to system (2.2) are prescribed

then, the functionS̃1 is not uniquely determined.) There are seven parameters in
(2.2), thus if we introduce new variables and time with substitutions such as

S1 =: Ku, S2 =:
K
ε
v, R =: Kw, t =: ατ,

then (2.2) takes the following simpler, dimensionless form

u′ = u(u− 1)− buv
v + u

v′ = −cdv +
cvw
v + w

w′ = µ(u− w)

(2.3)

whereb := β
αε , c := δ

α , d := γ
δ andµ := a

α , and where the prime, this time, denotes
differentiation with respect to the variableτ. With these notations, if 0< d < 1 <
b < 1

1−d for b > 1 or if 0 < d < 1 for b ≤ 1, then system (2.3) has the following
equilibria: firstly, the origin, whose local stability cannot be directly investigated and
is of no interest, secondly, the points (1,0,1)T and the unique positive (u, v, w)T :=
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(
b(d − 1) + 1, 1−d

d (b(d − 1) + 1),b(d − 1) + 1
)T

, which represent the extinction state
of predator and the coexistence state of predator and prey, respectively.

In order to check the stability of the last two equilibria we linearise system (2.3)
at these points. The coefficient matrix is

A(u, v, w) :=



1− 2u− bv2

(v+u)2 − bu2

(v+u)2 0

0 cw2

(v+w)2 − cd cv2

(v+w)2

µ 0 −µ

 .

In particular,

A(1,0,1) =


−1 −b 0
0 c(1− d) 0
µ 0 −µ

 , A(u, v, w) =


ek− 1 −bd2 0

0 cdk ck2

µ 0 −µ

 ,

wheree := b(1 + d), k := 1− d, and the characteristic polynomials take the form

p101(λ) := λ3 + (1 + µ − c(1− d))λ2 + (µ − µc(1− d) − c(1− d))λ + µc(1− d)

and

puvw(λ) := λ3+(µ+cdk−ek+1)λ2+(cdk(µ+1)−ek(µ−cdk)+µ)λ+µcdk(ek+1+bdk).

Applying the Routh–Hurwitz criterion, we conclude that they are stable polyno-
mials if and only if the following inequalities hold:

1 + µ > c(1− d), (2.4a)

µ(1− c(1− d)) > c(1− d), (2.4b)

µc(1− d) > 0, (2.4c)

P101(µ) := (1− c(1− d))µ2 + (1− 4c(1− d) + c2(1− d))µ + c(1− d)(c− 1) > 0

and

µ + cdk+ 1 > ek (2.5a)

µ(cdk− ek+ 1) > −cdk(1− ek) (2.5b)

µcdk(ek+ 1 + bdk) > 0, (2.5c)

and

Puvw(µ) := (cdk− ek+ 1)µ2 + (cdk(cdk+ 2− 2ek− bdk)

+ ek(ek− 2) + 1))µ + cdk(1 + cdk(1 + ek) − ek) > 0. (2.5d)

If we assume that
1− ek> 0 (2.6a)

i. e.,
1

1− d
> b(1 + d), (2.6b)
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then (2.5a) and (2.5b) hold. Clearly, (2.5c) holds automatically, thus (2.5d) and (2.6a)
(resp. (2.6b)) atogether form a sufficient condition of asymptotic stability of the
equilibrium (u, v, w)T .

In view of (2.6a), the following three cases can be distinguished.

2.1. Caseek < 1. In this case the inequalities (2.5a-c) hold true. If

cdk(cdk+ 2− 2ek− bdk) + ek(ek− 2) + 1 ≥ 0, (2.7)

then (2.5d) holds for allµ and (u, v, w)T is asymptotically stable. If (2.7) does not
hold, then since the constant term of the quadratic polynomialPuvw is positive, this
polynomial has either no real roots or has two roots of the same sign. IfPuvw has no
real roots or has two negative roots, then (2.7) holds again for allµ and the equilib-
rium (u, v, w)T is asymptotically stable. IfPuvw has two positive roots, 0< µ1 < µ0,
say, then the equilibrium (u, v, w)T is asymptotically stable for large values ofµ, i. e.,
for small delays. Atµ0, the characteristic polynomialpuvw has the form

puvw(λ) ≡ (λ2 + cdk(µ0 + 1) − ek(µ0 − cdk) + µ0)(λ + µ0 + cdk − ek + 1),

and its roots are

λ0(µ0) = −µ0 − cdk+ ek− 1 < 0 and λ1,2(µ0) = ±iω,

where

ω :=
√

cdk(µ0 + 1)− ek(µ0 − cdk) + µ0.

A routine calculation shows that

d<(λ1(µ0))
dµ

= −
(
cdk(µ0 + 1)− ek(µ0 − cdk) + µ0 − 3ω2

) (
cdk(ek+ 1) + bdk− ω2

)
(
cdk(µ0 + 1)− ek(µ0 − cdk) + µ0 − 3ω2)2 + 4ω2(µ0 + cdk− ek+ 1)2

.

Example.Let b = 2.0000,d = 0.1000,c = 0.1000, then the expression on the left
hand side in (2.7) is negative,µ0 = 0.4319 andω = 0.5970, furthermore,

d<(λ1(µ0))
dµ

= −0.2187
2.5511

< 0,

therefore usingµ as bifurcation parameter, the equilibrium (u, v, w)T looses its stabil-
ity by a Poincaŕe-Andronov-Hopf bifurcation whenµ is decreased belowµ0, i. e., the
delay is increased, while the other equilibrium becomes asymptotically stable.
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2.2. Caseek = 1. In this case the inequalities (2.5a-c) hold true, (2.5d) is equivalent
to

Puvw(µ) := µ2 + dk(c− b)µ + 2cdk> 0. (2.8)

If c − d ≥ 0, then (2.8) holds for allµ and (u, v, w)T is asymptotically stable. If
c < d, then since the constant term of the quadratic polynomialPuvw is positive,
this polynomial has either no real roots or has two roots of the same sign. IfPuvw

has no real roots or has two negative roots, then (2.8) holds again for allµ and the
equilibrium (u, v, w)T is asymptotically stable. IfPuvw has two positive roots, 0<
µ1 < µ0, say, then the equilibrium (u, v, w)T is asymptotically stable for large values
of µ, i. e., for small delays. Atµ0 the characteristic polynomialpuvw has the form

puvw(λ) ≡ (λ2 + cdk(µ0 + 1)− (µ0 − cdk) + µ0) × (λ + µ0 + cdk),

whose roots are

λ0(µ0) = −µ0 − cdk< 0, and λ1,2(µ0) = ±iω,

whereω :=
√

2cdk(µ0 + 1). A routine calculation shows that

d<(λ1(µ0))
dµ

= −
ω2

(
3ω2 + cdk

(
4µ0 − 2cdk(1 + µ0) − 2− 3cd2k2

))
+ 2c2d2k2(2 + bdk)

(
2cdk(µ0 + 1)− 3ω2)2 + 4ω2(µ0 + cdk)2

.

Example.Let b = 0.999900000,c = 0.000000001, thend = 0.000050003 and (2.8)
is negative,µ0 = 0.00054791 andω = 0.999999998, furthermore,

d<(λ1(µ0))
dµ

= −0.031314697< 0,

therefore in this case the equilibrium (u, v, w)T looses its stability ifµ is decreased be-
low µ0. This loss of stability occurs again by a Poincaré-Andronov-Hopf bifurcation,
while the other equilibrium becomes asymptotically stable.

2.3. Caseek > 1. In this case (2.5a-b) are not satisfied automatically. If we assumed
thatcd > e, then (2.5a) would hold but we have no guarantee that (2.5b) will hold, so
it is not sure even for the valueµ (µ < µ0) that the polynomialpuvw(λ) is stable.
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