

Hyers-Ulam stability and applications in gauge spaces

Monica Bota, T. Petra Petru, and G. Petruşel

HYERS-ULAM STABILITY AND APPLICATIONS IN GAUGE SPACES

M. BOTA, T. P. PETRU, AND G. PETRUŞEL

Received 18 September, 2012

Abstract. Using the weakly Picard operator technique, we will present some Ulam- Hyers stability results for operatorial equations and some applications in gauge spaces.

2000 Mathematics Subject Classification: 47H10; 54H25

Keywords: Hyers-Ulam stability, weakly Picard operator, ψ -weakly Picard operator, fixed point, integral equation

1. INTRODUCTION

In 1959, G. Marinescu [10] extended the Banach Contraction Principle to locally convex spaces, while I. Colojoară [4] and N. Gheorghiu [7] to gauge spaces and R. J. Knill [9] to uniform spaces. In 1971, Cain and Nashed [3] extended the notion of contraction to Hausdorff locally convex linear spaces. They showed that on sequentially complete subset, the Banach Contraction Principle is still valid. V.G. Angelov [1] introduced the notion of generalized φ -contractive single-valued map in gauge spaces in 1987, meanwhile the concept for multivalued operators was given in 1998 (see V.G. Angelov [2]). In 2000, M. Frigon [6] introduced the notion of generalized contraction in gauge spaces and proved that every generalized contraction on a complete gauge space (sequentially complete gauge space) has a unique fixed point.

Definition 1. Let X be any set. A map $p: X \times X \to \mathbb{R}_+$ is called a pseudometric (or, a gauge) in X whenever

- (1) $p(x, y) \ge 0$, for all $x, y \in X$;
- (2) If x = y, then p(x, y) = 0;
- (3) p(x, y) = p(y, x), for all $x, y \in X$;
- (4) $p(x,z) \le p(x,y) + p(y,z)$, for every triple of point.

© 2013 Miskolc University Press

This work was possible with the financial support of the Faculty of Business, Babeş-Bolyai University Cluj-Napoca.

Definition 2. A family $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}$ of pseudometrics on *X* (or a gauge structure on *X*), where *A* is a directed set, is said to be separating if for each pair of points $x, y \in X$, with $x \neq y$, there is a $p_{\alpha} \in \mathcal{P}$ such that $p_{\alpha}(x, y) \neq 0$.

A pair (X, \mathcal{P}) of a nonempty set X and a separating gauge structure \mathcal{P} on X is called a gauge space.

It is well known (see Dugundji [5], pages 198-204) that any family \mathcal{P} of pseudometrics on a set X induces on X a uniform structure \mathcal{U} and conversely, any uniform structure \mathcal{U} on X is induced by a family of pseudometrics on X. In addition, we have that \mathcal{U} is separating (or Hausdorff) if and only if \mathcal{P} is separating. Thus we may identify the gauge spaces and the Hausdorff uniform spaces.

A sequence $(x_n)_{n \in \mathbb{N}}$ of elements in X is said to be Cauchy if for every $\varepsilon > 0$ and $\alpha \in A$, there is an N with $p_{\alpha}(x_n, x_{n+p}) \le \varepsilon$ for all $n \ge N$ and $p \in \mathbb{N}$.

The sequence $(x_n)_{n \in \mathbb{N}}$ is called convergent if there exists an $x_0 \in X$ such that for every $\varepsilon > 0$ and $\alpha \in A$, there is an N with $p_{\alpha}(x_0, x_n) \le \varepsilon$ for all $n \ge N$.

Definition 3. A gauge space is called sequentially complete if any Cauchy sequence is convergent.

A subset of X is said to be sequentially closed if it contains the limit of any convergent sequence of its elements.

For further details see J. Dugundji [5], A. Granas, J. Dugundji [8].

Let X be a nonempty set an $f : X \to X$ be an operator. Then $x \in X$ is called fixed point for f if and only if x = f(x). The set $Fix(f) := \{x \in X | x = f(x)\}$ is called the fixed point set of f.

Definition 4. Let (X, \mathcal{P}) be a gauge space and let $f : (X, \mathcal{P}) \to (X, \mathcal{P})$ be a single-valued operator. By definition, f is weakly Picard (briefly WPO) operator if the sequence of successive approximations $f^n(x)$ converges for all $x \in X$ and the limit (which may depend on X) is a fixed point of f.

If f is WPO, then we consider the operator $f^{\infty}: (X, (P)) \to (X, (P))$ defined by $f^{\infty}(x) = \lim_{n \to \infty} f^n(x)$.

Definition 5. Let (X, \mathcal{P}) be a gauge space and let $f : (X, \mathcal{P}) \to (X, \mathcal{P})$ be a WPO and $\psi = \{\psi_{\alpha}\}_{\alpha \in A}$ be a family of mappings such that $\psi_{\alpha} : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi_{\alpha}(0) = 0$. By definition the operator f is ψ_{α} -WPO if

 $p_{\alpha}(x, f^{\infty}(x)) \leq \psi_{\alpha}(p_{\alpha}(x, f(x))), \text{ for all } x \in X, \alpha \in A.$

If there exists $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^A$ such that $\psi_{\alpha}(t) := c_{\alpha} \cdot t$, for each $t \in \mathbb{R}_+$ and $\alpha \in A$ then the operator f is c_{α} -WPO.

For the theory of weakly Picard operators, see [11] for the single-valued case.

The purpose of this paper is to present some results concerning the Hyers-Ulam stability of some operatorial inclusions (such as the fixed point inclusion, the coincdence point equation or inclusion, etc.) in gauge spaces, using the weakly Picard operator technique.

2. HYERS-ULAM STABILITY FOR FIXED POINT EQUATIONS

We will present first the concept of Hyers-Ulam stability in the setting of gauge spaces.

Definition 6. Let (X, \mathcal{P}) be a gauge space and let $f : (X, \mathcal{P}) \to (X, \mathcal{P})$ be a single-valued operator. The fixed point equation

$$x = f(x), \ x \in X \tag{2.1}$$

is called generalized Hyers-Ulam stable if and only if there exists $\psi = \{\psi_{\alpha}\}_{\alpha \in A}$ a family of mappings, $\psi_{\alpha} : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi_{\alpha}(0) = 0$ such that for each $\varepsilon = \{\varepsilon_{\alpha}\}_{\alpha \in A} \in (0, \infty)^A$ and for each solution y^* of the inequation

$$p_{\alpha}(y, f(y)) \le \varepsilon_{\alpha}, \ \alpha \in A, \tag{2.2}$$

there exists a solution x^* of the fixed point equation (2.1) such that

$$p_{\alpha}(y^*, x^*) \leq \psi_{\alpha}(\varepsilon_{\alpha})$$
, for all $\alpha \in A$.

If there exists $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^A$ such that $\psi_{\alpha}(t) := c_{\alpha} \cdot t$, for each $t \in \mathbb{R}_+$ and $\alpha \in A$ then the fixed point equation (2.1) is said to be Hyers-Ulam stable.

We refer to [12] for the particular case of Hyers-Ulam stability in metric spaces. Our first abstract result is as follows.

Theorem 1. Let (X, \mathcal{P}) be a gauge space and let $f : (X, \mathcal{P}) \to (X, \mathcal{P})$ be a ψ_{α} -WPO. Then, the fixed point equation (2.1) is generalized Hyers-Ulam stable.

Proof. Let $\varepsilon = \varepsilon_{\alpha} \in (0, \infty)^A$ and let $y^* \in f^{\infty}(x, y)$ be an ε -solution of (2.2), i.e., $p_{\alpha}(y^*, f(y^*)) \le \varepsilon_{\alpha}$, for all $\alpha \in A$. Since f is a ψ_{α} -WPO, for each $x \in X$ and $\alpha \in A$ we have

$$p_{\alpha}(x, f^{\infty}(x) \le \psi_{\alpha}(p_{\alpha}(x, f(x))).$$

Then choosing $x^* = f^{\infty}(y^*)$ we have

$$p_{\alpha}(y^*, x^*) = p_{\alpha}(y^*, f^{\infty}(y^*)) \le \psi_{\alpha}(p_{\alpha}(y^*, f(y^*))) \le \psi_{\alpha}(\varepsilon_{\alpha}).$$

Thus the fixed point equation (2.1) is generalized Hyers-Ulam stable.

In 1974, Tarafdar [13] expressed the notion of contraction in Hausdorff uniform spaces, using the observation that a uniformity on X determines a family of gauges $\{p_{\alpha}\}$. A Hyers-Ulam stability result for the case of Tarafdar contraction in gauge spaces is as follows.

Theorem 2. Let (X, \mathcal{P}) be a gauge space and let $f : (X, \mathcal{P}) \to (X, \mathcal{P})$ be an a_{α} -contraction, i.e. for every $\alpha \in A$ there exists $a = \{a_{\alpha}\}_{\alpha \in A} \in (0, 1)^{A}$ such that

$$p_{\alpha}(f(x), f(y)) \leq a_{\alpha} \cdot p_{\alpha}(x, y), \text{ for all } x, y \in X.$$

Then $F_f = \{x^*\}$ and the fixed point equation (2.1) is Hyers-Ulam stable.

Proof. From Tarafdar [13] we get that f has a unique fixed point $x^* \in X$ and, for each $x \in X$, we have that $f^n(x) \to x^*$. Thus, f is a Picard operator. Moreover, it is a c_{α} -WPO, with $c_{\alpha} := \frac{1}{1-a_{\alpha}}$. Applying Theorem 1 we obtain the conclusion.

An extension of the previous result concerns the case of graphic-contractions.

Theorem 3. Let (X, \mathcal{P}) be a sequentially complete gauge space. Let $f : (X, \mathcal{P}) \rightarrow (X, \mathcal{P})$ be an operator. If f is a graphic a_{α} -contraction, i.e., for every $\alpha \in A$ there exists $a = \{a_{\alpha}\}_{\alpha \in A} \in (0, 1)^{A}$ such that

$$p_{\alpha}(f^2(x), f(x)) \le a_{\alpha} \cdot p_{\alpha}(x, f(x)), \text{ for all } x \in X$$

and f has closed graph, then $F_f \neq \emptyset$ and the equation (2.1) is Hyers-Ulam stable.

Proof. Let $x_0 \in X$ and $x_n \in f(x_{n-1}) = f^n(x_0), n = 1, 2, ...$ If *m* and *n* are positive integers, m < n, then for each $\alpha \in A$ we have:

$$p_{\alpha}(x_{m}, x_{n}) = p_{\alpha}(f^{m}(x_{0}), f^{n}(x_{0}))$$

$$\leq p_{\alpha}(f^{m}(x_{0}), f^{m+1}(x_{0})) + p_{\alpha}(f^{m+1}(x_{0}), f^{m+2}(x_{0})) + \dots$$

$$+ p_{\alpha}(f^{n-1}(x_{0}), f^{n}(x_{0}))$$

$$\leq a_{\alpha} p_{\alpha}(f^{m-1}(x_{0}), f^{m}(x_{0})) + a_{\alpha} p_{\alpha}(f^{m}(x_{0}), f^{m+1}(x_{0})) + \dots$$

$$+ a_{\alpha} p_{\alpha}(f^{n-2}(x_{0}), f^{n-1}(x_{0}))$$

$$\leq a_{\alpha}^{m} p_{\alpha}(x_{0}, f(x_{0})) + a_{\alpha}^{m+1} p_{\alpha}(x_{0}, f(x_{0})) + \dots + a_{\alpha}^{n-1} p_{\alpha}(x_{0}, f(x_{0}))$$

$$= p_{\alpha}(x_{0}, f(x_{0}))a_{\alpha}^{m}(1 + a_{\alpha} + \dots + a_{\alpha}^{n-m+1})$$

$$\leq p_{\alpha}(x_{0}, f(x_{0}))a_{\alpha}^{m}\frac{1 - a_{\alpha}^{n-m}}{1 - a_{\alpha}}.$$

Hence the sequence (x_n) is Cauchy, therefore (x_n) converges to a point $x^* \in X$. From the continuity of f we get that x^* is a fixed point for f. So, we have

$$p_{\alpha}(x_m, x_n) \le p_{\alpha}(x_0, f(x_0)) a_{\alpha}^m \frac{1 - a_{\alpha}^{n-m}}{1 - a_{\alpha}}$$

If we choose in the above inequality m = 0 and let $n \to \infty$ we obtain:

$$p_{\alpha}(x_0, x^*) \le p_{\alpha}(x_0, f(x_0)) \frac{1}{1 - a_{\alpha}}, \text{ for all } \alpha \in A.$$

Thus *f* is a c_{α} -WPO with $c_{\alpha} := \frac{1}{1-a_{\alpha}}$. Therefore the second conclusion follows from Theorem 1.

3. APPLICATIONS

We will apply some of the above results to nonlinear integral equations on the real axis.

$$x(t) = \int_0^t K(t, s, x(s)) ds + g(t), \ t \in \mathbb{R}_+.$$
 (3.1)

We give the notion of Hyers-Ulam stability for the integral equation.

Definition 7. The integral equation (3.1) is called Hyers-Ulam stable if and only if there exists $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^{A}$ such that for each $\varepsilon = \{\varepsilon_{\alpha}\}_{\alpha \in A} \in (0, \infty)^{A}$ and for any ε -solution y^{*} of (1) (i.e., any $y^{*} \in C([0, \infty], \mathbb{R}^{n})$ which satisfies the inequality

$$|y^*(t) - \int_0^t K(t, s, x(s)) ds - g(t)| \le \varepsilon_\alpha, \text{ for each } t \ge 0)$$
(3.2)

there exists a solution x^* of the equation (3.1) such that

 $|y^*(t) - x^*(t)| \le c_{\alpha} \cdot \varepsilon_{\alpha}$, for each $t \ge 0$.

Theorem 4. *Consider equation* (3.1). *Suppose that:*

i) $K : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R}_+ \to \mathbb{R}^n$ are continuous; *ii*) there exists k > 0 such that

$$|K(t,s,u) - K(t,s,v)| \le k|u-v|, \text{ for each } t,s \in \mathbb{R}_+, u,v \in \mathbb{R}^n;$$

Then the integral equation (3.1) has a unique solution x^* in $C([0, +\infty), \mathbb{R}^n)$ and equation (3.1) is Hyers-Ulam stable.

Proof. Let $X := C([0, +\infty), \mathbb{R}^n)$ and the family of pseudo-norms

$$||x||_n := \max_{t \in [0,n]} |x(t)| e^{-\tau t}$$
, where $\tau > 0$.

Define now $d_n(x, y) := ||x - y||_n$ for $x, y \in X$.

Then $\mathcal{P} := (d_n)_{n \in \mathbb{N}^*}$ is family of gauges on X. Then (X, \mathcal{P}) is a complete gauge space.

Define $A: C([0, +\infty), \mathbb{R}^n) \to C([0, +\infty), \mathbb{R}^n)$, by the formula

$$Ax(t) := \int_0^t K(t, s, x(s)) ds + g(t), \ t \in \mathbb{R}_+.$$

For each $x, y \in X$ and for $t \in [0, n]$, we have successively:

$$|Ax(t) - Ay(t)| \le \int_0^t |K(t, s, x(s)) - K(t, s, y(s))| ds \le \int_0^t k |x(s) - y(s)| ds$$

= $k \int_0^t |x(s) - y(s)| e^{-\tau s} e^{\tau s} ds \le k \int_0^t e^{\tau s} (|x(s) - y(s)| e^{-\tau s}) ds$
 $\le k d_n(x, y) \int_0^t e^{\tau s} ds \le \frac{k}{\tau} d_n(x, y) e^{\tau t}.$

Hence, for $\tau > k$ and denoting $L := \frac{k}{\tau} < 1$ we obtain

$$d_n(Ax, Ay) \leq Ld_n(x, y)$$
, for each $x, y \in X$.

The conclusion follows now from Theorem 2.

Consider now the following equation

$$x(t) = \int_{-t}^{t} K(t, s, x(s)) ds + g(t), \ t \in \mathbb{R}.$$
 (3.3)

Theorem 5. Consider the equation (3.3). Suppose that: *i*) $K : \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R} \to \mathbb{R}^n$ are continuous; *ii*) there exists k > 0 such that

$$|K(t,s,u) - K(t,s,v)| \le k|u-v|$$
, for each $t,s \in \mathbb{R}, u,v \in \mathbb{R}^n$

Then the integral equation (3.3) has a unique solution x^* in $C(\mathbb{R}, \mathbb{R}^n)$ and equation (3.3) is Hyers-Ulam stable.

Proof. We consider the gauge space $X := (C(\mathbb{R}, \mathbb{R}^n), \mathcal{P} := (d_n)_{n \in \mathbb{N}})$ where

$$d_{n}(x, y) = \max_{-n \le t \le n} \left(|x(t) - y(t)| \cdot e^{-\tau |t|} \right), \ \tau > 0,$$

and the operator $B: X \to X$ defined by

$$Bx(t) = \int_{-t}^{t} K(t, s, x(s)) \, ds + g(t) \, .$$

From condition (ii), for $x, y \in X$, we have

$$|Bx(t) - By(t)| \le \int_{-t}^{t} k|x(s) - y(s)|e^{-\tau|s|}e^{\tau|s|}ds \le k\int_{-t}^{t} e^{\tau|s|}(|x(s) - y(s)|e^{-\tau|s|})ds \le kd_n(x,y) \left| \int_{-t}^{t} e^{\tau|s|}ds \right| \le kd_n(x,y) \int_{-|t|}^{|t|} e^{\tau|s|}ds \le \frac{2k}{\tau}d_n(x,y)e^{\tau|t|}, \ t \in [-n;n].$$

Thus, for any $\tau \ge 2k$, if we denote $L := \frac{2k}{\tau} < 1$, we obtain

$$d_n(B(x), B(y)) \le Ld_n(x, y)), \text{ for all } x, y \in E, \text{ and for } n \in \mathbb{N}.$$

The conclusion follows again by Theorem 2.

ACKNOWLEDGEMENT

For the first author, this work was possible with the financial support of a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

46

References

- V. G. Angelov, "Fixed point theorem in uniform spaces and applications," *Czech. Math. J.*, vol. 37(112), no. 1, pp. 19–33, 1987.
- [2] V. G. Angelov, "Fixed points of multi-valued mappings in uniform spaces," *Math. Balk., New Ser.*, vol. 12, no. 1-2, pp. 29–35, 1998.
- [3] G. L. j. Cain and M. Z. Nashed, "Fixed points and stability for a sum of two operators in locally convex spaces," *Pac. J. Math.*, vol. 39, pp. 581–592, 1971.
- [4] I. Colojoară, "Sur un théorème d'un point fixe dans les espaces uniformes complets," Comun. Acad. Republ. Popul. Romine, vol. 11, pp. 281–283, 1961.
- [5] J. Dugundji, Topology, ser. Advanced Mathematics. Boston: Allyn and Bacon, Inc., 1966.
- [6] M. Frigon, "Fixed point results for generalized contractions in gauge spaces and applications," Proc. Am. Math. Soc., vol. 128, no. 10, pp. 2957–2965, 2000.
- [7] N. Gheorghiu, "Ein satz über Kontraktionen in uniformen Räumen," *Stud. Cercet. Mat.*, vol. 19, pp. 119–122, 1967.
- [8] A. Granas and J. Dugundji, *Fixed point theory*, ser. Springer Monographs in Mathematics. New York: Springer, 2003.
- [9] R. J. Knill, "Fixed points of uniform contractions," J. Math. Anal. Appl., vol. 12, pp. 449–455, 1965.
- [10] G. Marinescu, Topologische und pseudotopologische Vektorräume [Spații vectoriale topologice si pseudotopologice], ser. Biblioteca Matematică. Bucureşti: Editura Academiei Republicii Populare Romine, 1959, vol. 4.
- [11] I. A. Rus, "Picard operators and applications," Sci. Math. Jpn., vol. 58, no. 1, pp. 191–219, 2003.
- [12] I. A. Rus, "Remarks on ulam stability of the operatorial equations," *Fixed Point Theory*, vol. 10, no. 2, pp. 305–320, 2009.
- [13] E. Tarafdar, "An approach to fixed-point theorems on uniform spaces," *Trans. Am. Math. Soc.*, vol. 191, pp. 209–225, 1974.

Authors' addresses

M. Bota

Babeş-Bolyai University, Department of Applied Mathematics, Kogalniceanu Str. No 1., Cluj-Napoca, Romania

E-mail address: bmonica@math.ubbcluj.ro

T. P. Petru

Babeş-Bolyai University, Faculty of Economics and Business Administration, Teodor Mihali Str. No 1., Cluj-Napoca, Romania

E-mail address: petra.petru@econ.ubbcluj.ro

G. Petruşel

Babeş-Bolyai University, Faculty of Business, Horea Str. No 7., Cluj-Napoca, Romania *E-mail address:* gabi.petrusel@tbs.ubbcluj.ro