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Abstract. In this paper, we extend two curious divisibility properties for the general second order
linear recurrence fUn.p;q/g. We also give new recursive identities for the general second linear
recurrences fUn.p;q/g and fVn.p;q/g. These results generalize the results given by E. Kılıç, ”A
matrix approach for generalizing two curious divisibility properties”, Miskolc Math. Notes, vol.
13., No. 2, pp. 389-396, 2012.
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1. INTRODUCTION

Let p and q be nonzero integers such that p2C4q ¤ 0: For n > 1; the generalized
Fibonacci sequence fUn.p;q/g and the generalized Lucas sequence fVn.p;q/g are
defined by

Un.p;q/D pUn�1.p;q/CqUn�2.p;q/

and
Vn.p;q/D pVn�1.p;q/CqVn�2.p;q/;

where U0.p;q/D 0; U1.p;q/D 1 and V0.p;q/D 2; V1.p;q/D p; respectively.
Let ˛ and ˇ be the roots of the equation x2�px�qD 0: Then the Binet formulas

of the sequences fUn.p;q/g and fVn.p;q/g are given by

Un.p;q/D
˛n�ˇn

˛�ˇ
and Vn.p;q/D ˛

n
Cˇn

If p D q D 1; then Un.1;1/ D Fn (nth Fibonacci number) and Vn.1;1/ D Ln (nth
Lucas number).

It is a well known fact that

gcd.Fn; Fm/D Fgcd.n;m/:

It is also known that Fkn is a multiple of Fn; for all integers k and n: In [9], the author
showed that, for n > 2; the Fibonacci number Fm is a multiply of F 2

n if and only if
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m is multiply of nFn (for more details see [4]). Also, in [1], the author obtained the
following divisibility properties:

i) Fkn�1�F
k
n�1 is divisible by F 2

n ;

ii) Fkn�2� .�1/
kC1F k

n�2 is divisible by F 2
n ;

where n;k � 1. Recently Kılıç [7] generalized these results for a general second
order linear recursion fUn.p;1/g as follows:

U k�1
r .p;1/Ukn�r.p;1/� .�1/

.r�1/.kC1/U k
n�r.p;1/ is divisible by U 2

n .p;1/:

Furthermore, the author found new recursive identities for the general second order
linear recurrences fUn.p;1/g and fVn.p;1/g:

In this paper, for the case q ¤ 1, we show that

U k�1
r .p;q/Ukn�r.p;q/�.�1/

.r�1/.kC1/qr.k�1/U k
n�r.p;q/ is divisible by U 2

n .p;q/:

To do that we use matrix methods. Matrix methods are useful tools for derivating
some properties of linear recurrences (see [3, 5, 6, 8, 10]). We consider the quotient

U k�1
r Ukn�r � .�1/

.r�1/.kC1/qr.k�1/U k
n�r

U 2
n

;

where n;k � 1: We define a generating matrix for this quotient for fixed n and inc-
reasing values of k: Then we give an explicit statement for the quotient. Also, by
considering this explicit statement, we find new recursive identities for the general
second order linear recurrences fUn.p;q/g and fVn.p;q/g. Thus we obtain a genera-
lization of the results given in [7].

Throughout this study, for simplicity, we will denote Un.p;q/ by Un and Vn.p;q/

by Vn:

2. MAIN RESULTS

Before we give our main results, we need some auxiliary results and definitions.
Denote the quotient

�
U k�1

r Ukn�r � .�1/
.r�1/.kC1/qr.k�1/U k

n�r

�
=U 2

n by s.n;k/:
Define two matrices H.n/ and G.n;k/ of order 3 as follows:

H.n/D

24 An�1 Bn �.�q/nCrU 2
r Un�r

1 0 0

0 1 0

35
and

G.n;k/D

24 s.n;kC2/ t.n;kC2/ �.�q/nCrU 2
r Un�rs.n;kC1/

s.n;kC1/ t.n;kC1/ �.�q/nCrU 2
r Un�rs.n;k/

s.n;k/ t.n;k/ �.�q/nCrU 2
r Un�rs.n;k�1/

35 ;
where

An�1 D UrVn� .�q/
rUn�r ;
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Bn D .�q/
rUrVnUn�r � .�q/

nU 2
r

and

t .n;k/D
�
.�q/rU k�1

r UknU
2
n�rC .�1/

r�1q2n�rU kC1
r Un.k�2/

C.�1/.rC1/.k�1/qr.k�1/UrU2nU
k
n�r

�
=U 3

n

Lemma 1. For n� 1; the eigenvalues ofH.n/ areUr˛
n; Urˇ

n and�.�q/rUn�r :

Proof. The characteristic polynomial of H.n/ is

x3
�An�1x

2
�BnxC .�q/

nCrU 2
r Un�r D 0

and it is factorized as

.x�Ur˛
n/.x�Urˇ

n/.xC .�q/rUn�r/D 0;

as required. �

Thus the first main result of this paper is the following.

Theorem 1. For n > 1;
H.n/k DG.n;k/:

Proof. In the proof, we will use induction on k. SinceG.n;1/DH.n/; the result is
true when k D 1: Now assume that H.n/k�1 DG.n;k�1/: Then, by the definitions
of s.n;k/ and t .n;k/; we have

An�1s.n;kC1/C t .n;kC1/D s.n;kC2/

and
Bns.n;kC1/� .�q/

nCrU 2
r Un�rs.n;k/D t .n;kC2/:

This completes the proof. �

As a consequence of this theorem, we can see that the matrix H.n/ generate the
s.n;k/: Since the elements of H.n/ are integers, the quotient s.n;k/ are integers.

Also from Theorem 1 in [2], we have the following result for the combinatorial
representation of s.n;k/:

Corollary 1.

s.n;k/D
X

.l1;l2;l3/

 
l1C l2C l3

l1; l2; l3

!
.�1/.nCr�1/l3A

l1

n�1B
l2
n U

2l3
r U l3

n�r ;

where the summation is over nonnegative integers satisfying l1C2l2C3l3 D k�2:

As another main result, we have the following theorem.
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Theorem 2. For n;k � 1

.G.n;k//3;1 D s.n;k/D

D
.�q/n�rU k

r Un.k�1/C .�1/
k.�q/r.k�1/UnU

k
n�rCU

k�1
r UknUn�r

U 3
n

:

Proof. Since the eigenvalues of H.n/ are distinct, H.n/ is diagonalizable as

V �1H.n/V DD;

where

V D

24 U 2
r ˛

2n U 2
r ˇ

2n q2rU 2
n�r

Ur˛
n Urˇ

n �.�q/rUn�r

1 1 1

35 ;
andD D diag.Ur˛

n; Urˇ
n; �.�q/rUn�r /: Therefore, we obtain V �1H.n/kV D

Dk : By Theorem 1, we write V �1G.n;k/V D Dk : Then we have the following
linear equation system:

gi1U
2
r ˛

2n
Cgi2Ur˛

n
Cgi3 D U

kC.3�i/˛knC.3�i/n

gi1U
2
r ˇ

2n
Cgi2Urˇ

n
Cgi3 D U

kC.3�i/ˇknC.3�i/n

gi1q
2rU 2

n�r �gi2.�q/
rUn�rCgi3 D .�1/

.r�1/.kC3�i/qkrC.3�i/rU kC.3�i/
n�r

Using the identities
Un�rUnCr �U

2
n D�.�q/

n�rU 2
r

and
qrUn�rC .�1/

rUrVn D .�1/
rUnCr ;

the solution of the above linear equation system gives the claimed result. �

By considering definition of s.n;k/; we have the following consequence of The-
orem 2.

Corollary 2. Let n;k and r arbitrary integers. Then

Un�rUkn D UnUkn�r � .�q/
n�rUrUn.k�1/:

The next result presents a similar expression by considering generalized Lucas
sequence fVng:

Theorem 3. For all integers n;k;r;

Un�rVkn D UnVkn�r � .�q/
n�rUrVn.k�1/:

Proof. Using Binet formulas of the sequence fUng and fVng, we have

UnVkn�r � .�q/
n�rUrVn.k�1/ D

D .˛knCn�r
�ˇknCn�r

C˛nˇkn�r
�˛kn�rˇn

� .�q/n�r˛kn�nCr

C .�q/n�rˇkn�nCr
� .�q/n�r˛rˇkn�n

C .�q/n�r˛kn�nˇr/=.˛�ˇ/



GENERALIZATIONS OF TWO CURIOUS DIVISIBILITY PROPERTIES 1089

D

�
˛knCn�r

�ˇknCn�r
� .�q/n�r˛kn�nCr

C .�q/n�rˇkn�nCr
�
=.˛�ˇ/

D .˛n�r
�ˇn�r/.˛kn

Cˇkn/=.˛�ˇ/

D Un�rVkn:

The proof is complete. �
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