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Abstract. In this paper we present some existence, uniqueness and Hyers-Ulam stability results
for the coupled fixed point of a pair of contractive type operators on complete metric spaces. The
approach is based on a Perov type fixed point theorem for contractions. Some applications to
integral equations and to boundary value problems are also given.
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1. INTRODUCTION

The classical Banach contraction principle is a very useful tool in nonlinear analy-
sis with many applications to operatorial equations, fractal theory, optimization the-
ory and other topics. Banach contraction principle was extended for singlevalued
contraction on spaces endowed with vector-valued metrics by Perov in [7], while the
case of multivalued contractions is treated in A. Petruşel [8].

In the study of the existence of fixed points for an operator, it is useful to consider
a more general concept, namely coupled fixed points. The concept of coupled fixed
point for continuous and discontinuous operators was introduced in 1987 by D. Guo
and V. Lakshmikantham (see [5]) in connection with coupled quasisolutions of an
initial value problem for ordinary differential equations.

Let X be a nonempty set. A mapping d W X �X ! Rm is called a vector-valued
metric on X if the following properties are satisfied:

(a) d.x;y/� 0 for all x;y 2X ; if d.x;y/D 0, then x D y;
(b) d.x;y/D d.y;x/ for all x;y 2X ;
(c) d.x;y/� d.x;´/Cd.´;y/ for all x;y 2X .

This work was made possible with the financial support of the Sectoral Operational Programme
for Human Resources Development 2007�2013, co-financed by the European Social Fund, under the
project number POSDRU/107/1.5/S/76841 with the title Modern Doctoral Studies: Internationalization
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A set endowed with a vector-valued metric d is called generalized metric space.
The notions of convergent sequence, Cauchy sequence, completeness, open subset
and closed subset are similar to those for usual metric spaces.

We denote by Mmm .RC/ the set of all m�m matrices with positive elements and
by I the identity m�m matrix. If x;y 2 Rm, x D .x1; :::;xm/ and y D .y1; :::;ym/,
then, by definition:

x � y if and only if xi � yi for i 2 f1;2; :::;mg:

Notice that we will make an identification between row and column vectors in Rm.
For the proof of the main results we need the following theorems. A classical

result in matrix analysis is the following theorem (see [1], [10], [13]).

Theorem 1. Let A 2Mmm .RC/. The following assertions are equivalents:
(i) A is convergent towards zero;
(ii) An! 0 as n!1;
(iii) The eigenvalues of A are in the open unit disc, i.e j�j< 1, for every
� 2C with det.A��I/D 0;
(iv) The matrix .I �A/ is nonsingular and

.I �A/�1 D I CAC :::CAnC :::I (1.1)

(v) The matrix .I �A/ is nonsingular and .I �A/�1 has nonnegative
elements;
(vi) Anq! 0 and qAn! 0 as n!1, for each q 2 Rm.

We recall now Perov’s fixed point theorem (see [7]).

Theorem 2 (Perov). Let .X;d/ be a complete generalized metric space and the
operator f W X ! X with the property that there exists a matrix A 2Mmm .R/ such
that d .f .x/ ;f .y//� Ad .x;y/ for all x;y 2X .

If A is a matrix convergent towards zero, then:
.i/ Fix.f /D fx�g;
.i i/ the sequence of successive approximations .xn/n2N, xn D f n .x0/ is
convergent and has the limit x�, for all x0 2X ;
.i i i/ one has the following estimation

d
�
xn;x

�
�
� An .I �A/�1d .x0;x1/ I (1.2)

.iv/ if g W X ! X is an operator such that there exist y� 2 F ix.g/ and � 2�
Rm
C

�� with d .f .x/ ;g .x//� �, for each x 2X , then

d
�
x�;y�

�
� .I �A/�1 �I

.v/ if g WX !X is an operator and there exists � 2
�
Rm
C

�� such that
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d .f .x/ ;g .x//� �, for all x 2X , then for the sequence yn WD gn .x0/ we have
the following estimation

d
�
yn;x

�
�
� .I �A/�1 �CAn .I �A/�1d .xo;x1/ : (1.3)

For related results to Perov’s fixed point theorem and for some generalizations and
applications of it we refer to [3], [4], [9].

Let .X;d/ be a metric space. We will focus our attention to the following system
of operatorial equations: �

uD A.u;v/

v D A.v;u/
(1.4)

where A WX �X !X is a given operator.
By definition, a solution .u;v/ 2 X �X of the above system is called a coupled

fixed point for A (see also [5], [6]).
In this paper we present some coupled fixed points results for contractive type sing-

levalued operators on spaces endowed with vector-valued metrics and, as an applica-
tion, we discuss the existence, uniqueness and Hyers-Ulam stability of the solution
of a periodic boundary value problem related to a system of differential equations.
The approach is based on Perov-type fixed point theorem for contractions in metric
spaces endowed with vector-valued metrics.

2. EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR COUPLED FIXED
POINTS

Definition 1. Let .X;d/ be a generalized metric space and f W X ! X be an
operator. Then, the fixed point equation

x D f .x/ (2.1)

is said to be generalized Hyers-Ulam stable if there exists an increasing function
 W Rm

C
! Rm

C
, continuous in 0 with  .0/ D 0, such that, for any " WD ."1; :::; "m/

with "i > 0 for i 2 f1; :::;mg and any solution y� 2X of the inequation

d .y;f .y//� " (2.2)

there exists a solution x� of (2.1) such that

d
�
x�;y�

�
�  ."/ : (2.3)

In particular, if  .t/ D C � t , t 2 Rm
C

(where C 2Mmm .RC/), then the fixed point
equation (2.1) is called Hyers-Ulam stable.

We remind a direct consequence of Perov’s fixed point theorem.

Theorem 3. Let .X;d/ be a generalized metric space and let f W X ! X be
an operator with the property that there exists a matrix A 2Mmm .R/ such that A
converges to zero and

d .f .x/ ;f .y//� Ad .x;y/ ; for all x;y 2X:
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Then the fixed point equation

x D f .x/; x 2X

is Hyers-Ulam stable.

Definition 2. Let .X;d/ be a metric space and let T1;T2 W X �X ! X be two
operators. Then the operatorial equations system�

x D T1 .x;y/

y D T2 .x;y/
(2.4)

is said to be Hyers-Ulam stable if there exist c1; c2; c3; c4 > 0 such that for each
"1; "2 > 0 and each solution-pair .u�;v�/ 2 X �X of the inequations:

d
�
u�;T1

�
u�;v�

��
� "1 (2.5)

d
�
v�;T2

�
u�;v�

��
� "2

there exists a solution .x�;y�/ 2X �X of (2.4) such that

d
�
u�;x�

�
� c1"1C c2"2 (2.6)

d
�
v�;y�

�
� c3"1C c4"2

For related results regarding Hyers-Ulam stability of the operatorial equations see
[11].

We recall the following existence, uniqueness, data dependence and Hyers-Ulam
stability theorem for the coupled fixed point of a pair of singlevalued operators (see
[12] ).

Theorem 4. Let .X;d/ be a complete metric space, T1;T2 WX �X!X such that

d .T1 .x;y/ ;T1 .u;v//� k1d .x;u/Ck2d .y;v/ (2.7)

d .T2 .x;y/ ;T2 .u;v//� k3d .x;u/Ck4d .y;v/

for all .x;y/ ; .u;v/ 2 X �X: We suppose that AD
�
k1 k2
k3 k4

�
converges to zero.

Then
(i) there exists a unique element .x�;y�/ 2X �X such that�

x� D T1 .x
�;y�/

y� D T2.x
�;y�/

(2.8)

(ii) the sequence
�
T n1 .x;y/ ;T

n
2 .x;y/

�
n2N converges to .x�;y�/ as n!1, where

T nC11 .x;y/ WD T n1 .T1 .x;y/ ;T2 .x;y//

T nC12 .x;y/ WD T n2 .T1 .x;y/ ;T2 .x;y//
(2.9)

for all n 2N�:
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(iii) we have the following estimation�
d
�
T n1 .x0;y0/ ;x

�
�

d
�
T n2 .x0;y0/ ;y

�
� �� An .I �A/�1� d .x0;T1 .x0;y0//

d .y0;T2 .x0;y0//

�
(2.10)

(iv) let F1;F2 W X �X ! X be two operators such that, there exist �1;�2 > 0
with

d .T1 .x;y/ ;F1 .x;y//� �1
d .T2 .x;y/ ;F2 .x;y//� �2

(2.11)

for all .x;y/ 2X �X . If .a�;b�/ 2X �X is such that�
a� D F1 .a

�;b�/

b� D F2 .a
�;b�/

(2.12)

then �
d .a�;x�/

d .b�;y�/

�
� .I �A/�1 � (2.13)

where � WD
�
�1
�2

�
.

(v) let F1;F2 W X �X ! X be two operators such that, there exist �1;�2 > 0
with

d .T1 .x;y/ ;F1 .x;y//� �1
d .T2 .x;y/ ;F2 .x;y//� �2

(2.14)

for all .x;y/ 2X �X and considering the sequence
�
F n1 .x;y/ ;F

n
2 .x;y/

�
n2N,

where
F nC11 .x;y/ WD F n1 .F1 .x;y/ ;F2 .x;y//

F nC12 .x;y/ WD F n2 .F1 .x;y/ ;F2 .x;y//
(2.15)

for all n 2N� and � WD
�
�1
�2

�
then�

d
�
F n1 .x0;y0/ ;x

�
�

d
�
F n2 .x0;y0/ ;y

�
� �� .I �A/�1 �CAn .I �A/�1 � (2.16)�

d .x0;T1 .x0;y0//

d .y0;T2 .x0;y0//

�
(vi) the operatorial equations system�

x D T1 .x;y/

y D T2 .x;y/
(2.17)

is Hyers-Ulam stable.
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3. AN APPLICATION TO PERIODIC BOUNDARY VALUE PROBLEM

In this section we study the existence, uniqueness and Hyers-Ulam stability of a
solution to a periodic boundary value problem as an application of the coupled fixed
point Theorem 4 presented in Section 2 . The approach is based on the application
presented in [2].

We consider the periodic boundary value problem8̂̂<̂
:̂

u0 D f .t;u/Cg.t;v/

v0 D f .t;v/Cg.t;u/

u.0/D u.T /

v.0/D v.T /

(3.1)

assuming that f;g are continuous functions and satisfy the following conditions:

Assumption 1. There exist �1 > 0; �2 > 0 and �1 > 0; �2 > 0; such that for all
u;v 2 R; v � u;

0� .f .t;u/C�1u/� .f .t;v/C�1v/� �1.u�v/ (3.2)

��2.u�v/� .g.t;u/��2u/� .g.t;v/��2v/� 0; (3.3)

where S WD
� �1

�1C�2

�2
�1C�2

�2
�1C�2

�1
�1C�2

�
is a matrix convergent to zero.

We study the existence of a solution of the following periodic system:

u
0

C�1u��2v D f .t;u/Cg.t;v/C�1u��2v; (3.4)

v
0

C�1v��2uD f .t;v/Cg.t;u/C�1v��2u; (3.5)

together with the periodicity conditions,

u.0/D u.T / and v.0/D v.T /: (3.6)

This problem is equivalent to the integral equations:

u.t/D

Z T

0

G1.t; s/Œf .s;u/Cg.s;v/C�1u��2v�

CG2.t; s/Œf .s;v/Cg.s;u/C�1v��2u�ds

v.t/D

Z T

0

G1.t; s/Œf .s;v/Cg.s;u/C�1v��2u�

CG2.t; s/Œf .s;u/Cg.s;v/C�1u��2v�ds

where
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G1.t; s/D

8̂̂<̂
:̂

1
2

h
e�1.t�s/

1�e�1T
C
e�2.t�s/

1�e�2T

i
0� s < t � T

1
2

h
e�1.tCT�s/

1�e�1T
C
e�2.tCT�s/

1�e�2T

i
0� t < s � T

G2.t; s/D

8̂̂<̂
:̂

1
2

h
e�2.t�s/

1�e�2T
�
e�1.t�s/

1�e�1T

i
0� s < t � T

1
2

h
e�2.tCT�s/

1�e�2T
�
e�1.tCT�s/

1�e�1T

i
0� t < s � T

Here, �1 D�.�1C�2/ and �2 D .�2��1/:
We need to guarantee thatG1.t; s/� 0, 0� t , s � T; andG2.t; s/� 0, 0� t; s � T;

by choosing �1;�2 suitably. The following lemma addresses this issue.

Lemma 1 (Lakshmikantham, [2]). If

ln
�
2e�1

e

�
� .�2��1/T (3.7)

.�1C�2/T � 1 (3.8)

then G1.t; s/� 0 for 0� t; s � T; and G2.t; s/� 0 for 0� t; s � T:

Let X D C.I;R/ be the metric space of all continuous functions u W I ! R; endo-
wed with the metric d.u;v/D sup

t2I

ju.t/�v.t/j ; for u;v 2X:

For x;y;u;v 2X , we also denoteed..x;y/; .u;v// WD � d.x;u/

d.y;v/

�
Let us define A WX �X !X for t 2 I; by

A.u;v/.t/D

Z T

0

G1.t; s/Œf .s;u/Cg.s;v/C�1u��2v�

CG2.t; s/Œf .s;v/Cg.s;u/C�1v��2u�ds

Note that if .u;v/ 2X �X is a coupled fixed point of A; then we have

u.t/D A.u;v/.t/ and v.t/D A.v;u/.t/; for all t 2 I:

Thus, .u;v/ is a solution of (3.4)-(3.6).
For the proof of our main result we need the following notion.
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Definition 3. The system8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

u.t/D

Z T

0

G1.t; s/Œf .s;u/Cg.s;v/C�1u��2v�

CG2.t; s/Œf .s;v/Cg.s;u/C�1v��2u�ds

v.t/D

Z T

0

G1.t; s/Œf .s;v/Cg.s;u/C�1v��2u�

CG2.t; s/Œf .s;u/Cg.s;v/C�1u��2v�ds

(3.9)

is said to be Hyers-Ulam stable if there exist c1; c2 > 0 such that for each "1; "2 > 0
and each solution .x�;y�/ of the following inequation system8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

j x�.t/�

Z T

0

G1.t; s/Œf .s;x
�/Cg.s;y�/C�1x

�
��2y

��

CG2.t; s/Œf .s;y
�/Cg.s;x�/C�1y

���2x
��ds j� "1

j y�.t/�

Z T

0

G1.t; s/Œf .s;y
�/Cg.s;x�/C�1y

�
��2x

��

CG2.t; s/Œf .s;x
�/Cg.s;y�/C�1x

���2y
��ds j� "2

(3.10)

there exists a solution .u�;v�/ of (3.9) such thatˇ̌
u�.t/�x�.t/

ˇ̌
� c1"1C c2"2ˇ̌

v�.t/�y�.t/
ˇ̌
� c3"1C c4"2

Our main result is the following existence, uniqueness and Hyers-Ulam stability
of a solution to a periodic boundary value problem.

Theorem 5. Consider the problem (3.1) with f;g 2 C.I �R;R/ and suppose that
the Assumption 1 is satisfied. If (3.7) and (3.8) are fulfilled, then:

(i) there exists a unique solution .u�;v�/ of the periodic boundary value problem
(3.1).

(ii) let f1;g1 2 C.I �R;R/ such that, there exist �1;�2 > 0 with�
jf .t;u/�f1.t;u/j � �1
jg.t;u/�g1.t;u/j � �2

for all .t;u/ 2 I �R: Let .a�;b�/ 2X �X be a solution of the problem (3.1) with f
replaced by f1 and g replaced by g1: Then

ed..u�;v�/; .a�;b�//D � d.a�;u�/

d.b�;v�/

�
� .I �S/�1�

where � WD

 
.�1C�2/

1
�2��1

.�1C�2/
1

�2��1

!
:

(iii) the system (3.9) is Hyers-Ulam stable.
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Proof. (i)

d.A.x;y/;A.u;v//D sup
t2I

jA.x;y/.t/�A.u;v/.t/j

D sup
t2I

Z T

0

G1.t; s/Œf .s;x/Cg.s;y/C�1x��2y�

CG2.t; s/Œf .s;y/Cg.s;x/C�1y��2x�ds

�

Z T

0

G1.t; s/Œf .s;u/Cg.s;v/C�1u��2v�

CG2.t; s/Œf .s;v/Cg.s;u/C�1v��2u�ds

D sup
t2I

Z T

0

G1.t; s/

ŒŒf .s;x/Cg.s;y/C�1x��2y�� Œf .s;u/Cg.s;v/C�1u��2v��

CG2.t; s/ŒŒf .s;y/Cg.s;x/C�1y��2x�� Œf .s;v/Cg.s;u/C�1v��2u��ds

D sup
t2I

Z T

0

G1.t; s/

ŒŒf .s;x/Cg.s;y/C�1x��2y�� Œf .s;u/Cg.s;v/C�1u��2v��

�G2.t; s/ŒŒf .s;v/Cg.s;u/C�1v��2u�� Œf .s;y/Cg.s;x/C�1y��2x�ds

� sup
t2I

Z T

0

G1.t; s/Œ�1.x�u/C�2.v�y/��G2.t; s/Œ�1.v�y/C�2.x�u/�ds

D Œ�1d.x;u/C�2d.y;v/� � sup
t2I

ˇ̌̌̌
ˇ
Z T

0

ŒG1.t; s/�G2.t; s/�ds

ˇ̌̌̌
ˇ

D Œ�1d.x;u/C�2d.y;v/� � sup
t2I

ˇ̌̌̌
ˇ
Z t

0

e�1.t�s/

1� e�1T
dsC

Z T

t

e�1.tCT�s/

1� e�1T
ds

ˇ̌̌̌
ˇ

D
�1

�1C�2
d.x;u/C

�2

�1C�2
d.y;v/:

In a similar way we get that

d.A.y;x/;A.v;u//�
�1

�1C�2
d.y;v/C

�2

�1C�2
d.x;u/

If we denote k1 WD
�1

�1C�2
and k2 WD

�2
�1C�2

, we get that

d.A.x;y/;A.u;v//� k1d.x;u/Ck2d.y;v/ and

d.A.y;x/;A.v;u//� k2d.x;u/Ck1d.y;v/
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Then we have �
d.A.x;y/;A.u;v//

d.A.y;x/;A.v;u//

�
�

�
k1d.x;u/Ck2d.y;v/

k2d.x;u/Ck1d.y;v/

�
D

�
k1 k2
k2 k1

��
d.x;u/

d.y;v/

�
DS �ed..x;y/; .u;v//

where S is a matrix convergent to zero.
Since the hypothesis of Theorem 4 is satisfied we get that the periodic boundary value
problem (3.4) and (3.6) has a unique solution on I .

(ii) We define T WX �X !X , for t 2 I , by

T .u;v/.t/D

Z T

0

G1.t; s/Œf1.s;u/Cg1.s;v/C�1u��2v�

CG2.t; s/Œf1.s;v/Cg1.s;u/C�1v��2u�ds

Then, after some calculation, we get:

jA.u;v/.t/�T .u;v/.t/j

D

ˇ̌̌̌
ˇ
Z T

0

G1.t; s/Œf .s;u/Cg.s;v/C�1u��2v�

CG2.t; s/Œf .s;v/Cg.s;u/C�1v��2u�ds

�

Z T

0

G1.t; s/Œf1.s;u/Cg1.s;v/C�1u��2v�

CG2.t; s/Œf1.s;v/Cg1.s;u/C�1v��2u�dsj

�

Z T

0

jG1.t; s/

ŒŒf .s;u/Cg.s;v/C�1u��2v�� Œf1.s;u/Cg1.s;v/C�1u��2v��

CG2.t; s/ŒŒf .s;v/Cg.s;u/C�1v��2u�

� Œf1.s;v/Cg1.s;u/C�1v��2u�jds

� .�1C�2/

 Z T

0

jG1.t; s/jdsC

Z T

0

jG2.t; s/jds

!
:

Taking the supremum after t 2 I we obtain that

d.A.u;v/;T .u;v//� .�1C�2/
1

�2��1
:

In a similar way, we get that

d.A.v;u/;T .v;u//� .�1C�2/
1

�2��1
:

Now the conclusion follows by Theorem 4 (iv).
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(iii) By the first part of our proof and by Theorem 4 (vi) we get the conclusion. �

Remark 1. From the proof of Theorem 5 and Theorem 4 (ii), (iii) we also get the
following conclusions:

(a) the sequence .An.u;v/;An.v;u//n2N converges in X �X to .u�;v�/ as n!
1; where

.AnC1.u;v/;AnC1.v;u// WD An.A.u;v/;A.v;u//

for all n 2N�:
(b) we have the following estimation:�

d.An.u0;v0/;u
�/

d.An.v0;u0/;v
�/

�
� Sn.I �S/�1

�
d.u0;A.u0;v0//

d.v0;A.v0;u0//

�
REFERENCES

[1] G. Allaire and S. M. Kaber, Numerical linear algebra, ser. Texts in Applied Mathematics. New
York: Springer, 2008, vol. 55.

[2] T. G. Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces
and applications,” Nonlinear Anal., Theory Methods Appl., vol. 65, no. 7, pp. A, 1379–1393, 2006.

[3] A. Bucur, L. Guran, and A. Petru¸sel, “Fixed points for multivalued operators on a set endowed
with vector-valued metrics and applications,” Fixed Point Theory, vol. 10, no. 1, pp. 19–34, 2009.
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