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1. INTRODUCTION

This note deals with the existence of solutions to the following hyperbdiierdi
ential inclusion (Darboux problem):

2
%g’yy) eF(Xy,uXy), Xy edx (1.1
u(x,0) = f(x), u(0,y) = g(y) (1.2)

whereJ = [0,T], F : I x J xR — 2R is a compact and convex valued multivalued
map andf,g : J > R.

The method of upper and lower solutions has been successfully applied to study
the existence of multiple solutions for initial and boundary value problems of the first
and second order partialftBrential equations. This method has been used only in
the context of single-valued partialffirential equations. We refer to the books by
Carl and Heikkilae [6], Heikkilae and Lakshmikantham [10], Ladde et al. [15], to the
papers by Agarwal [1], Agarwal and Sheng [2], Blakley and Pandit [5], Lakshmikan-
tham and Pandit [14], Pandit [18] and the references cited therein.

In this note we shall establish an existence result for the problem (1.1), (1.2).
Our approach is based on the existence of upper and lower solutions and on a fixed
point theorem for condensing multivalued maps due to Martelli [17]. Other existence
results for the Darboux problem for partialidirential equations and inclusions by
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the aid of other tools can be found in the recent monograph by Kamont [12] and in
the papers [4, 7, 8, 13, 19].

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper. In the sequel, we set
g =JIxJ

In what follows,C( 7, R) is the Banach space of continuous functions fg@rimto
R with the norm||Z|., := sup|z(x, y)| : (X,y) € J} for eachze C(J,R).

The condition

u<u ifandonlyif u(xy)<u(x,y) forall (xy)eJ
defines a partial ordering i@(7, R). If u, U e C(J,R) andu < U, we put
[utl] ={ueC(J,R):u<u<T}.

Let (X,| - |) be a Banach space. A multivalued n@p X — 2% is convex (closed)
valued if G(X) is convex (closed) for alk € X. G is bounded on bounded sets if
G(B) = Uxes G(X) is bounded inX for any bounded se of X (i.e. sug.g{Suflyl :

y € G(X)}} < ). G is called upper semicontinuous (u. s. c.) Xiif for eachx, € X
the setG(x.) is a nonempty, closed subset Xf and if for each open sd of X
containingG(x.), there exists an open neighbourhd6df x. such thaG(V) € B. G

is said to be completely continuousG{B) is relatively compact for every bounded
subsetB C X. If the multivalued mags is completely continuous with nonempty
compact values, the@ is u. s. c. if and only ifG has a closed graph (i.e; —
Xe» Yn — Y Yn € G(Xn) imply y. € G(X,)). G has a fixed point if there is € X such
thatx € G(X).

In what follows,CC(X) denotes the set of all nonempty compact and convex sub-
sets ofX.

A multivalued maps : 9 — CC(X) is said to be measurable if for eaohe X the
functionY : J — R defined by

Y(X,y) = d(w, G(X, y)) = inf{lw —v] : v € G(X, y)}
is measurable.

Definition 2.1. A multivalued magF : 7 xR — 2R is said to be ah!-Caratfeodory
map if
() (%, y) » F(x y,u) is measurable for eaahe R;
(i) ur F(Xx y,u)is upper semicontinuous for almost all §) € .7;
(i) For eachk > 0, there existéy € L1(7, R,) such that
IF(X, y, U)ll = supflel : v € F(X y, W)} < hi(X, y)
for all |u] < k and for almost allX, y) € 7.



HYPERBOLIC FUNCTIONAL DIFFERENTIAL INCLUSIONS 83

An upper semi-continuous map : X — 2% is said to be condensing if for any
subsetB ¢ X with a(B) # 0, we haven(G(B)) < a(B), wherea denotes the Kura-
towski measure of noncompactness. For properties of the Kuratowski measure, we
refer to Banas and Goebel [3].

We remark that a completely continuous multivalued map is the easiest example of
a condensing map. For more details on multivalued maps see the books by Deimling
[9] and Hu and Papageorgiou [11].

Definition 2.2. By a solution of (1.1), (1.2) we mean a functiaf, ) € C(J,R)
such that there existse L1(J, R) for which we have
X Y
ux,y) = 1(X) + g(y) - f(0)+f f u(t, s)dtds for each & y) € T
o Jo
and witho(t, s) € F(t, s,u(t, 5)) a. e. ony.

Now, we introduce the concept of lower and upper solutions to (1.1), (1.2). It will
be the basic tool in the approach that follows.

Definition 2.3. A function u(-,-) € C(7,R) is said to be a lower solution of (1.1),
(1.2) if there existe; € L1(7,R) such thawy(t, s) € F(t, s u(t, 9)) a. e. onJ, and
for which we have

Xy
u(x y) < F(X) +g(y) — £(0) + fo fo vi(t, 9dtds for each & y) € 7.

A functionu(,,-) € C(J,R) is said to be an upper solution of (1.1), (1.2) if there
existsv € L1(7, R) such thaw,(t, s) € F(t, s T(t, 9)) a. e. ond, and for which we
have

Xy
u(x,y) = f(X) +gy) — f(0)+f0 fo v2(t, s)dtds for each &, y) € 7.

For the multivalued map and for eachu € C(J, R) we defineS,lz,u by

Stu= e LT, R) 1 o(t,s) € F(t, s u(t,9) fora. e. ¢, ) € J).
Our considerations are based on the following lemmas.

Lemma 2.4([16]). LetF be a multivalued map satisfyir{gl1) and letl” be a linear
continuous mapping from!(J, R) to C(, R), then the operator

oSk :C(J,R) - CC(C(J,R)), ur— (Lo Sg)u):=T(Sku)
is a closed graph operator i€(J,R) x C(J,R).

Lemma 2.5([17]). LetX be a Banach space ad: X — CC(X) be an u. s. c. and
condensing map. If the set

Q:={ue X:Aue N(u) forsomea > 1}
is bounded, thelN has a fixed point.
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We will need the following hypotheses:

(H1) F: 7 x R = CC(R) is anL!- Caratleodory multivalued map.
(H2) there existu and tu in C(J,R) as lower and upper solutions, respectively,
to the problem (1.1), (1.2) such that< u.
(H3) The functionsf, ¢g : J —» R are continuous witH (0) = ¢(0).
3. MAIN RESULT

Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that hypothes@41)—-(H3) hold. Then problenfl.1), (1.2)
has at least one solution Qff.

Proof. Let us transform problem (1.1), (1.2) into a fixed point problem. Consider the
following modified problem

f’zggf € Fluu (r(x ). (xy) €T @.1)
u(x, 0) = £(x), u(0,y) = g(y) (3.2)
wherer : C(J,R) — C(J, R) is the truncation operator defined by
u(xy) if u(x, y) < u(xy);
(Tu)(X, y) = qu(X, y) if u(x,y) <u<TX y);

U(x, y)) if (X, y) < u(x, y).
Set
Co(J.R) :={ue C(J,R) : u(x,0) = £(x), u(0,y) = g(v)}.
A solution to (3.1), (3.2) is a fixed point of the operatér: Co(J,R) — 2CoT-R)
defined by

N(u) := {h € Co(7,R) : h(x,y) = F(X) + g(y) — F(0) + fo fo " o(t, 9dtds

21
vE SF’TU}
where

Stu={veSt, 1ot > v(t,9) a e. onAr and u(t, s) < va(t, S) a. €. onAg),
St ={e NI R) 1 0(t,9) € F(t,s (ru)(t, 9) fora. e. ¢, 5) € T},
A ={(t,9) €T :u(t,s) < u(t,s) <T(t, )},
A ={(t,9) € T :u(t,s) <TU(t,s) <u(t, s)}.

Remark3.2 (i) For everyu € C(J,R), the setSé’u is nonempty (see Lasota
and Opial [16]).
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(i) For everyu e C(J,R), the seS}:’Tu is nonempty. Indeed, by (i) there exists
ve S,l:,u. Setw = viya, + V2xA, + UxAg, Where
Az ={(t,9) € T : u(t,s) <u(t,s) <U(t, 9))}.
g ~1
Then, by decomposability; € S¢ ..

We shall show thal is a completely continuous multivalued map, u. s. c. with

convex closed values. The proof will be divided into several steps.
Remark3.3. Itis clear that the fixed points & are solutions to (3.1), (3.2).

Srep 1. N(u) is convex for each € C(7,R).

Indeed, ifh;, hy belong toN(u), then there exist', v? € S, such that for each
(X%, y) € I we have

X Y )
hi(x,y) = f(X) + g(y) — f(0)+f0 fo v'(t, 9)dtds i=1,2
Let0< a < 1. Then for eachx, y) € J we have
(@h + (1 - a)h) (X, y) = £(X) + g(y) — £(0)
+ fo ’ fo y[a/vl(t, ) + (1 - a)v’(t, 9]ds

Sinceép,fu is convex (becaude has convex values), we hawf; + (1—a)hy € N(u).
Srep 2: N is bounded on bounded sets@fy, R).

Indeed, it is enough to show that there exists a positive constamth that for
eachh € N(u),ue B, = {ue C(7, ]lg) " Ullo < r}one haglh|l» < C.
If h e N(u), then there exists € Sg ., such that for eachx(y) € J we have

X
h(x,y) = f(X) + g(y) — f(0)+f fy u(t, s)dtds
0 0
By (H1) we have for eachx(y) € J that
Xy
I )] < 1F0J1 + lg()] + 1FO)] + fo fo he(t, 9dtds
Then
T T
hllee < 11 lle + llglleo + 1£(0)] + fo fo he(t, dtds= c.

Srep 3: N sends bounded sets©f7, R) into equicontinuous sets.

Let (X1, y1), (X2, 2) € I, %1 < X2, y1 < y2 andB, be a bounded set @&(J, R).
For eachu € B; andh € N(u), there exists € Sg -, such that

h(x,y) = f(X) + g(y) - F(0) + fo fo "o, 9dtds
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Thus we obtain

X2 Y2
NG, 52) — Nk, 1)l < 1) — F0x)l + lg(y2) — gyl + f f o(t, 9ldtds
X1 Y1
X2 Y2

< f(x2) — f(x)l + lg(y2) — g(ya)l +f he (t, s)dtds

X1 Y1
As (X2, y2) — (X1,y1), the right-hand side of the above inequality tends to zero.
Taking into account Step 2, Step 3, and the Axrzéiscoli theorem, we conclude
thatN is completely continuous and therefore a condensing multivalued map.

Step 4: N has closed graph.

Letu, — u., hy € N(un), and hy, — h.. We shall prove thah. € N(u.). The
inclusionh, € N(un) means that there exists € S, such that

Xy
hn(x.5) = F(¥) + g(y) — 1(0) + fo fo ol 9dtds (x.y) € 7.

We must prove that there exisise §F’TU* such that

X Y
h(xy) = F(X) + gly) - F(0)+ fo fo 0.t 9dtds (x.y) €.J.

Now, we consider the linear continuous operator.1(7, R) — C(J,R),

vi— TE)(Xy) = fox ‘f: o(t, 9)dtds (x,y) € J.

From Lemma 2.4, it follows thdt o S is a closed graph operator.
Clearly we have

lI(hn(%, y) = £(X) — g(y) + £(0)) — (h.(X, y) — F(X) — g(y) + f(0O))llo — O
asn — oo. Moreover, from the definition df, we have

(ha(x. 1) = F(x) - g(v) + £(0)) € T(Sk.ru,)-
Sinceup — U,, it follows from Lemma 2.4 that, for some € ép,m*,

mmw—u@—¢w+um:£»ﬁwmgmm(xwej

Srep 5: The set
Q:={ue C(J,R): Aue N(u) forsomea > 1}
is bounded.

Letu € Q. ThenAu € N(u) for someAd > 1. Thus there existse §Ew such that

X ry
ux,y) = 71 (X) + 17 Lg(y) - 2711 (0) + /l_lf f o(t, 9)dtds (X, y) € 7.
0 Jo
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This implies that for eachx(y) € J we have
X Y
L)l < 1131+ o+ 11O+ [ [t 9jcds

The definition ofr implies that there exists € L1(J, R*) such that|F (x, y, Tu)|| =
Ssuflvl : v € F(X, y, TU)} < ¢(X, y) for eachu € C(J,R). Thus we obtain

T AT
lulleo < IIfllo + llglleo + [f(O)I +f0 j; ¢(t, s)dtds= K.

This shows thaf2 is bounded. SeX := C(7,R). As a consequence of Lemma 2.5
we deduce thal has a fixed point which is a solution of (3.1), (3.2) gn
Srep 6: The solutioru of (3.1), (3.2)satisfies the relations
Uu(X,y) <u(x,y) <U(x,y) forall (x,y) €J.
Let u be a solution to (3.1), (3.2). We prove th&k, y) < u(x, y) for all (x,y) € J.
Let us suppose the contrary. Then there exisks, y1,y2 € J, X3 < X2, y1 < y2
such thau(xi, y1) = u(X1, y1) andu(x, y) > u(x, y) for all (x, y) € (X1, X2) X (y1, y2)- In

view of the definition ofr there exists(:,-) € F(-,-,u(:,-)) a. e. on7 with v(x, y) >
v1(X, y) a. e. on K1, X2) X (y1, y2) such that

Xy
WX, y) = £ + g(y) — F(0) + fo fo ot 9dtds (x.) € (X0 %2) X (4. 2).

Sinceu is a lower solution to (1.1), (1.2), then

X Y
uxy) < f(x) + g(y) - £(0) + fo fo vi(t, )dtds (X, y) € (X1, X2) X (y1, y2).
It follows from the factau(x, y1) = U(x1, y1), v(X, y) > v1(X, y) that

u(x,y) < u(x,y) forall (x,y) € (X1, X2) X (y1,y2),

which is a contradiction since(x,y) < u(x,y) for all (x,y) € (X1, %2) X (y1,y2)-
Consequenthyi(x, y) < u(x, y) for all (x,y) € J.

Analogously, we can prove thatx,y) < U(x,y) for all (x,y) € J. This shows
that problem (3.1), (3.2) has a solution in the intervall]. Sincer(u) = u for all
u € [u, U], we see thatiis a solution to (1.1), (1.2). O
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