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Abstract. We show the existence of the unique solution of impulsive differential equation�
x0 .t/D a.t/.x .t/�x .bt �1c//Cf .t/ ; t ¤ n 2ZC D f1;2; : : :g ; t � 0;

�x .t/D ctx .t/Cdt ; t D n 2ZC;

with the initial conditions
x .�1/D x�1; x .0/D x0;

where b:c denotes the floor integer function. Moreover, we obtain sufficient conditions for the
asymptotic constancy of this equation and we compute, as t !1, the limits of the solutions of
the impulsive equation with cn D 0 in terms of the initial conditions, a special solution of the
corresponding adjoint equation and a solution of the corresponding difference equation.
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1. INTRODUCTION

The theory of differential equations with piecewise constant arguments (DEP-CA)
of the type

x0 .t/D f .t;x .t/ ;x .h.t///

was initiated in [14, 40] where h.t/D btc; bt �nc; btCnc; etc. and b:c denotes the
floor integer function. These types of equations have been intensively investigated
for twenty five years. Systems described by DEPCA exist in a large area such as
biomedicine, chemistry, physics and mechanical engineering. Busenberg and Cooke
[13] first established a mathematical model with a piecewise constant argument for
analyzing vertically transmitted diseases. Examples in practice include machinery
driven by servo units, charged particles moving in a piecewise constantly varying el-
ectric field and elastic systems impelled by a Geneva wheel.
DEPCA are also closely related to difference and differential equations. So, they
describe hybrid dynamical systems and combine the properties of both differential
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and difference equations. The oscillation, periodicity and some asymptotic proper-
ties of various differential equations with piecewise constant arguments were metho-
dically demonstrated in [1–5, 26–28, 35, 36, 38, 42]. Also, Wiener’s book [43] is a
distinguished source in this area.

Impulsive differential equations are a basic tool to study the dynamics of processes
that are subjected to abrupt changes in their states. Theory of impulsive differential
equations has been motivated by a number of applied problems such as control the-
ory [24,25], population dynamics [37], chemotherapeutic treatment in medicine [31]
and some physics problems [32]. A significant development has been made in the
mathematical theory of impulsive differential equations in the last two decades; see
the monographs [7, 39].

But, there are only a few papers on impulsive differential equations with piecewise
constant arguments (IDEPCA) [9, 29, 33, 44]. In [33], Li and Shen considered the
problem

y0 .t/D f .t;ybt �kc/ ; t ¤ n; t 2 J;

�y
�
nC
�
D In .y .n// ; nD 1;2; : : : ;p; y .0/D y .T / :

Using the method of upper and lower solutions, they proved that it has at least one
solution. In [44], Wiener and Lakshmikantham established the existence and unique-
ness of solutions of the initial value problem

x0 .t/D f .x .t/ ;x .g .t/// ; x .0/D x0;

and they also studied the cases of oscillation and stability, where f is a continuous
function and g W Œ0;1/! Œ0;1/ ; g .t/� t; is a step function. In [9] and [29], some
qualitative aspects of advanced and delay IDEPCA are investigated. In [34], the
authors investigated the impulsive stabilization of certain delay differential equations
with piecewise constant argument by using Lyapunov function and analysis methods.
They showed that some nonimpulsive systems can be stabilized by imposition of
impulsive controls.

Lately, the problem of the asymptotic constancy of solutions was studied for some
functional differential equations [6,8,11,12,15–23,41] and as well the same problem
has been considered for some impulsive delay differential equations [10,30]. So, due
to the practical reasons and the papers mentioned above one can be motivated to deal
with the problem of asymptotic constancy of solutions of an impulsive differential
equation with piecewise constant arguments.

In this paper, we consider the first order nonhomogeneous linear impulsive diffe-
rential equation with piecewise constant argument

x0 .t/D a.t/.x .t/�x .bt �1c//Cf .t/ ; t ¤ n 2ZC; t � 0; (1.1)

�x .t/D ctx .t/Cdt ; t D n 2ZC; (1.2)
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with the initial conditions

x .�1/D x�1; x .0/D x0; (1.3)

where a.t/ and f .t/ are continuous real valued functions on Œ0;1/ ; cn 2 R n f1g ;
dn 2 R; n 2 ZC; ZC D f1;2; : : :g ; x0; x�1 2 R; �x .n/ D x

�
nC
�
� x .n�/ ;

x
�
nC
�
D lim
t!nC

x .t/ ; x .n�/D lim
t!n�

x .t/ and b:c denotes the floor integer function.

The main purpose of this work is to obtain sufficient conditions for asymptotic
constancy of the solution x .t/ of .1:1/� .1:3/ and also, as t !1, to compute the
limit of the solution of the impulsive differential equation with piecewise constant
argument

x0 .t/D a.t/.x .t/�x .bt �1c//Cf .t/ ; t ¤ n 2ZC; t � 0; (1.4)

�x .t/D dt ; t D n 2ZC; (1.5)

in terms of initial conditions, the solution of an integral equation and the solution of
a corresponding difference equation. To the best of author’s knowledge, this problem
has not been studied yet.

2. EXISTENCE OF SOLUTIONS

Definition 1. A function x .t/ defined on Œ0;1/ is said to be a solution of .1:1/�
.1:3/ if it satisfies the following conditions:

(d1) x W Œ0;1/!R is continuous with the possible exception of the points t 2ZC,
(d2) x .t/ is right continuous and has left-hand limits at the points t 2ZC,
(d3) x0 .t/ exists for every t 2 Œ0;1/ with the possible exception of the points

t 2ZC where one-sided derivatives exist,
(d4) x .t/ satisfies .1:1/ for any t 2 .0;1/with the possible exception of the points

t 2ZC,
(d5) x .t/ satisfies .1:2/ for every t D n 2ZC;
(d6) x .�1/D x�1; x .0/D x0.

Theorem 1. The initial value problem .1:1/� .1:3/ has a unique solution x .t/ on
Œ0;1/

x .t/D exp

0B@ tZ
btc

a.u/du

1CA´btcC
0B@1� exp

0B@ tZ
btc

a.u/du

1CA
1CA´btc�1

C

tZ
btc

exp

0@ tZ
s

a.u/du

1Af .s/ds (2.1)
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where b:c denotes the floor integer function, ´btc D x .btc/ for t 2 Œ0;1/ and it is a
solution of the corresponding difference equation

´btcC1 D

0B@�1� cbtcC1��1 exp

0B@ btcC1Z
btc

a.u/du

1CA
1CA´btc

C
�
1� cbtcC1

��10B@1� exp

0B@ btcC1Z
btc

a.u/du

1CA
1CA´btc�1

C
�
1� cbtcC1

��1 0B@ btcC1Z
btc

exp

0B@ btcC1Z
s

a.u/du

1CAf .s/dsCdbtcC1
1CA : (2.2)

Proof. Let x .t/ be a solution of .1:1/ on n� t < nC1. Then, Eq..1:1/ reduces to
linear ordinary differential equation

x0 .t/D a.t/.x .t/�x .n�1//Cf .t/ :

When we solve this equation, we have

x .t/D exp

0@ tZ
n

a.u/du

1Ax .n/C
0@1� exp

0@ tZ
n

a.u/du

1A1Ax .n�1/
C

tZ
n

exp

0@ tZ
s

a.u/du

1Af .s/ds; n� t < nC1: (2.3)

If we denote the solution x .t/ defined by .2:3/ as xn .t/ ; then xnC1 .t/ implies the
solution of Eq..1:1/ on the interval nC1� t < nC2:

xnC1 .t/D exp

0@ tZ
nC1

a.u/du

1Ax .nC1/C
0@1� exp

0@ tZ
nC1

a.u/du

1A1Ax .n/
C

tZ
nC1

exp

0@ tZ
s

a.u/du

1Af .s/ds; nC1� t < nC2: (2.4)

Using impulse conditions .1:2/ for t D nC1; we have

�x .nC1/D cnC1x .nC1/CdnC1;

that is,
x .nC1/C�x .nC1/� D cnC1x .nC1/CdnC1:



CONVERGENCE OF THE SOLUTION OF AN IMPULSIVE DIFFERENTIAL EQUATION 805

Since x .t/ is right continuous, the previous equality reduces to

xn ..nC1/
�/D .1� cnC1/xnC1 .nC1/�dnC1:

Considering this equality together with .2:3/ and .2:4/, we obtain the second order
nonhomogeneous difference equation

x .nC1/D .1� cnC1/
�1 exp

0@ nC1Z
n

a.u/du

1Ax .n/
C .1� cnC1/

�1

0@1� exp

0@ nC1Z
n

a.u/du

1A1Ax .n�1/
C .1� cnC1/

�1

0@ nC1Z
n

exp

0@ nC1Z
s

a.u/du

1Af .s/dsCdnC1
1A : (2.5)

Let us define x .btc/ D ´btc for t 2 Œ0;1/ : So, x .n/ D ´n for n D 0;1;2; : : :, and
Eq..2:5/ can be rewritten as

´nC1 D .1� cnC1/
�1 exp

0@ nC1Z
n

a.u/du

1A´n
C .1� cnC1/

�1

0@1� exp

0@ nC1Z
n

a.u/du

1A1A´n�1
C .1� cnC1/

�1

0@ nC1Z
n

exp

0@ nC1Z
s

a.u/du

1Af .s/dsCdnC1
1A (2.6)

which implies Eq..2:2/ for t 2 Œ0;1/ :
Taking into account the initial conditions x .�1/D x�1 D ´�1 and x .0/D x0 D

´0; the solution of difference equation .2:6/ is obtained uniquely. So, the unique
solution of .1:1/� .1:3/ can be written as .2:1/ on Œ0;1/ : �

In this while, we note the following statements:
a) Along this paper we will assume that all solutions of the difference equation

.2:6/ are bounded, that is, for any solution ´n of .2:6/ there is a real positive constant
L such that

j´nj � L; n 2ZC: (2.7)
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b) A straightforward verification shows that the solution of the initial value prob-
lem .1:1/� .1:3/ satisfies the following integral equation

x .t/D

8̂̂<̂
:̂

x�1; t D�1;

x0C
tR
0

a.s/x .s/ds�
tR
0

a.s/x .bs�1c/dsC
tR
0

f .s/dsC
btcP
iD1

ci´i C
btcP
iD1

di ;

t � 0;
(2.8)

where ´i D x .i/ ; i D 1;2; : : : ;btc:

3. MAIN RESULTS

This section contains the statements of our main results.

Theorem 2. Let a.t/ and f .t/ be continuous functions on the interval Œ0;1/,
c WZC �! nf1g ; d WZC �! and n 2ZC:
If

.i/
1R
0

ja.s/jds �K1 <1;

.i i/
1R
0

jf .s/jds �K2 <1;

.i i i/
1Q
iD1

.1Cjci j/� L1 <1;

.iv/
1P
iD1

jdi j � L2 <1;

then the solution x .t/ of .1:1/� .1:3/ tends to a constant as t !1, where Kj , Lj ,
j D 1;2, are real positive constants.

Theorem 3. Suppose that all assumptions of Theorem 2, except .i i i/, are satisfied.
Let x .t/ be the solution of .1:4/� .1:5/ and lim

t!1
x .t/D l .x0; x�1/ :

If
btC1cZ
t

ja.s/jds � � < 1; (3.1)

then

l .x0; x�1/D

0@1C 1Z
0

y .s/a .s/ds

1Ax0C
0@ 1Z
0

y .s/a .s/ds

1Ax�1
C

1Z
0

y .s/f .s/dsC

1X
iD1

di C

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds (3.2)
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where y is a solution of the integral equation

y .t/D 1C

btC1cZ
t

y .s/a .s/ds; t � 0; (3.3)

and ´i is a solution of the difference equation .2:6/ for nD i:

4. PROOFS

In this section the proofs of the main results are given.

4.1. Proof of Theorem 2.

For the proof of Theorem 2 we consider the following well known lemma [39]:

Lemma 1. Let a nonnegative piecewise continuous function u.t/ satisfy for t � t0
the inequality

u.t/� ˛C

tZ
t0

v .s/u.s/dsC
X

t0��i<t

ˇiu.�i /

where ˛� 0; ˇi � 0; v .s/> 0; �i are the first kind discontinuity points of the function
u.t/ : Then the following estimate holds for the function u.t/ ;

u.t/� ˛
Y

t0��i<t

.1Cˇi /exp

0@ tZ
t0

v .s/ds

1A :
Now we can give the proof of Theorem 2:

Proof of Theorem 2. Let x .t/ be the solution of .1:1/� .1:3/ : Then, from .2:8/,

jx .t/j � jx0jC

tZ
0

ja.s/j jx .s/jdsC

tZ
0

ja.s/j jx .bs�1c/jds

C

tZ
0

jf .s/jdsC

btcX
iD1

jci j j´i jC

btcX
iD1

jdi j :

Considering x .bs�1c/D ´bs�1c, s 2 Œ0;1/ ; and the boundedness of ´n; n 2 ZC;
we have

jx .t/j � jx0jC

tZ
0

ja.s/j jx .s/jdsCL

1Z
0

ja.s/jds
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C

1Z
0

jf .s/jdsC

btcX
iD1

jci j j´i jC

1X
iD1

jdi j :

By using .i/ ; .i i/ ; .iv/ and .2:7/ ; we obtain

jx .t/j � ˛C

tZ
0

ja.s/j jx .s/jdsC

btcX
iD1

jci j j´i j

where ˛ D jx0jCLK1CK2CL2: Applying Lemma 1,

jx .t/j � ˛

btcY
iD0

.1Cjci j/exp

0@ tZ
0

ja.s/jds

1A
� ˛

1Y
iD0

.1Cjci j/exp

0@ 1Z
0

ja.s/jds

1A :
Hence, by .i/ and .i i i/

jx .t/j � ˛L1e
K1 DM; t � 0; (4.1)

where M is a positive real constant.
On the other hand,

jx .t/�x .s/j �

tZ
s

ja.u/j jx .u/jduC

tZ
s

ja.u/j jx .bu�1c/jdu

C

tZ
s

jf .u/jduC

btcX
iDbscC1

jci j j´i jC

btcX
iDbscC1

jdi j (4.2)

for 0� s < t <1:
From .2:7/ and .4:1/ ; we obtain

jx .t/�x .s/j � .M CL/

1Z
s

ja.u/jduC

1Z
s

jf .u/jduCL

1X
iDbscC1

jci jC

1X
iDbscC1

jdi j :

In this while, we note that
1X
iD1

jci j<1 (4.3)

since .i i i/ is valid. So, by using .4:3/ and the conditions .i/ ; .i i/ and .iv/ ; it is easy
to verify that

lim
s!1

jx .t/�x .s/j D 0:
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Thus, by the Cauchy convergence criterion, lim
t!1

x .t/ 2 R: �

4.2. Proof of Theorem 3.

For the proof of Theorem 3, it is necessary to prove the following theorem and
lemmas.

Theorem 4. Suppose a.t/ is continuous and .3:1/ is satisfied. Then, there is a
unique bounded function y 2 PRC .Œ0;1/ ;R/ such that .3:3/ holds.

Proof. Denote the set of piecewise right continuous functions byPRC .Œ0;1/ ;R/ ;
that is, ' 2PRC means that ' W Œ0;1/! R is continuous for t 2 Œ0;1/ ; t ¤ n; nD
1;2; : : : ; and is continuous from the right for t D n; nD 0;1;2; : : : :

Now, let us take the space

B D

�
y 2 PRC .Œ0;1/ ;R/ W jyjB � �; ��

1

1��

�
:

B is a Banach space with the norm

jyjB D sup
t�0

jy .t/j ; y 2 B:

For y 2 B and t � 0; define

Ty .t/D 1C

btC1cZ
t

y .s/a .s/ds:

It can be easily shown that for every integer point n; nD 0;1;2; : : : ;

Ty
�
nC
�
D lim
t!nC

Ty .t/D Ty .n/

and
Ty .n�/D lim

t!n�
Ty .t/D 1:

As well as, for t� 2 .n;nC1/ ; nD 0;1;2; : : : ;

Ty
�
tC�
�
D Ty

�
t��
�
D Ty .t�/ :

So, Ty 2 PRC .Œ0;1/ ;R/ :
Also, from .3:1/ ; it follows that

jTyjB � 1C� jyjB � �:

Hence T maps B into itself. On the other hand, for y; ´ 2 B

jTy�T ´jB � � jy�´jB :

Since � < 1; T W B ! B is a contraction. Therefore, the unique solution y 2 B of
Ty D y is the unique piecewise right continuous and bounded solution of .3:3/. �
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Lemma 2. Let a.t/ is continuous and .3:1/ is true. Then, the solution y of the
integral equation .3:3/ satisfies the following integral equation8<:

y0 .t/D�y .t/a .t/ ; t ¤ n;

�y .n/D
nC1R
n

y .s/a .s/ds; n 2ZC;
(4.4)

where �y .n/D y
�
nC
�
�y .n�/ ; y

�
nC
�
D lim
t!nC

y .t/ and y .n�/D lim
t!n�

y .t/ :

Proof. Taking the derivative of .3:3/ for t 2 .n;nC1/ ; n 2ZC; we obtain

y0 .t/D�y .t/a .t/ :

On the other hand,

�y .n/D y
�
nC
�
�y .n�/

D 1C

nC1Z
n

y .s/a .s/ds�1

D

nC1Z
n

y .s/a .s/ds:

So, the proof of Lemma 2 is complete. �

Now, let us denote the function

C .t/D y .t/x .t/�

btC1cZ
t

y .s/a .s/x .bs�1c/ds; t � 0; (4.5)

where y is the solution of the integral equation .3:3/ and x is the solution of .1:4/�
.1:5/ :

Lemma 3. Suppose that a.t/ and f .t/ are continuous functions on Œ0;1/ and
.3:1/ is hold. Then,

C .t/D C .0/C

tZ
0

y .s/f .s/dsC

btcX
iD1

di C

btcX
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds (4.6)

where y is a solution of .3:3/ and ´i is a solution of the difference equation .2:6/ for
nD i:

Proof. To obtain .4:6/ ; it is enough to show that C .t/ ; defined by .4:6/ ; satisfies8<:
C 0 .t/D y .t/f .t/ ; t ¤ n; t � 0;

�C .n/D dnC .´n�´n�1/
nC1R
n

y .s/a .s/ds; n 2ZC:
(4.7)
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For t 2 .n;nC1/ ; .4:5/ can be written as

C .t/D y .t/x .t/�x .n�1/

nC1Z
t

y .s/a .s/ds: (4.8)

By taking derivative of both sides of .4:8/ ; we have

C 0 .t/D y0 .t/x .t/Cy .t/x0 .t/Cx .n�1/y .t/a .t/ :

Considering .1:4/ and .4:4/ ; we get

C 0 .t/D�y .t/a .t/x .t/Cy .t/fa.t/x .t/�a.t/x .n�1/Cf .t/gCx .n�1/y .t/a .t/

D y .t/f .t/ :

Also, from .4:8/ ;

�C .n/D C
�
nC
�
�C .n�/

D y .n/x .n/�x .n�1/

nC1Z
n

y .s/a .s/ds�y .n�/x .n�/ : (4.9)

Substituting

y .n�/D y .n/�

nC1Z
n

y .s/a .s/ds

and
x .n�/D x .n/�dn

into .4:9/ ; we obtain

�C .n/D dnC .´n�´n�1/

nC1Z
n

y .s/a .s/ds

where ´n D x .n/ ; n 2ZC: So, we obtain .4:7/ : Integrating both sides of .4:7/ ; we
get .4:6/ : �

Now, we can prove Theorem 3:

Proof of Theorem 3. Let x.t/ be the solution of .1:4/� .1:5/. For the proof, it is
sufficient to show that

lim
t!1

x .t/D C .0/C

1Z
0

y .s/f .s/dsC

1X
iD1

di C

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

(4.10)
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where C is defined by .4:5/ and ´i is a solution of the difference equation .2:6/ for
nD i: From .4:6/ ; we have for t � 0;

x .t/�C .0/�

1Z
0

y .s/f .s/ds�

1X
iD1

di �

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

D x .t/�

0@C .0/C tZ
0

y .s/f .s/dsC

btcX
iD1

di C

btcX
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

1A
�

1Z
t

y .s/f .s/ds�

1X
iDbtcC1

di �

1X
iDbtcC1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

D x .t/�C .t/�

1Z
t

y .s/f .s/ds�

1X
iDbtcC1

di �

1X
iDbtcC1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds:

Using .4:5/ ; it follows for t � 0;

x .t/�C .0/�

1Z
0

y .s/f .s/ds�

1X
iD1

di �

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

D x .t/�y .t/x .t/C

btC1cZ
t

y .s/a .s/x .bs�1c/ds�

1Z
t

y .s/f .s/ds

�

1X
iDbtcC1

di �

1X
iDbtcC1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds: (4.11)

On the other hand, multiplying .3:3/ by x .t/ we obtain

x .t/D y .t/x .t/�

btC1cZ
t

y .s/a .s/x .t/ds

for t � 0: Substituting the last expression into .4:11/ ; we find

x .t/�C .0/�

1Z
0

y .s/f .s/ds�

1X
iD1

di �

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

D

btC1cZ
t

y .s/a .s/.x .bs�1c/�x .t//ds�

1Z
t

y .s/f .s/ds
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�

1X
iDbtcC1

di �

1X
iDbtcC1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds: (4.12)

From .4:12/ ; together with .2:7/ ; .4:1/ and the boundedness of y .t/ on Œ0;1/ ; we
get ˇ̌̌̌

ˇ̌x .t/�C .0/�
1Z
0

y .s/f .s/ds�

1X
iD1

di �

1X
iD1

.´i �´i�1/

iC1Z
i

y .s/a .s/ds

ˇ̌̌̌
ˇ̌

� jyjB .LCM/

btC1cZ
t

ja.s/jdsCjyjB

1Z
t

f .s/ds

C

1X
iDbtcC1

jdi jC2L jyjB

1X
iDbtcC1

iC1Z
i

ja.s/jds

where jyjB D sup
t�0

jy .t/j : Thus, it follows that .4:10/ is correct. Taking into account

.4:5/, it is easily verified that the limit relation .4:10/ is reduced to .3:2/. So, the
proof is completed. �
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