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Abstract. The purpose of the work is to present some Hyers-Ulam stability results for the co-
incidence point problem associated to a single-valued operator problem. As an application, a
Hyers-Ulam stability theorem for a initial value problem associated to a differential equation is
given.
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1. INTRODUCTION

Let (X,d) be a metric space and f : X — X an operator. We denote by
Fix(f):={xeX|f(x)=x},

the fixed point set of the operator f. By definition, f is called a weakly Picard
operator if the sequence (/" (x))neN, of successive approximations converges for all
x € X and the limit (which may depend on x) is a fixed point of f. For example,
self Caristi type operators and self graphic contractions on complete metric spaces
are examples of weakly Picard operators (see [3], [4]).

If f is weakly Picard operator, then we define the operator f°° : X — X defined
by f*(x) := nlgréo f™(x). Itis clear that f*°(X) = Fix(f). Moreover, f*° is a
set retraction of X to Fix(f).

If f is weakly Picard operator and Fix(f) = {x*}, then by definition f is a
Picard operator. In this case f*° is the constant operator, f*°(x) = x*, forall x € X.
Self Banach contractions, Kannan contractions and Ciric-Reich-Rus contractions on
complete metric spaces are nice examples of Picard operators (see [3], [4]).

The following concepts are important in our consideration, see [4].
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Definition 1. Let / : X — X be a weakly Picard operator and ¥ : R+ — R4 an
increasing function which is continuous in 0 and ¥ (0) = 0. By definition the operator
f is ¥-weakly Picard operator if

d(x, f(x)) =y (d(x, f(x))), forall x € X.
In particular, if ¥ (¢) = ¢ -t with ¢ > 0 then we say that f is c-weakly Picard operator.

For some examples of weakly Picard operators and v -weakly Picard operators see

[1].

Example 1. Let (X,d) be a complete metric space and f : X — X an operator
with closed graphic. We suppose that f is a graphic «-contraction, i.e.,

d(f?(x), f(x)) < ed(x, f(x)), forall x € X.
Then f is a c-weakly Picard operator, with ¢ = 1—a
-
Definition 2. Let (x, d) be a metric space. A function f : X — X is a ¢-contraction
if ¢ is increasing and (¢" (t)) — 0, n — oo for all ¢ > 0 and

d(f(x). f(y)) = e(d(x.y)), forall x,y € X.

Theorem 1 ([3]). Let (X,d) be a complete metric space and f : X — X a ¢-
contraction. Then f is a Picard operator.

Definition 3. Let (X,d) be a metric space and f : X — X be an operator. By
definition, the fixed point equation

x = f(x) (1.1)

is said to be generalized Hyers-Ulam stable if there exists a function ¥ : R+ — Ry
that is increasing, continuous in 0 with ¥ (0) = 0, such that for each ¢ > 0 and each
solution y* of the inequation

d(y, f(y) <e (1.2)

there exists a solution x* of the equation (1.1) such that

d(y*.x*) =y (e).

If ¥ (t) = ct, for each t € Ry (for some ¢ > 0), then the equation (1.1) is said to
be Hyers-Ulam stable.

Theorem 2 (see [4]). Let (X,d) be a metric space. If f : X — X is a y-weakly
Picard operator, then the fixed point equation (1.1) is generalized Hyers-Ulam stable.
In particular, if f is c-weakly Picard operator, then the equation (1.1) is Hyers-Ulam
stable.
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Proof. Lete > 0and y* a solution of (1.2). Since f is ¥-weakly Picard operator,
we have that

d(x, f*(x)) =¥ (d(x, f(x))), forall x € X.

If we take x := y* and x* := f°°(y), we have that d(y*,x*) < ¥ (¢). So, the
fixed point equation (1.1) is generalized Hyers-Ulam stable. U

Let (X,d) and (Y, p) be two metric spaces and f,g : X — Y two operators. Let
us consider the following coincidence point problem

f(x)=gx) (1.3)

Definition 4 ([4]). Let (X,d) and (Y, p) be two metric spaces and f,g: X — Y
be two operators. The coincidence problem (1.3) is called generalized Hyers-Ulam
stable if and only if there exists ¥ : R+ — R that is increasing, continuous in 0 and
¥ (0) = 0 such that for every & > 0 and for each solution u* of the inequality

p(f(u),gu) <e (1.4)

there exists a solution x* of (1.3) such that
du™*,x*) <y (e).

If there exists ¢ > 0 such that ¥ (¢) := ct, for each ¢t € R4 then the coincidence point
(1.3) is said to be Hyers-Ulam stable.

2. HYERS-ULAM STABILITY FOR COINCIDENCE EQUATIONS

Our main abstract result is an existence and Hyers-Ulam stability result for the
coincidence point problem.

Theorem 3. Let A # @ be an arbitrary set and let (M,d) be a metric space. Let
S, T :A— M such that S(A) C T(A) and (T (A),d) is a complete subspace of M.
Suppose that there exists a function ¢ : Ry — R4 with @ increasing and (9" (¢)) — 0,
n — oo, forallt € Ry such that

d(Sx,Sy) <ed(Tx,Ty)), forallx,y € A.

Then:

a)C(S,T) # @,

b) If additionally, we suppose that the function B(t) :=t — ¢(t) is increasing
and bijective and there exists  : Ry — Ry increasing, continuous in 0 and ¥ (0) =0
such that

d(y,S(T™'(») < ¥(d(Ty,Sy)), forall y € T(A), @.n

then the coincidence point problem (1.3) is (B! o W)— generalized Hyers-Ulam
stable.
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Proof. a) The proof is organized in several steps. Let f := S o7 ~!. We prove:

i) f is a singlevalued operator on 7' (A4);

Let y1,y2 € f(x). We get y; € S(T™1(x)) and y, € S(T7'(x)). So exists
u1,us € T71(x) such that y; = S(u1) and y, = S(u2). Because uy,us € T~ 1(x)
we have T(u1) = x and T'(u2) = x. Then we have:

d(y1,y2) =d(Sur,Suz) <(d(Tui,Tuz)) = ¢(0).

Taking into account that ¢ is increasing and (¢p"(t)) — 0, n — oo, for all t € R4 we
deduce that ¢(0) = 0.
We get that d(y1,y2) =0. So y; = y» and thus f(x) is a singleton.

i) f:T(A) — T(A);

Let x € T(A). Then exists a € A such that x = T(a). So we have a € T~ (x)
= S(a) € S(T71(x)) = S(a) C f(x). Since f is a siglevalued operator we get
S(a) = f(x) = f(x) = S(a) S S(A) S T(A).

iii) f : T(A) — T(A) is a p-contraction;
Let x1,x2 € T(A) and uy,u> € A such that u; € T~ 1(x1) and up € T~ (x2).
Then we have:

d(f(x1), f(x2)) = d(S(T ™1 (x1)), ST~ (x2))) = d(Su1, Suz) <

= @(d(Tuy,Tuz)) = ¢(d(x1,x2)).
So f is self p-contraction on the complete metric space (7(A),d).

iv) We can apply now Theorem 1 for f* and we deduce that f is a Picard operator.
So we get that there exists a unique y* € T (A) such that

Y = %) =ST o).
Let x* = T~1(y*). Then y* = T(x*) and so we get y* = S(x*). Hence we
conclude
S(x*)=T(x*) =y*.

b) We prove that the coincidence point problem is generalized Hyers-Ulam stable.
Lete > 0 and v* € X be such that d(T(v*),S(v*)) <e.
If we take into account of (2.1), we have

d*, f(v*) =d*,S(T™'(v") < Y(d(SO®*),TW")) < ¥(e).
So we get
dv*,y*)=d*, f(y"))
<d(f"), ") +d(f(7), () =¥ (e) +e(d ™. y™)).
Then
BUd(*,y%)) < ¥ (e)
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Hence we get that
d@*,y*) < (B o¥)(e).
Thus, the coincidence point problem (1.3) is (87! o ¥) - generalized Hyers-Ulam
stable. g

Remark 1. Our theorem is an extension of Goebel’s Theorem (see [2]), which can
be obtained from our result by taking ¢(¢) = k¢ for each t € R4 (for some k € [0, 1)).

We will present now an application of Theorem 3.

Theorem 4. Consider the differential equation
x'= f(t.x) (2.2)
with the initial condition
x(0) =¢&. 2.3)

Suppose that the function f is defined in the half-plane t > 0, —o0 < x < +00 and
satisfies following conditions:

e i) f(t,x) is a continuous function of x for almost all t > 0;
e ii) f(t,x) is a measurable function of t for all x € R;
e iii) Lipschitz inequality, i.e.

| f@.x) = f@. )| = L@)]x—yl.
where L is locally integrable function on the interval (0,00);

o iv) [o f(z.0)dT = O (efo L@y,
o v) f(t,yu)>yf(t,u)forally >1,t>0,u €R

Then, the differential equation (2.2) has, for every & € R, a unique solution and
the equation (2.2) is Hyers-Ulam stable.

Proof. Let us consider the set
A={xeC[0,00): x(t) = O(eJo L@®dr)y
We define the operators S,7 : A — B by

(Sx)(@) = %/0’ Flex ()48 P I LT

(Tx)(t) = x(1)ePJo L@4T,

where B is a Banach space of bounded continuous functions on [0, co) with the norm

x| = sup |x(¢)| and p > 1. By simple calculation we have
(0,00)

(S3)(0) — (S)(1)] < ﬁnTx 1y
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1
and further ||Sx — Sy|| < —||Tx —Ty|. But S(A) C T(A) and T(A) is a complete
p

subspace of B. By Theorem 3 there exists X € A such that S(x) = T(x). From this
we have

t
() = [0 f(r,%(x))dt +E.

Since T is a single-valued operator, X is unique. Then the differential equation (2.2)
has for every £ € R a unique solution with the initial condition X (0) = £.
Next we prove that the equation (2.2) is Hyers-Ulam stable.

We have (T~1y)(t) = y(t) P fo LT e prove that
d(y,S(T7(y))) <ad(Ty,Sy), forall y € T(A). We obtain that

ST N = { fo t fa (T y)(f))df+g} e PloL@dT _

:e—pféL(r)dr{/tf(ny(t)ep/éL(r)dr)dHE}.
By calculations we get 0
NOENCGRINIG]
_ ‘y(,)_e—pféL(r)dr{/O’ f(t,y(r)epfél’(r)dt)dr—l—g}

=

< ‘y(n—e—l’fé“f)d’{epfé””‘“ /0 fley@)de +s} ‘ _

= ‘)’(f)—/ot f(t,y(r))df—e—l’féL(r)drg

_epféL(r)dr{ y(ye-plit@dn

3 t 3
e—pjéL(t)dr/O f(‘[,y(‘[))d‘[+€_2pj(§L(t)dr§} ‘ <

< P loL@dz|_ ()P loL@dT

t
e PBLO [ fry(ndr e LT
0

= eP o LOAT|(§) (1) — (Ty)(1)].

Since, all the condition of Theorem 3 hold, then the equation (2.2) is Hyers-Ulam
stable. d
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