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1. Introduction and notation

Given the positive real numbers x and y, let A(x, y) := x+y
2 , G(x, y) :=

√
xy,

L(x, y) :=

½ x−y
lnx−ln y if x 6= y

x if x = y,

and

Hp(x, y) :=

( ³
xp+yp

2

´1/p
if p 6= 0√

xy if p = 0

denote their arithmetic, geometric, logarithmic, and Hölder means, respectively. It is
well known that if x 6= y, then Hp is strictly increasing in p. The symmetric mean of
x and y is defined by (see [4, pp. 44—45])

Sα(x, y) :=
xαy1−α + x1−αyα

2
α ∈ R.

Since Sα(x, y) = S1−α(x, y), it suffices to consider α ≥ 1/2. Following A. O. Pittenger
[8], we write the symmetric mean into the form

Sδ(x, y) :=
x
1+
√
δ

2 y
1−√δ
2 + x

1−√δ
2 y

1+
√
δ

2

2
δ ≥ 0.

It is easily seen that if x 6= y, then Sδ is strictly increasing in δ, so

G(x, y) = S0(x, y) < Sδ(x, y) < S1(x, y) = A(x, y) (1.1)

for all δ ∈ ]0, 1[.
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A. O. Pittenger [8, Theorem 1 and Theorem 2] proved that for all positive real
numbers x 6= y, the symmetric mean satisfies also the following inequalities:

S1/3(x, y) < L(x, y), (1.2)

Sδ(x, y) < Hδ(x, y) if 0 < δ < 1, (1.3)

Sδ(x, y) > Hδ(x, y) if δ > 1. (1.4)

At this point we present a very short proof of the intriguing inequality (1.2), which
is sharp in the sense that 1/3 cannot be replaced by any greater constant. In order
to prove (1.2), let us apply the Gauss quadrature formula with two knots (see [1, pp.
343—344], [2, p. 36])Z 1

0

f(t)dt =
1

2
f

µ
1

2
+

1

2
√
3

¶
+
1

2
f

µ
1

2
− 1

2
√
3

¶
+

1

4320
f (4)(ξ) 0 < ξ < 1,

to the function f(t) = xty1−t. Since
R 1
0 f(t)dt = L(x, y) (this integral representation

of L(x, y) was pointed out for the first time by E. Neuman [6]), we get

L(x, y) = S1/3(x, y) +
1

4320
xξy1−ξ(lnx− ln y)4 0 < ξ < 1.

Therefore
min(x, y)

4320
(lnx− ln y)4 < L(x, y)− S1/3(x, y) <

max(x, y)

4320
(lnx− lny)4.

This inequality yields (1.2) and estimates the sharpness of (1.2).

It is the main purpose of the present paper to point out other sharp inequalities
involving the symmetric mean. In Section 2 we are concerned with sharp "interpo-
lating inequalities" related to (1.1) and (1.2). In Section 3 we establish two sharp
inequalities involving the symmetric and special Gini means.

2. Sharp interpolating inequalities related to (1.1) and (1.2)

In the next theorem we prove a sharp interpolating inequality related to (1.1):

Theorem 2.1. If 0 < δ < 1, then for all positive real numbers x 6= y it holds that

Sδ(x, y) < δA(x, y) + (1− δ)G(x, y). (2.1)

Moreover, (2.1) is the best possible inequality of the type

Sδ(x, y) < λA(x, y) + (1− λ)G(x, y) 0 < λ < 1, (2.2)

in the sense that if 0 < λ < δ, then (2.2) cannot be true for all positive real numbers
x 6= y.

Proof. Letting x/y = e2t (t ∈ R) and multiplying both sides by e−t, we see that
(2.2) is equivalent to fλ(t) < 0 for all t 6= 0, where fλ : R→ R is the function defined
by fλ(t) := cosh(

√
δt)− λ cosh t− 1 + λ. By using the power series expansion

cosh z = 1 +
∞X
n=1

1

(2n)!
z2n, (2.3)



Sharp inequalities involving the symmetric mean 159

we get

fλ(t) =
∞X
n=1

an(λ)

(2n)!
t2n, where an(λ) := δn − λ.

If 0 < λ < δ, then a1(λ) = δ − λ > 0, hence fλ(t) > 0 for |t| sufficiently small.
Therefore, (2.2) cannot be true for all positive real numbers x 6= y.

On the other hand, a1(δ) = 0 and an(δ) < 0 for all n ≥ 2. Consequently, fδ(t) < 0
for all t 6= 0. This proves the validity of (2.1). 2
Remark. Obviously, (2.1) is a refinement of the second inequality in (1.1). It

would be also interesting to compare (2.1) with (1.3). Thus, for 0 < δ < 1/2 the
inequality (2.1) is weaker than (1.3), for δ = 1/2 it coincides with (1.3), while for
1/2 < δ < 1 it is stronger than (1.3). This assertion is proved by the following
theorem.

Theorem 2.2. For all positive real numbers x 6= y it holds that

δA(x, y) + (1− δ)G(x, y) > Hδ(x, y) if 0 < δ < 1/2 (2.4)

and
δA(x, y) + (1− δ)G(x, y) < Hδ(x, y) if 1/2 < δ < 1. (2.5)

Proof. Due to the symmetry, we may assume in both (2.4) and (2.5) that x > y.
Letting x/y = e2t (t > 0) and multiplying both sides by e−t, we see that (2.4) is
equivalent to fδ(t) > 1 for all t > 0, where fδ : R→ R is the function defined by

fδ(t) :=
δ cosh t+ 1− δ

(cosh(δt))1/δ
.

We have

f 0δ(t) =
g(t)

(cosh(δt))1+1/δ
, where g(t) = δ sinh((1− δ)t)− (1− δ) sinh(δt).

By using the power series expansion

sinh z =
∞X
n=0

1

(2n+ 1)!
z2n+1 (2.6)

we get

g(t) =
∞X
n=1

δ(1− δ)
£
(1− δ)2n − δ2n

¤
(2n+ 1)!

t2n+1.

Since 0 < δ < 1/2, it follows that g(t) > 0 for all t > 0, hence fδ is strictly increasing
on ]0,∞[. Therefore fδ(t) > 1 for all t > 0, because fδ(0) = 1. This completes the
proof of (2.4). The proof of (2.5) is analogous. 2

From (1.1) and (1.2) it follows that G(x, y) < Sδ(x, y) < L(x, y) for all 0 < δ ≤ 1/3.
Related to this, the following sharp interpolating inequality holds.



160 T. Trif

Theorem 2.3. If 0 < δ ≤ 1/3, then for all positive real numbers x 6= y it holds
that

Sδ(x, y) < 3δL(x, y) + (1− 3δ)G(x, y). (2.7)

Moreover, (2.7) is the best possible inequality of the type

Sδ(x, y) < λL(x, y) + (1− λ)G(x, y) 0 < λ ≤ 1, (2.8)

in the sense that if 0 < λ < 3δ, then (2.8) cannot be true for all positive real numbers
x 6= y.

Proof. Due to the symmetry, we may assume in both (2.7) and (2.8) that x > y.
Letting x/y = e2t (t > 0) and multiplying both sides by te−t, we see that (2.8) is
equivalent to fλ(t) < 0 for all t > 0, where fλ : ]0,∞[ → R is the function defined by
fλ(t) := t cosh(

√
δt)− λ sinh t− (1− λ)t. From (2.3) and (2.6) we get

fλ(t) =
∞X
n=1

an(λ)

(2n+ 1)!
t2n+1, where an(λ) := (2n+ 1)δ

n − λ.

If 0 < λ < 3δ, then a1(λ) = 3δ−λ > 0, hence fλ(t) > 0 for t > 0 sufficiently small.
Therefore, (2.8) cannot be true for all positive real numbers x 6= y.

On the other hand, a1(3δ) = 0 and an(3δ) = δ[(2n+1)δn−1 − 3] < 0 for all n ≥ 2,
because

(2n+ 1)δn−1 − 3 ≤ 2n+ 1
3n−1

− 3 < 0 for all n ≥ 2.
The inequality 3n > 2n+1 (n ≥ 2) can be easily proved by induction. Consequently,
f3δ(t) < 0 for all t > 0. This proves the validity of (2.7). 2

Remark. The inequality (2.7) is a refinement of (2.1), because

3δL(x, y) + (1− 3δ)G(x, y) < δA(x, y) + (1− δ)G(x, y).

Indeed, this inequality is equivalent to

L(x, y) <
1

3
A(x, y) +

2

3
G(x, y),

a well known inequality due to E. B. Leach and M. C. Sholander [5].

From (1.1) and (1.3) it follows that G(x, y) < Sδ(x, y) < Hδ(x, y) for all 0 < δ < 1.
It is not difficult to see that we cannot have a sharp inequality of the type

Sδ(x, y) < λHδ(x, y) + (1− λ)G(x, y) 0 < λ < 1.

3. Sharp inequalities involving the symmetric and special Gini means

Given the positive real numbers x and y, the Lehmer mean Lr(x, y) of x and y is
defined for each r ∈ R by (see [9])

Lr(x, y) :=
xr+1 + yr+1

xr + yr
.
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In this section we deal also with the mean

M(x, y) := exp

µ
x lnx+ y ln y

x+ y

¶
= xx/(x+y)yy/(x+y).

It should be noted that both the Lehmer means and the mean M are special cases of
Gini means (see [3], [7]).

In the next theorem a sharp inequality involving the symmetric and Lehmer means
is established.

Theorem 3.1. If r > 0, then for all positive real numbers x 6= y it holds that

S2r+1(x, y) > Lr(x, y). (3.1)

Moreover, (3.1) is the best possible inequality of the type

Sδ(x, y) > Lr(x, y), (3.2)

in the sense that if 0 < δ < 2r + 1, then (3.2) cannot be true for all positive real
numbers x 6= y.

Proof. Letting x/y = e2t (t ∈ R), after a little bit of algebra we see that

Sδ(x, y)

Lr(x, y)
− 1 =

"³
x
y

´ 1+
√
δ

2

+
³
x
y

´ 1−√δ
2

#h³
x
y

´r
+ 1
i

2

·³
x
y

´r+1
+ 1

¸
=

cosh(
√
δt) cosh(rt)

cosh((r + 1)t)
− 1

=
fδ(t)

2 cosh((r + 1)t)
,

where fδ : R→ R is the function defined by

fδ(t) := cosh((r +
√
δ)t) + cosh((r −

√
δ)t)− 2 cosh((r + 1)t).

By using the power series expansion (2.3) we get

fδ(t) =
∞X
n=1

an(δ)

(2n)!
t2n, where an(δ) := (r +

√
δ)2n + (r −

√
δ)2n − 2(r + 1)2n.

Suppose first that 0 < δ < 2r + 1. Since a1(δ) = 2(δ − 2r − 1), it follows that
fδ(t) < 0 for |t| sufficiently small. Consequently, Sδ(x, y) < Lr(x, y) for x 6= y
sufficiently close, hence (3.2) cannot be true for all positive real numbers x 6= y.

Next we show that (3.1) holds true. Set, for brevity,

an = an(2r + 1) = (r +
√
2r + 1)2n + (r −√2r + 1)2n − 2(r + 1)2n

for each positive integer n. Then a1 = 0 and, in order to establish the validity of
(3.1), it suffices to prove that an > 0 for every n ≥ 2.
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Set xn := (r+
√
2r + 1)2n + (r−√2r + 1)2n for each positive integer n. Then the

sequence (xn) satisfies

xn+1 = 2(r + 1)
2xn − (r2 − 2r − 1)2xn−1 for every n ≥ 2. (3.3)

We claim that
(r + 1)2xn > (r2 − 2r − 1)2xn−1 (3.4)

for all n ≥ 2. Since x1 = 2(r + 1)2 and x2 = (r +
√
2r + 1)4 + (r − √2r + 1)4, for

n = 2 the inequality (3.4) is equivalent to

(r+
√
2r + 1)4 + (r −√2r + 1)4 > 2(r2 − 2r − 1)2 = 2(r +√2r + 1)2(r −√2r + 1)2,

which is true because u2 + v2 > 2uv for u 6= v. Assuming that (3.4) holds for n ≥ 2,
we prove that it holds also for n+ 1. By virtue of (3.3) we have

(r + 1)2xn+1 − (r2 − 2r − 1)2xn
=
£
2(r + 1)4 − (r2 − 2r − 1)2¤xn − (r + 1)2(r2 − 2r − 1)2xn−1

= (r4 + 12r3 + 10r2 + 4r + 1)xn − (r + 1)2(r2 − 2r − 1)2xn−1
> (r + 1)4xn − (r + 1)2(r2 − 2r − 1)2xn−1
> 0.

Consequently, (3.4) holds true as claimed.

Next, we prove by induction that

xn > 2(r + 1)2n (3.5)

for all n ≥ 2. Indeed, x2 = 2(r + 1)4 + 16r3 + 8r2 > 2(r + 1)4. Assuming that (3.5)
holds for n ≥ 2, we show that it holds also for n+ 1. By virtue of (3.3) and (3.4) we
have

xn+1 > (r + 1)
2xn > 2(r + 1)2n+2.

From (3.5) it follows that an > 0 for every n ≥ 2, completing the proof of the theorem.
2

Remarks. 1. The inequality (3.1) is a refinement of S2r+1(x, y) > H2r+1(x, y) (see
(1.4)), by virtue of the inequality Lr(x, y) > H2r+1(x, y) (see Z. Páles [7, Theorem 3],
K. B. Stolarski [9, Theorem 1]).

2. For −1/2 < r < 0 the means S2r+1 and Lr are not comparable. Indeed, with
the notations in the proof of Theorem 3.1, we have a1 = 0 and a2 = 8r2(2r+ 1) < 0,
hence f2r+1(t) < 0 for |t| sufficiently small. Consequently, S2r+1(x, y) < Lr(x, y) for
x 6= y sufficiently close. On the other hand, since 1+

√
2r+1
2 > r + 1, it follows that

S2r+1(x, y)

Lr(x, y)
=

"³
x
y

´ 1+
√
2r+1
2

+
³
x
y

´ 1−√2r+1
2

#h³
x
y

´r
+ 1
i

2

·³
x
y

´r+1
+ 1

¸ > 1

for x/y sufficiently large.

Now we prove a sharp inequality involving the means Sδ and M .
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Theorem 3.2. For all positive real numbers x 6= y it holds that

S2(x, y) > M(x, y). (3.6)

Moreover, (3.6) is the best possible inequality of the type

Sδ(x, y) > M(x, y), (3.7)

in the sense that if 0 ≤ δ < 2, then (3.7) cannot be true for all positive real numbers
x 6= y.

Proof. Letting x/y = e2t (t ∈ R) and multiplying both sides by e−t, we see that
(3.7) is equivalent to fδ(t) > 0 for all t 6= 0, where fδ : R→ R is the function defined
by fδ(t) := ln(cosh(

√
δt))− t tanh t. We have

tanh z =
∞X
n=1

22n(22n − 1)
(2n)!

B2nz
2n−1 |z| < π

4

and

ln(cosh z) =
∞X
n=1

22n(22n − 1)
2n(2n)!

B2nz
2n |z| < π

4
,

where Bk is the kth Bernoulli number. Consequently, for |t| sufficiently small, the
inequality fδ(t) > 0 is equivalent to

∞X
n=1

22n(22n − 1)
2n(2n)!

B2nδ
nt2n >

∞X
n=1

22n(22n − 1)
(2n)!

B2nt
2n.

If 0 ≤ δ < 2, then the last inequality cannot be true for all t 6= 0 with |t| sufficiently
small, because the coefficient of t2 in the right side is greater than the coefficient of
t2 in the left side. Therefore, (3.7) cannot be true for all positive real numbers x 6= y.

Next we show that (3.6) holds true. We have just seen that (3.6) is equivalent to

f(t) := f2(t) = ln(cosh(
√
2t))− t tanh t > 0 for all t 6= 0. (3.8)

We have

f 0(t) =
√
2
sinh(

√
2t)

cosh(
√
2t)
− sinh t
cosh t

− t

cosh2 t
=

g(t)

cosh(
√
2t) cosh2 t

,

where g(t) =
√
2 sinh(

√
2t) cosh2 t − sinh t cosh t cosh(√2t) − t cosh(

√
2t). By means

of certain usual hyperbolic identities we obtain

g(t) =
sinh(

√
2t)√
2

− t cosh(
√
2t) +

2−√2
4
√
2
sinh((2 +

√
2)t)− 2 +

√
2

4
√
2
sinh((2−

√
2)t).

Taking into account the power series expansions (2.3) and (2.6) we get

g(t) =
∞X
n=0

an
(2n+ 1)!

t2n+1, where an :=
(2 +

√
2)2n − (2−√2)2n

2
√
2

− n2n+1.
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Note that a1 = 0 and that

an >
(2 +

√
2)2n − 1
2
√
2

− n2n+1 >
22n + 2n

√
222n−1 − 1

2
√
2

− n2n+1

=
22n − 1 + 2n√2(22n−1 − 2n+1)

2
√
2

> 0

for all n ≥ 2. Therefore, g(t) < 0 for t < 0 and g(t) > 0 for t > 0, hence f 0(t) < 0 for
t < 0 and f 0(t) > 0 for t > 0. Consequently, f is strictly decreasing on ]−∞, 0[ and
strictly increasing on ]0,∞[. Since f(0) = 0, we can conclude that (3.8) holds true.
2

Remarks. 1. The inequality (3.6) is a refinement of S2(x, y) > L1/2(x, y) (see
(3.1)), by virtue of the inequality M(x, y) > L1/2(x, y) (see Z. Páles [7, Theorem 3]).

2. From (3.8) we deduce that
x√
2
tanh

x√
2
≤ ln(coshx) for all x ∈ R.

This inequality is complementary to the inequality

ln(coshx) ≤ x tanh
x

2
for all x ∈ R,

established by K. B. Stolarsky [9, Theorem 3].
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