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Asstract. A model of nonlinear diatomic lattice is studied. We suppose small
damping, small forcing and weak coupling between the lattices. We show the ex-
istence of breathers for undamped and unforced cases. The existence of chaos is
shown for damped and forced cases. For lattices with nonsmall parameters, the
existence of travelling waves is discussed.
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1. INTRODUCTION

Let us consider a model of two one-dimensional interacting sublattices of harmoni-
cally coupled protons and heavy ions [11, 12, 15, 16]. It represents the Bernal-Flower
filaments in ice or more complex biological macromolecules in membranes, in which
only the degrees of freedom that contribute predominantly to proton mobility have
been conserved. In these systems, each proton lies between a pair of ‘oxygens.” The
proton part of the Hamiltonian is

1. 1
Hp= > Smiiz + U (Un) + SKa(Unet = Un)?,
n

whereu, denotes the displacement of thiéa proton with respect to the center of the
oxygen pair andk; is the coupling between neighboring protons. Furthermore,

2
U(u) = &o(1- u?/dj)
is the double-well potential with the potential barrigr and 2y is the distance be-

tween its two minima. Finallynis the mass of protons.
Similarly, the oxygen part of the Hamiltonian is

1 . 1 1
n
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112 MICHAL FECKAN

wherep,, is the displacement between two oxygelsis the mass of oxygen§ is
the frequency of the optical mode akd is the harmonic coupling between neigh-
boring oxygens.

The last part in the Hamiltonian of the model arises from the dynamic interaction
between two sublattices and it is given by

Hint = > xon(W3 - d),
n

wherey measures the strength of the coupling. The Hamiltonian of the model is the
sum of these three contributions

We are also interested in the influence of external field and damping. For the model
studied here, since a spatially homogeneous field is not coupled to the optical motion
on Of the oxygens, a force term has to be considered only in the equation of motion
of the protons.

Summarizing, we consider in this note the following coupled infinite chain of os-
cillators

. r kl 0 U2
Un + F]_Un = _(UrH_]_ - 2Un + Un_]_) + £Un 1 - —2
m e d3

X F (1.1)
- 2%0nUn + —,
Onln

. : K1
on +I'oon = W (on+1 — 20n + Qn—l) - Q(Z)Qn - %(U% - dcz)) >

whereF is the external force on the protons dngd I'; are the damping cdicients
for the proton and oxygen motions.

The contents of the paper is as follows. In Section 2, we study the weakly coupled
undamped and unforced chain (1.1), i. e., With= I'>, = 0, F = 0 and the cou-
pling parameters are small. We show under certain nonresonance conditions the ex-
istence of time periodic spatially localized solutions of (1.1), the so-called breathers
[5, 9, 14]. Section 3 is devoted to the case when (1.1) is weakly forced and weakly
damped with again weak coupling. By using a Melnikov method [10], we show un-
der certain conditions the existence of spatially localized Smale horseshoes in (1.1),
i. e., spatially localized chaos in (1.1). The localization of the Smale horseshoes is
not exponential as for the breathers. Section 4 deals with (1.1) when the involved
parameters are not small. The existence of travelling waves for (1.1) and also for its
continuum limit is discussed.

2. WEAKLY COUPLED UNDAMPED AND UNFORCED LATTICES. THE EXISTENCE OF BREATHERS

We assume in this section thf = I', = F = 0, ky/m = gug, Ki/M = gup,
—2y/m = gus, —x/M = guy for a small parametes and constantg;, i = 1,2, 3,4.
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Hence (1.1) has the form

Un = EM1 (Un+1 - ZUn + Un_]_) + aZUn (dg - U%) + 8ﬂ3QnUn N

) (2.1)
On = gu2(0n+1 — 20n + 0On-1) — Qan + Elg (Uﬁ - dg) )
wherea? = r;‘f—o%. Then fore = 0, we get from (2.1) the uncoupled system
The equation
u=v, o=a’*(df-u’)u (2.2)

has a hyperbolic equilibrium = v = 0 and centera = +dp, v = 0 [17]. Furthermore,
equation (2.2) has two symmetric periodic solutiopgt), ys(t)) and Cya(t), —ys(t))

around £&do, 0) with periodsB monotonically increasing from‘a%’ to +o0. They
accumulate on two symmetric homoclinic solutiop&), ¥(t)) and &y(t), —y(t)) for
y(t) = V2dy sechadgt .

We assume thatg(t) andy(t) are even functions. We are interested, in this section,
in spatially localized time periodic solutions of (2.1) which are called breathers. We
use the approach of [5, 9, 14]. For this reason, we take the excligrgeal, + dy in
(2.1) to get
Un + aZUn(Un + do)(Un + 2d0)
—&11(Un+1 — 2Un + Un-1) — guzon(Un + do) = O, (2.3)
On + ch)Qn — &2(on+1 — 20n + On-1) — EUaUn(Un + 2do) = 0.

Now we fix a constant > 1 and consider the Banach spaces

X = {{(Un(0). en(®)lnez € C'(RRYZ | Uy, 00 are even,
B-periodic, and such that safl(jun(-)li + lon()li) < oo},

wherei = 0,2 and| - |; is the usual maximum norm a® ([0, 8], R). The norm onX;
for x = {(Un(t), on(t))},, is defined agx| = sup, 7™ (lun()li + lon(-)i). The left-hand
side of (2.3) defines the mappig: X, x R — Xp with & € R. Hence (2.3) has the
form

F(x€) = 0. (2.4)

We takexg € X with uy = 0 forn # 0, ug = y(t) — do ando, = O for anyn. Then
F(x0,0) = 0. ClearlyF € C*(X; x R, Xp). We solve (2.4) by using the implicit
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function theorem. The linearizatiddyF (Xg, 0) : Xo — Xg has the form
(U + 222d3un, 6n + Qo). N#0,
(UO + a (3)’,8(0 - do)UO, On+ Q()Qn) .
The equation
b+ a®(3yp(t)> —ddw =0

has the solutions;(t) = ys(t) andwvo(t) = Dgys(t). Functiono(t) is odd ands-
periodic, while function,(t) is even and satisfies the relatigift +3) = vo(t) —ya(t +
B). Sinceys(t+p) # 0, the functiorv,(t) is nots-periodic. We note that the existence
of an even ang-periodic solution of the equation

b+ a%(3yp(t)? — dd)v = h(t) (2.5)

for an even ang-periodic continuous functioh(t), is equivalent to the existence of
a solution of the following boundary value problem

b+ a®(3yp(t)? — dd)v = h(t)

v(0) = 0(B/2)=0.

Since the homogeneous problem of (2.6) with) = 0 has the only zero solution,
we get that (2.6) is uniquely solvable. Consequently, (2.5) has a unique even and

B-periodic solution.
Furthermore, we can directly check that the equations

(2.6)

0+ 2a%d3u = h(t),
0+ Qg0 = h(t)

have unique even arglperiodic solutions for any even amidperiodic continuous
functionh(t) if the following nonresonance conditions hold

22 \/\/_riﬁ = V2adyB # 2k, QB # 2k (2.7)

for anyk € IN. Consequently, we see thBF(Xp, 0) : Xo — Xp is continuously
invertible if (2.7) hold. The implicit function theorem implies the following result.

Theorem 2.1. Lett > 1 be given. If the condition&.7) hold, then the chairf2.1)
has ag-periodic solution{(un(t), on(t))}nez for anye small such that

sup(lun(t) - dol +lon(®))" < co.
n

Moreover, the relation(t) = O(e) is true for anyn. Furthermoreun(t) = dg + O(e)
for n # 0 andup(t) = y(t) + O(e).
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Under assumptions of Theorem 2.1, we get more complicated dynamics of (2.1).
Namely, if we start fromxy € X such thato, = 0 for anyn, u, = 0 for largen
while up = y(t) — do for several finite numbers af. Then we get for any small,
under conditions (2.7), the existence of multi-site breathers. Furthermore, if we take
an infinite number of excitations, i. @l = y(t) — do for infinite numbers ofin the
above construction ofy, then we can repeat the proof of Theorem 2.1:fe+ 1 to
getp-periodic solutions of (2.1), which are not spatially localized. But they are near
to (ys(t), 0) in infinitely many modes. Moreover, the same arguments hold when
we consider-dp instead ofdy in the above considerations, i. e., we take the exchange
Up © Up—dpin (2.1). Furthermore, if (2.7) hold for sonfg, then (2.7) hold also for
any s near togp and Theorem 2.1 can be applied uniformly for sgcinde small.
In particular, we get under assumptions of Theorem 2.1 in (2.19 $onall infinitely
many 1-parametric families of breathers.

Finally, if we start fromxg such that eitheu, = —do, on = 0 oruy = y(t) — do
andon = 0, then we considef(x, &) : Xo xR — Xg for r = 1, and we can repeat the
proof of Theorem 2.1 to get the next result.

Theorem 2.2. If the conditions
QB # 2rk forany keN

hold, then for anyE = {en}nez € {0,1}? the chain(2.1) has ag-periodic, in gen-
eral not localized spatially, solutiof(ung(t), one(t))}nez for any e small such that
one(t) = O(e) for anyn, andup g(t) = O(e) for nwithe, = Landung(t) = y(t)+O(e)
for nwithe, = 0.

We also note that the above results can be extended to the case when for (2.3) the
elementxg is such thap, = 0 for anyn, and eithetun(t) = yz(t) — do or u, = 0 or
U, = —dp or u, = —2dg. Summarizing we see that the dynamics of (2.1) is rather
complicated fo # 0 small.

3. GENERAL WEAKLY COUPLED LATTICES. THE EXISTENCE OF CHAOS

We assume in this section thBf = &61, I'2 = &d2, F = &f(t), ki/m = guy,
K1/M = gup, —=2y/m = gusz, —x/M = gu4 for a small parametet, constant$; > 0,
62 >0,u,i=1,23,4,and aCl-smoothT-periodic functionf(t). Hence (1.1) has
the form

Un + 861“[‘] + aZUn(u% - dg) = Sl,ll(UrH_]_ — ZUn + Un_]_)
+ gpzonln + (1),
. . ) (3.1)
On + £620n + Quon = e12(0n+1 — 20n + On-1)
+ epa(Ui - dé) .
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We first consider the system

0+ £610 + a%u(u? — d3) = sugou + &f(t), (3.2)
O+ €620 + Q(Z)Q = sua(U? - dg) . '

2
We make the change of variahle— o — 8’;;‘30 in (3.2) to get
0

2
.. . & 4d
U+ 8610+ @2u(U? — d3) = 8/13[@ - 12220] u+ef(t),
0
O + €620 + QSQ = gual .

To study a small -periodic solution of the above system, we take its equivalent form

U+ 8610 + @2u(u? — d3)
2

t euqd
= g3 (‘2’2‘4 f e 20292 5inQ, (t — S)U?(s) ds— *g’;‘zo] u+ef(t), (3.3)
E —00 0

252
£°05

whereQ, = Qg - and 0< & < 2Qq/82. Now it is not dificult to prove in (3.3)
by using the implicit function theorem the existence of a unique singleriodic
solutionug(t) = O(e), o:(t) = O(e) of (3.2). Then we make in (3.1) the change of
variablesun < up + U, on < on + 0s t0 get the chain

Un = vp,
bn + £510n — 8%Und3 + @23 + 3a2U2u, + 3a%unu?
et1(Unt1 — 2Un + Un_1) + gua(onUn + onls + 0:Un),  (3.4)
é)n = Yn,
Wn + 8620 + Qggn = gu2(0n+1 — 20n + On-1) + 8[14(U% + 2U.Up) .
We consider (3.4) as an ordinaryfféirential equation in the Hilbert space

H:= {Z = {(Un, vn, On, ¥n) Inez ’ Znez(uﬁ + Uﬁ + Q% + '»ﬁ) < Oo}

with the norm|z| = \/Znez(uﬁ + 03 + 0% + ¥2). The inhomogeneous linearization of
(3.4) atz = 0 has the form
Un = Upn+ hnl(t),
: 22 22
Un + £010n + Un(3a°UZ — a“dj — suzo.)
— &u1(Uns1 — 2Un + Un_1) — gu3onls = (1),
On = ¥n + gn(t),
l.ﬁn + gdoyn + Qggn - 8#2(Qn+1 —20n + Qn—l)
— 2e14UgUn = gn2(t)

(3.5)
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with w(t) = {(hn1(t), hn2(t), gn1(t), gn2(t))},cz € Co(R, H), whereCy(R, H) is the Ba-
nach space of all bounded continuous functions fiRrto H with the normjw| =

supg llw(t)ll. We look for a solutiorz € Cyp(R, H) of (3.4) fore > 0 small. For this
reason, we consider the Hilbert spates.= H1 x Hy and

Hy = {{Unlnez | ), U8 < ool
with the corresponding standard norms. We first study the equation

o=y¢¥+g
Y+ &6 + Ao = g2
on Hs for (g1, g2) € Cp(R, H2). Here,

(3.6)

Ao = {Qfon — su2(on+1 — 200 + 0n-1)nez. -
Clearly A; : H1 — Hj1 is symmetric and positive definite fersmall. Then for any
smalle, there is a symmetric and positive definBg: H; — H; such that

&
%:&—TEL

We take the operators c8st and sinB.t from Hq to Hy. For anyp € Hy, we consider
the function

#(t) := |cosB,tol? + |sinB,tol® .
Then we have
#(t) = —2(cosB,to, B, sinB,to) + 2(sinB,to, B, cosB,tp) = 0.
Hence
IcosB,tol* + |sinB,tol* = o,
and therjjcosB.t|| < 1 and||sinB.t|| < 1.
Now, the equation
o=y
(-ﬁ + &6+ A0o=0
has the fornp+ £620 + Aco = 0 which has the general solution

(3.7)

g €02t/ 2[ cosB,to1 + sin Bgtgz]
for 012 € Hi. Consequently, the fundamental solution of (3.7) has the form
Ve(t) = e 220 (1)

with uniformly bounded/(t) for ¢ > 0 small. Thus, the only bounded solution of
(3.6) has the form
t

(o). y() = f e 2PN (t - 9)(g1(9). g2(9) ds.

—00
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Hence

(0, ¥)I < Kil(g1, 92)l/ &
for a constanK; > 0 independent o > 0 small.
Furthermore, it is not diiicult to see that the linear system

Un = vn + hna(t)

3.8
bn + &6vn — @2d3Un = hpa(t) (3:8)

has a unique solutioffun(t), vn(t))}nez € Co(RR, H2) such that

H(Un(t), vn(1)}nezl < Ko [{(hna(t), hna(t))Inezl

for a constanK, > 0 independent o > 0 small.

Now we return to (3.5). Summarizing the above arguments, we see, by using
the Banach contraction mapping principle tor> 0 small, that (3.5) has for any
w(t) € Cp(R, H) a unique solutiorz € Cy(R, H) such thatz < Ks|w|/e for a constant
K3 > 0 independent of > 0 small. Since the system (3.5)Tisperiodic, then we get
from the proof of Theorem 2.1 of [4, p. 288] that (3.5) has an exponential dichotomy
onR in the spacédH for anye > 0 suficiently small. Consequently, we get the next
result.

Theorem 3.1. TheT-periodic solutionun(t) = u.(t), on(t) = 0:(t) Yn € Z of (3.1)is
hyperbolic inH for anye > 0 syficiently small, i. e., the zero equilibrium ¢8.4)in
H is hyperbolic.

Now we look for more complicated solutions of (3.1). For this reason, we shift in
(3.4) the timet & t + « to get the system

Un = vn,
bn + 86100 — @%Und3 + 8%U3 + 382U3U.(t + a)
+ 3a2unU3(t + @) = gu1(Uns1 — 2Un + Un_1)
(3.9)
+ gu3(EnUn + onUg(t + @) + 0:(t + @)un),
l_bn = (ﬁna
Un + 862Un + Q30n = 1a(0ns1 — 20n + 0n-1) + Epta(U3 + 2u,(t + @)un) .

We look for a solution of (3.9) fog > 0 small such that, ~ 0, v, ~ 0 forn # 0 and
Up ~ ¥, 00 ~ Y-

Let (00, ¥0) = {(02 ¥9)}nez be the unique bounded solution of (3.6) far= 0 and
g2 = {gn2}nez With gno, = 0 forn # 0 and

goz = epa (Y* + 2u:(t + @)y).

Let us putud = o§ = 0 forn # 0 andud = y, vJ = . Now we make in (3.9) the
change of variables, < un + U3, vn < vy + 18, on < on + 0%, ¥n < ¥n + ¥ to get,
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for n # 0, the system

L.Jn = Un,
bn + 86100 — 82Und3 + 8%U3 + 382U3U.(t + ) + 38%UnUA(t + )
= gp11(Unst + WS, 1 — 2Un + Ung + U2 )
+ ept3((on + 09)Un + (on + 0Que(t + @)
(3.10)
+0g(t + @)un),
@n = 'ﬁn,
';bn + &02yn + Q%Qn = &gu2(0n+1 — 20n + On-1)
+ gua(U2 + 2u,(t + @)up) .

For the moden = 0, we first note that the system

Uo = vg
vo + a%(3y? — dd)up = h(t)

for h(t) € Cp(RR, R) has a solutionup, vo) € Cp(R,R?) (see [10]) if and only if
| nosode-o

and such a solution is unique ff’; Up(t)y(t)dt = 0. Consequently, for the mode
n = 0, we get from (3.9) the equations

Uo = vo,
o+ (3~ R0 =10 10 [ noyoa] [ y02at
[ LoD dt = 0, (3.12)
00 = Vo,

),.00 + &02¢0 + Q(Z)Qo = 8,112(@1 - 2@0 + Q—l)
+ep4(U3 + 2Ugy + 2U.(t + @)Uo) ,

and

f hy M dt=0 (3.12)
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for
h(t) = —a?(u3 + 3u3y) — 61y — 38%(Up + ¥)Us(t + @) — &d100
— 3a2(Up + Y)U2(t + @) + gua(Uy — 2(Uo + ) + U_1)
+ euz((00 + 03)(Uo + ) + (00 + 0Q)Us(t + @)
+os(t+a)(up +7)). (3.13)

Now for e > 0 small, we can solve (3.10) and (3.11) to get the solution

2 = {(un(®), vn(t), €n(), ¥n(1))}__, € Co(R, H)

such that = O(g). Then we put thizinto (3.13) to get the functioh, , € Cp(R, R).
We noteh, ,(t) = O(e) uniformly for ¢ > 0 small anda,t € R. Clearlyh,,(t) is
T-periodic ina. Then from (3.12) we get the bifurcation equation

Qe, @) = % f ) he.o(t)y(t)dt=0. (3.14)
We need to study the limit di, ,(t) ast — 0. If we put
Im u,(t)/e = w(t),  [Imo.(t)e = (),
then from (3.2) we get
i —a?ddw = (1), ¢+ Q5 = —uqd3.
Hencel = —u4d2/Q% and

t 00
w(t)=—%b ] e‘ad"(t‘s)f(s)ds—% ft =9 (g)ds. (3.15)

It is clear thatw(t) is T-periodic. Furthermore, sincgt) — 0 ast — +co expo-
nentially, from the formula over (3.8) of the bounded solution of (3.6) we see that
lim;_0(00, ¥0)/& = {(00on, ¥on)}nez With oon = on = 0 forn # 0 and

o0 + Q3000 = pay(t)?,

t
ooo(t) = g—‘;ﬁ sinQg(t — 9)y(s)? ds.

(o)

Summarizing, from (3.13) we get

00

M(@) = QO.0) = [ [ =850 - 380 u(t +)

-0

— 2uy(®) [y dt = —géladg +a? f ) y(®)%u(t + a)dt. (3.16)

—00
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Clearly, M(«) is T-periodic. We note that similarly we can prove that

.0 ,
Ialin)0 %Q(s, a)/e = M'(a)
uniformly for « € R. Summarizing, we get the next result.

Theorem 3.2. Let M be given by(3.16) If there is a simple zerag of M, i. e.,
M(ag) = 0 and M’(ag) # O, then(3.1) has for anye > 0 small a bounded solution
Z(t) with smalluy, on for n # 0 and (ug, 0o) near (y(t — ag), 0).

Now, it is not dtficult to prove, as in the finite-dimensional case [10], that

(200) ~ { (U 0). 00 00(0. 2.0}, ) = O

exponentially fast as— +oo in H. Moreover, neag(t), we can construct the Smale
horseshoe. Consequently, we get in this case chaos in (3.1) with corresponding in-
finitely many periodic orbits with arbitrarily large periods. This Smale horseshoe of
(3.1) is spatially localized but not exponentially as in breathers.

To be more concrete, we take

f(t) = T coswt
for T > 0. Then (3.15) gives
T
t) = ————— cosuwt,
w(®) w? + azdg

and the formula (3.16) has now the form

WY V2

4 W .
M(e) = —:—go“ladg + sech g e
Consequently, if
wm
2ady’

thenM(a) has a simple zero, so then (3.1) is chaotic for any 0 small. We note
that the inequality (3.17) gives ficient conditions between the magnitude of the
forcing Y and the damping; in order to get chaos in (3.1) fer> 0 small. So chaos
is generated by the proton part of (3.1).6if = 0, then (3.1) is always chaotic for
f(t) = Tcoswt. Furthermore, iff(t) = O, i. e., there is no forcing, then it is not
difficult to prove that (3.1) has no nonconstant periodic solutions in dgace

Finally, we note that similarly we can study the case when more than one modes
are excited. We do not carry out such computations here.

4261 \J£odo < 3y/Mw Y sech (3.17)
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4. CONCLUDING REMARKS

In this note, we have studied weakly coupled diatomoc lattices presented by model
(12.1). In the case where (1.1) is unforced and undamped, the existence of infin-
itely many time-periodic and spatially localized solutions (the so-called breathers)
has been shown. For small damping and forcing, we have proved the existence of
infinitely many spatially localized Smale horseshoes, i. e., the existence of chaos
in (1.1). The localization of the Smale horseshoes is not exponential as is the case
for breathers. The proofs of these results are based on the use of the implicit func-
tion theorem. This would allow us to establish profiles of these solutions by using
analytic-numeric methods as in [7].

For general ‘non-small’ parameters involved in (1.1), the study of dynamics of
(1.1) is rather diicult. The existence of travelling waves could give some answers.
There are two possibilities to handle this problem.

The first one is to consider directly in (1.1) travelling wave solutions

Un(t) = (ot — ), on(t) = ¥t —n)

to get the system

2
v?é(t) + T1og(t) = lr(_rll((p(t +1)=2¢6(t) + p(t — 1)) + r;ic% (0) (1 B ¢d((%t)]
X F
- 2X @) + —. wn

. : K
Vi(t) + Taod(t) = 3 (W(t+ 1) = 20(0) + y(t - 1)
- Q0 - 200 - &),
where nowF is a constant external force. Equations of types similar to (4.1) are
studied in [6].

The second one is to take the continuum limit of (1.1) to obtain the partialrdi
ential equation

Ky 4o u? X F
Ut + Tily = —b%Ugy + ——ul1 - — |- 2% u+ —,
tt 1Ut XX Gg dg o

K1 o 2 X 2 2
ot + 120t = mb Oxx — QOQ— M(U - do),

(4.2)

where agairfF is a constant external forc&,= bnis the continuum space variable
andb > 0O is the lattice spacing. The travelling wave solutions

u(x,t) = ¢t — x), v(x,t) = (vt — X)
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of (4.2) satisfy the system

(o Ki,o L 4&0 ¢2 X
¢(U —mb)+rlv¢—m—%¢(l——)—25w¢+

F
2 >
dO

m (4.3)

w(vz - Mlbz) + Tovr = —Q2y — %((pz —d?).

System (4.3) is numerically studied in [11, 16]. System (4.1) was not yet investigated.
But for certain values of parameters in (4.1-4.3), the bifurcation methods as in this
paper can be applied to find analytically either periodic, homoclinic or heteroclinic
solutions of (4.1-4.3).

For instance, if

ki/m=Ky/M and o® ~ Kib?/M,

then by using the theory of singularly perturbed ordinafjedéential equations [3],
the dynamics of (4.3) is reduced to the system

- 4o ¢? X F
F10¢—m—(%¢(1—d—8)—25¢/¢+ﬁ,

Toujy = —Q2y — ﬁ((bz - &)

(4.4)

for
v? = Kib%/M.
System (4.4) admits the Lyapunov function
2
L(g.v) = nf—% [1— z—g) e~ ) - 93%2 oo
Hence the limit sets of (4.4) are its equilibria. In general they are hyperbolic. So for
v? ~ Kib%/M,

they persist in (4.3) and consequently, on bounded sets, these hyperbolic equilibria
are limit sets of (4.3).
Similarly, we can study the case

v® ~ Kib?/M  when kj/m# Ki/M.
This was numerically studied in [11]. The reduced system is now

(o Ki,o L 4&0 ¢2 X
¢(U —Eb)+rlv¢—m—%¢(l——)—25¢/¢+

dg

Fau = ~Qfy - 12(4° ~ &)

F
m’ (4.5)
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for v = Kyb?/M. According to [3], the dynamics of bounded solutions of (4.3) is
now approximated by (4.5). To study bounded solutions of (4.5), we consider its
equivalent form given by the inegroftirential equation

a2 K2) s - Koy
¢(U Eb)+rlv¢_m(‘%¢(l dg)
Q2(t-9)

2¢° i L F
+ m¢j:ooe 2 (¢(S) —do)dS+ a (46)

Equation (4.6) can be studied similarly to (3.3) but we do not investigate it any further
in this note. We postpone this to another paper.
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