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1. INTRODUCTION

In 1959, G. Marinescu [10] extended the Banach Contraction Principle to locally
convex spaces, while I. Colojoară [4] and N. Gheorghiu [7] to gauge spaces and R.
J. Knill [9] to uniform spaces. In 1971, Cain and Nashed [3] extended the notion of
contraction to Hausdorff locally convex linear spaces. They showed that on sequen-
tially complete subset, the Banach Contraction Principle is still valid. V.G. Angelov
[1] introduced the notion of generalized '-contractive single-valued map in gauge
spaces in 1987, meanwhile the concept for multivalued operators was given in 1998
(see V.G. Angelov [2]). In 2000, M. Frigon [6] introduced the notion of generali-
zed contraction in gauge spaces and proved that every generalized contraction on a
complete gauge space (sequentially complete gauge space) has a unique fixed point.

Definition 1. Let X be any set. A map p WX �X ! RC is called a pseudometric
( or, a gauge) in X whenever

(1) p.x;y/� 0, for all x;y 2X ;
(2) If x D y, then p.x;y/D 0;
(3) p.x;y/D p.y;x/, for all x;y 2X ;
(4) p.x;´/� p.x;y/Cp.y;´/, for every triple of point.
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Definition 2. A family P D fp˛g˛2A of pseudometrics onX (or a gauge structure
on X ), where A is a directed set, is said to be separating if for each pair of points
x;y 2X , with x ¤ y, there is a p˛ 2P such that p˛.x;y/¤ 0.

A pair .X;P / of a nonempty set X and a separating gauge structure P on X is
called a gauge space.

It is well known (see Dugundji [5], pages 198-204) that any family P of pseudo-
metrics on a set X induces on X a uniform structure U and conversely, any uniform
structure U on X is induced by a family of pseudometrics on X . In addition, we
have that U is separating (or Hausdorff) if and only if P is separating. Thus we may
identify the gauge spaces and the Hausdorff uniform spaces.

A sequence .xn/n2N of elements in X is said to be Cauchy if for every " > 0 and
˛ 2 A, there is an N with p˛.xn;xnCp/� " for all n�N and p 2N.

The sequence .xn/n2N is called convergent if there exists an x0 2X such that for
every " > 0 and ˛ 2 A, there is an N with p˛.x0;xn/� " for all n�N .

Definition 3. A gauge space is called sequentially complete if any Cauchy sequ-
ence is convergent.

A subset of X is said to be sequentially closed if it contains the limit of any con-
vergent sequence of its elements.

For further details see J. Dugundji [5], A. Granas, J. Dugundji [8].
LetX be a nonempty set an f WX!X be an operator. Then x 2X is called fixed

point for f if and only if x D f .x/. The set F ix.f / WD fx 2X j x D f .x/g is called
the fixed point set of f .

Definition 4. Let .X;P / be a gauge space and let f W .X;P /! .X;P / be a
single-valued operator. By definition, f is weakly Picard (briefly WPO) operator if
the sequence of successive approximations f n.x/ converges for all x 2 X and the
limit (which may depend on X) is a fixed point of f .

If f is WPO, then we consider the operator f1 W .X;.P //! .X;.P // defined by
f1.x/D lim

n!1
f n.x/:

Definition 5. Let .X;P / be a gauge space and let f W .X;P /! .X;P / be a WPO
and  D f ˛g˛2A be a family of mappings such that  ˛ W RC ! RC increasing,
continuous in 0 and  ˛.0/D 0: By definition the operator f is  ˛-WPO if

p˛.x;f
1.x//�  ˛.p˛.x;f .x///; for all x 2X;˛ 2 A:

If there exists c D fc˛g˛2A 2 .0;1/A such that  ˛.t/ WD c˛ � t; for each t 2 RC
and ˛ 2 A then the operator f is c˛-WPO.

For the theory of weakly Picard operators, see [11] for the single-valued case.
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The purpose of this paper is to present some results concerning the Hyers-Ulam
stability of some operatorial inclusions (such as the fixed point inclusion, the coinc-
dence point equation or inclusion, etc.) in gauge spaces, using the weakly Picard
operator technique.

2. HYERS-ULAM STABILITY FOR FIXED POINT EQUATIONS

We will present first the concept of Hyers-Ulam stability in the setting of gauge
spaces.

Definition 6. Let .X;P / be a gauge space and let f W .X;P /! .X;P / be a
single-valued operator. The fixed point equation

x D f .x/; x 2X (2.1)

is called generalized Hyers-Ulam stable if and only if there exists  D f ˛g˛2A a
family of mappings,  ˛ W RC! RC increasing, continuous in 0 and  ˛.0/D 0 such
that for each "D f"˛g˛2A 2 .0;1/A and for each solution y� of the inequation

p˛.y;f .y//� "˛; ˛ 2 A; (2.2)

there exists a solution x� of the fixed point equation (2.1) such that

p˛.y
�;x�/�  ˛."˛/; for all ˛ 2 A:

If there exists c D fc˛g˛2A 2 .0;1/A such that  ˛.t/ WD c˛ � t; for each t 2 RC
and ˛ 2 A then the fixed point equation (2.1) is said to be Hyers-Ulam stable.

We refer to [12] for the particular case of Hyers-Ulam stability in metric spaces.
Our first abstract result is as follows.

Theorem 1. Let .X;P / be a gauge space and let f W .X;P /! .X;P / be a  ˛-
WPO. Then, the fixed point equation (2.1) is generalized Hyers-Ulam stable.

Proof. Let "D "˛ 2 .0;1/A and let y� 2 f1.x;y/ be an "-solution of (2.2), i.e.,
p˛.y

�;f .y�//� "˛; for all ˛ 2A: Since f is a  ˛-WPO, for each x 2X and ˛ 2A
we have

p˛.x;f
1.x/�  ˛.p˛.x;f .x///:

Then choosing x� D f1.y�/ we have

p˛.y
�;x�/D p˛.y

�;f1.y�//�  ˛.p˛.y
�;f .y�///�  ˛."˛/:

Thus the fixed point equation (2.1) is generalized Hyers-Ulam stable. �

In 1974, Tarafdar [13] expressed the notion of contraction in Hausdorff uniform
spaces, using the observation that a uniformity on X determines a family of gauges
fp˛g: A Hyers-Ulam stability result for the case of Tarafdar contraction in gauge
spaces is as follows.
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Theorem 2. Let .X;P / be a gauge space and let f W .X;P /! .X;P / be an
a˛-contraction, i.e. for every ˛ 2 A there exists aD fa˛g˛2A 2 .0;1/A such that

p˛.f .x/;f .y//� a˛ �p˛.x;y/; for all x;y 2X:

Then Ff D fx�g and the fixed point equation (2.1) is Hyers-Ulam stable.

Proof. From Tarafdar [13] we get that f has a unique fixed point x� 2X and, for
each x 2X , we have that f n.x/! x�: Thus, f is a Picard operator. Moreover, it is
a c˛-WPO, with c˛ WD 1

1�a˛
: Applying Theorem 1 we obtain the conclusion. �

An extension of the previous result concerns the case of graphic-contractions.

Theorem 3. Let .X;P / be a sequentially complete gauge space. Let f W .X;P /!
.X;P / be an operator. If f is a graphic a˛-contraction, i.e., for every ˛ 2 A there
exists aD fa˛g˛2A 2 .0;1/A such that

p˛.f
2.x/;f .x//� a˛ �p˛.x;f .x//; for all x 2X

and f has closed graph, then Ff ¤¿ and the equation (2.1) is Hyers-Ulam stable.

Proof. Let x0 2X and xn 2 f .xn�1/D f n.x0/;nD 1;2; ::: Ifm and n are positive
integers, m< n, then for each ˛ 2 A we have:

p˛.xm;xn/D p˛.f
m.x0/;f

n.x0//

� p˛.f
m.x0/;f

mC1.x0//Cp˛.f
mC1.x0/;f

mC2.x0//C : : :

Cp˛.f
n�1.x0/;f

n.x0//

� a˛p˛.f
m�1.x0/;f

m.x0//Ca˛p˛.f
m.x0/;f

mC1.x0//C : : :

Ca˛p˛.f
n�2.x0/;f

n�1.x0//

� am˛ p˛.x0;f .x0//Ca
mC1
˛ p˛.x0;f .x0//C :::Ca

n�1
˛ p˛.x0;f .x0//

D p˛.x0;f .x0//a
m
˛ .1Ca˛C :::Ca

n�mC1
˛ /

� p˛.x0;f .x0//a
m
˛

1�an�m˛

1�a˛
:

Hence the sequence .xn/ is Cauchy, therefore .xn/ converges to a point x� 2 X:
From the continuity of f we get that x� is a fixed point for f . So, we have

p˛.xm;xn/� p˛.x0;f .x0//a
m
˛

1�an�m˛

1�a˛
:

If we choose in the above inequality mD 0 and let n!1 we obtain:

p˛.x0;x
�/� p˛.x0;f .x0//

1

1�a˛
; for all ˛ 2 A:

Thus f is a c˛-WPO with c˛ WD 1
1�a˛

: Therefore the second conclusion follows from
Theorem 1. �
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3. APPLICATIONS

We will apply some of the above results to nonlinear integral equations on the
real axis.

x.t/D

Z t

0

K.t;s;x.s//dsCg.t/; t 2 RC: (3.1)

We give the notion of Hyers-Ulam stability for the integral equation.

Definition 7. The integral equation (3.1) is called Hyers-Ulam stable if and only if
there exists cDfc˛g˛2A 2 .0;1/A such that for each "Df"˛g˛2A 2 .0;1/A and for
any "-solution y� of (1) (i.e., any y� 2 C.Œ0;1�;Rn/ which satisfies the inequality

jy�.t/�

Z t

0

K.t;s;x.s//ds�g.t/j � "˛; for each t � 0/ (3.2)

there exists a solution x� of the equation (3.1) such that

jy�.t/�x�.t/j � c˛ � "˛; for each t � 0:

Theorem 4. Consider equation (3.1). Suppose that:
i) K W RC�RC�Rn! Rn and g W RC! Rn are continuous;
ii) there exists k > 0 such that

jK.t;s;u/�K.t;s;v/j � kju�vj; for each t; s 2 RC; u;v 2 RnI

Then the integral equation (3.1) has a unique solution x� in C.Œ0;C1/;Rn/ and
equation (3.1) is Hyers-Ulam stable.

Proof. Let X WD C.Œ0;C1/;Rn/ and the family of pseudo-norms

kxkn WD max
t2Œ0;n�

jx.t/je�� t ; where � > 0:

Define now dn.x;y/ WD kx�ykn for x;y 2X:
Then P WD .dn/n2N� is family of gauges on X . Then .X;P / is a complete gauge

space.
Define A W C.Œ0;C1/;Rn/! C.Œ0;C1/;Rn/, by the formula

Ax.t/ WD

Z t

0

K.t;s;x.s//dsCg.t/; t 2 RC:

For each x;y 2X and for t 2 Œ0;n�, we have successively:

jAx.t/�Ay.t/j �

Z t

0

jK.t;s;x.s//�K.t;s;y.s//jds �

Z t

0

kjx.s/�y.s/jds

D k

Z t

0

jx.s/�y.s/je��se�sds � k

Z t

0

e�s.jx.s/�y.s/je��s/ds

� kdn.x;y/

Z t

0

e�sds �
k

�
dn.x;y/e

� t :
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Hence, for � > k and denoting L WD k
�
< 1 we obtain

dn.Ax;Ay/� Ldn.x;y/; for each x;y 2X:

The conclusion follows now from Theorem 2. �

Consider now the following equation

x.t/D

Z t

�t

K.t;s;x.s//dsCg.t/; t 2 R: (3.3)

Theorem 5. Consider the equation (3.3). Suppose that:
i) K W R�R�Rn! Rn and g W R! Rn are continuous;
ii) there exists k > 0 such that

jK.t;s;u/�K.t;s;v/j � kju�vj; for each t; s 2 R; u;v 2 RnI

Then the integral equation (3.3) has a unique solution x� inC.R;Rn/ and equation
(3.3) is Hyers-Ulam stable.

Proof. We consider the gauge space X WD .C .R;Rn/ ;P WD .dn/n2N/ where

dn .x;y/D max
�n�t�n

�
jx .t/�y .t/j � e�� jt j

�
; � > 0;

and the operator B WX !X defined by

Bx .t/D

tZ
�t

K .t;s;x .s//dsCg .t/ :

From condition (ii), for x;y 2X , we have

jBx .t/�By .t/j �
tR
�t

kjx.s/�y.s/je�� jsje� jsjds �

k
tR
�t

e� jsj.jx.s/�y.s/je�� jsj/ds � kdn .x;y/

ˇ̌̌̌
tR
�t

e� jsjds

ˇ̌̌̌
�

kdn .x;y/
jt jR
�jt j

e� jsjds � 2k
�
dn .x;y/e

� jt j; t 2 Œ�nIn�:

Thus, for any � � 2k, if we denote L WD 2k
�
< 1, we obtain

dn .B .x/ ;B .y//� Ldn .x;y//; for all x;y 2E; and for n 2N:

The conclusion follows again by Theorem 2. �
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