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AssTrACT. A ratio-dependent predator-prey model is considered in which the preda-
tor growth rate depends on past quantities of the prey. Conditions for stability of an
equilibrium and its bifurcation are established when special parameters are taken
into account.
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1. INTRODUCTION

In [15, 16, 24], a possible generalisation of the traditional Volterra predator-prey
system is considered,

S1=S1-a(S1) - S2- V(Sy),
S2;=S,-K(S1)

where the dot means fterentiation with respect to timg S;(t) and S,(t) are the
guantities (or densities) of preys and predators, respectively. Here,

e « is smooth withe’(S;) < 0,S; = 0 anda(0) > 0 > Ii+m a;
e K andV are nonnegative and increasing, aa@) = 0 = V(0).

If we replace the argument & andV by the ratio ofS; and S,, then we ar-
rive at a ratio-dependent predator-prey system, which is capable of producing richer
and more reasonable or acceptable dynamics. The substaffégedce from the
classical Kolmogorov model [15, 16] is due to the following two facts related to the
system:

() Equilibrium abundances are positively correlated along a gradient of enrich-
ment [1];

(i) These models do not produce the so-called paradox of enrichment (see [11,
pp. 490, 502] and [17, p. 391]), more exactly, it either completely disappears
or enrichment is related to stability in a more complicated way [21].

(1.1)
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A simple ratio-dependent type mathematical model of two-species interaction was
first presented in [10, 19, 21].
Let us consider a model of ratio-dependent type which has the form

S1 = f1(S1, So),
Sz = f2(S1, S2)
with the initial conditionsS;(0) > O (i € {1, 2}), where

s BS1S;
£1(S1.S,) = 051(1 Kl) e S$2+S5>0
1(S1.S2) : .
0 if $1=5=0

(1.2)

and I
£ Q2 Q2
f2(S1, Sp) := St sy 151+ S5>0
’ 0 ifS1 =S, =0.

Here,a > 0 is the intrinsic growth rate d; in the absence of th&,-population
and without environmental limitation. In the absence of 8epopulation, theS;-
population grows logistically to the carrying capadity> 0; the functional response
of the Sy-population is of Michaelis—Menten—Holling type with satiation méent
or conversion raté > 0. The specific mortality

E(S2) = -rS2 (1.3)

of the Sy-population in the absence of tisg-population depends on the quantity of
Sz. y > 0 is the death rate of th&,-population.

If we take polar coordinates = r cosy, y = rSing, then a routine calculation
shows thatf; € C°(R?,R), however, it is easy to see thiite C1(R2,R) (i € {1,2}),
therefore solution of (1.2) with positive initial condition exists and is unique.

Let S; - Ml(Sl, Sz) = fl(Sl,Sz) ands; - Mz(sl,SZ) = fz(Sl, Sz), then the
system (1.2) is written in the Kolmogorov form of

= (S1-My(9
5= (Sz ‘ MZ(S)) (1.4)

(see [19]), which is useful since one can check the following two properties of this
system:
e M1 and M, are smooth functions, therefore the positive quadrant of the
phase spacesf, S] is an invariant region (see [22], pp. 198—-203 and 230-
231);
?,“Sﬂzl(sl, S2) = —fs; <0andgg2(S1,S2) = —few; > 0(S1,S2 > 0), . €.,
in fact the system is a predator prey system with @ewand predatos,.

The ratio-dependent predator-prey model (1.2) has been studied by several au-
thors recently, and very rich dynamics has been observed. In [10] and later in [2],
the authors restricted their analysis to parameter values that ensure that the origin as
equilibrium behaves as a saddle point and they established conditions for persistence
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of the model, and showed the existence of eight qualitativetemint types of sys-

tem behaviours realized for various parameter values. In [13] and later in [26] the
authors studied the analytical behaviour at the origin and showed that this equilib-
rium can be either a saddle point or an attractor of certain trajectories, and shown that
the origin is indeed a critical point of higher order. In [17] the global behaviour of
solutions was investigated and it was showed that if the positive equilibrium is locally
asymptotically stable, then the system does not have any nontrivial positive periodic
solutions.

Now we are going to show that with respect to certain circumstances this model
can have a periodic solution. This happens by incorporating a déiagt into the
systems. For the justification and biological relevance of the delay in ratio-dependent
systems see [6]. In [14] the most famous delay in the predator-equation was intro-
duced, i. e.K (2;—8) was replaced by (%) Starting from the evidence that in
such a system the present growth rate of a predator depends not only on the present
guantity of food but also on past quantities, we will introduce an infinite distributed
delay into the second equation of system (1.2) for prey density, i. e., we repjace
in the second equation by

t
R(t) := f Si(t)p(t—1)dr, te]0,+), (1.5)
wherep : R — R] is the so-calledlensity functiorsatisfying the relation
+00
f p(s)ds= 1. (1.6)
0

Due to [5, 4, 7, 8, 18, 25], we assume that the influence of the past is fading away
exponentially, i. e.p(t) := a- exptat) (a € (0, +)) andaf_t00 exg-a(t — 7))dr =

af0+°° exp(—as)ds = 1 hold. The smallea is, the longer the time interval is in the
past in which the values & are taken into account, i. e./d.is the “measure of the
influence of the past”.

Clearly, ify < 6 < BZ[:a fory > ea oré > y for y < ea, then (1.2) has three

equilibria, two on the boundary of the positive quadrant0}b, whose local stability
cannot be directly studied (the system cannot be IirEaislﬁdo),)Y that is unstable
and a unique equilibrium with positive coordinate$;,(S,)? := %s(ﬁ(?’ -0) +

oea) (1, %)T which may or may not be stable. To study the local stability of

equilibrium (Q0)" there are several ways, e. g. via introducing the new variable
S := S1/S; or making a time scale change =: (¢S, + S1)dr (cf. [17] and [26]).

First we give conditions for the asymptotic stability of the equilibrium of the delayed
system and show that under some conditions the increase of thegdd@labilises

the originally stable equilibrium by a PoinétAndronov—Hopf bifurcation (see [9]).
While the system without delay has no periodic solutions apart from the trivial one,
this one has.
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2. THE SYSTEM WITH DELAY

We consider the model of predator-prey interaction with time delay which is given
by

Simas(1- ) L5152

K 882+Sl (21)
Sp = —ySy 4 R |
L=V TS, AR

whereRis given by (1.5). Since
R(t) = a(S1(t) - R(®)  (t € [0, +c)),

we see that (2.1) is equivalent in its qualitative dynamical behaviour to the three
dimensional system of ordinaryftBrential equations

- S1\  BS1S
Sl B a,Sl (l K ) 882 + 51

L RS, (2.2)
Sl B 782 - 882 +R

R=a(S:-R)

on [0, o) in the following sense (see also [7]). IB{,S,) : [0, +o0) — R? is the
solution of (2.1) corresponding to the continuous and bounded initial fun&jon
(—o0,0] —» R and the initial valuésg := S5(0) (i. e., S1(t) := Si(t) (t < 0)), then
(S1,S2,R) : [0,+00) — R3 is the solution of (2.2) satisfying the initial conditions
S1(0) = S1(0), Sz(0) = SY andR(0) = RO := af_ooo Si1(r) exp(ar) dr and vice versa.
(Clearly, if the initigl valuess;(0), Sg andRO related to system (2.2) are prescribed
then, the functior5; is not uniquely determined.) There are seven parameters in
(2.2), thus if we introduce new variables and time with substitutions such as

K
Si1="Ku Sy=—v, R=Kw, t= ear,
£

then (2.2) takes the following simpler, dimensionless form

buw
/= -1 - —
U= u(u )v+u
o = —cdp + 2 (2.3)
V+w
w' = p(u - w)

whereb = %, ci=2,d:= £ andu := 2, and where the prime, this time, denotes
differentiation with respect to the variahte With these notations, if & d < 1 <

b < rld forb> 1orif0 < d < 1forb < 1, then system (2.3) has the following
equilibria: firstly, the origin, whose local stability cannot be directly investigated and
is of no interest, secondly, the points ¢11)" and the unique positivei(s, w)" :=
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(b(d -1)+1,59(b(d-1)+1),b(d-1) + 1)T, which represent the extinction state
of predator and the coexistence state of predator and prey, respectively.

In order to check the stability of the last two equilibria we linearise system (2.3)
at these points. The cfigient matrix is

bu? bu?
1-2u- W _W 02
A(u’ v, w) = O (Uill)u)z - Cd (US—U_LU)Z .
H 0 —H
In particular,
-1 -b 0 ek—-1 -bd® 0
A(1,0,1)=|0 c(1-d) 0], AGow)=| O cdk ckf,

U 0 —H U 0 -

wheree ;= b(1 + d), k := 1 - d, and the characteristic polynomials take the form
p1o1(A) := 3+ (L + - c(1 — d)) A2 + (u — uc(d - d) — c(1 — d))A + uc(l — d)

and

Pam(d) 1= A3+ (u+cdk—ek+1)2%+ (cdk(u+ 1) —ek(u — cdK) +u) A+ ucdk(ek+ 1+ bdK).

Applying the Routh—Hurwitz criterion, we conclude that they are stable polyno-
mials if and only if the following inequalities hold:

l+u>c(l-d)), (2.4a)
u(l-c(l-d))>c(l-d), (2.4b)
uc(l-d) >0, (2.4c)

Proi(u) == (1 —c(L - d)u® + (1 —4c(l —d) + (1 - d))u+c(1-d)(c-1)> 0
and

u+cdk+ 1> ek (2.5a)
u(cdk—ek+ 1) > —cdk1 - ek (2.5b)
ucdk(ek+ 1+ bdk) > 0, (2.5¢)

and
Pun(u) = (cdk— ek+ 1)u? + (cdicdk+ 2 — 2ek— bdk)
+ eklek—2)+ 1))u + cdkl + cdkl + ek —ek) > 0. (2.5d)

If we assume that
1-ek>0 (2.6a)

i. e.,

Tog > b+, (2.6b)
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then (2.5a) and (2.5b) hold. Clearly, (2.5¢) holds automatically, thus (2.5d) and (2.6a)
(resp. (2.6b)) atogether form aflagient condition of asymptotic stability of the
equilibrium @, v, w)".

In view of (2.6a), the following three cases can be distinguished.

2.1. Caseek < 1. In this case the inequalities (2.5a-c) hold true. If
cdicdk+ 2 — 2ek— bdK) + ekek—2)+ 1 > 0, (2.7)

then (2.5d) holds for all. and @, 7, w)" is asymptotically stable. If (2.7) does not
hold, then since the constant term of the quadratic polynoRigl is positive, this
polynomial has either no real roots or has two roots of the same sigh;1has no
real roots or has two negative roots, then (2.7) holds again foratid the equilib-
rium (T, 7, w)" is asymptotically stable. IPg; has two positive roots, & u; < uo,
say, then the equilibriunTi(v, w)" is asymptotically stable for large valuesofi. e.,
for small delays. AL, the characteristic polynomigg; has the form

Paz(l) = (1% + cdkug + 1) — ekug — cdk) + po)(A + po + cdk — ek + 1),
and its roots are
Ao(ug) = —pg—cdk+ek—1<0 and A12(ug) = tiw,

where

w = +JedKug + 1) — eKug — cdk) + pg.
A routine calculation shows that
dR (A1(uo))

du
(cdiuo + 1) - eKuo — cdK) + g — 3w?) (cdKek+ 1) + bdk— w?)

(cdk(ug + 1) — eug — cdk) + g — 3w?)? + 4w?(ug + cdk— ek+ 1)2

Example.Let b = 2.0000,d = 0.1000,c = 0.1000, then the expression on the left
hand side in (2.7) is negativey = 0.4319 andwv = 0.5970, furthermore,

dR () _ 02187
du 25511

therefore using: as bifurcation parameter, the equilibriumg, w)" looses its stabil-
ity by a Poincag-Andronov-Hopf bifurcation when is decreased belowy, i. e., the
delay is increased, while the other equilibrium becomes asymptotically stable.
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2.2. Caseek = 1. Inthis case the inequalities (2.5a-c) hold true, (2.5d) is equivalent
to
Paw(u) = u? + dk(c — b)u + 2cdk > 0. (2.8)

If c—d > 0, then (2.8) holds for aj and @i, v,w)" is asymptotically stable. If
c < d, then since the constant term of the quadratic polynog} is positive,
this polynomial has either no real roots or has two roots of the same Sig!f
has no real roots or has two negative roots, then (2.8) holds again foaall the
equilibrium @,7,w)" is asymptotically stable. IPg; has two positive roots, &
Uy < uo, say, then the equilibriundi(v, w)" is asymptotically stable for large values
of , i. e., for small delays. At the characteristic polynomigl;; has the form

Paw(4) = (A% + cdiug + 1) — (g — CdR) + 11g) X (A + g + cdk),
whose roots are
Ao(ug) = —g—cdk< 0, and A12(up) = tiw,
wherew := /2cdiq + 1). A routine calculation shows that

dR(A1(uo))
du
w? (3w? + cdk(4ug — 2cdi(1 + pg) — 2 - 3cdPk?)) + 2¢2d?k3(2 + bdK)

(2cdk(up + 1) — 3w?)? + 4w?(ug + cdk)2
Example.Let b = 0.999900000¢ = 0.000000001, thed = 0.000050003 and (2.8)
is negativeyy = 0.00054791 and = 0.999999998, furthermore,

dR (1
M — _0.031314697 0,
m

therefore in this case the equilibrium §, w)" looses its stability if: is decreased be-
low wq. This loss of stability occurs again by a Poiresgkndronov-Hopf bifurcation,
while the other equilibrium becomes asymptotically stable.

2.3. Caseek > 1. Inthis case (2.5a-b) are not satisfied automatically. If we assumed
thatcd > e, then (2.5a) would hold but we have no guarantee that (2.5b) will hold, so
it is not sure even for the valye(u < yg) that the polynomiapg;(1) is stable.
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