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Abstract. In this article, we still hold the study of the generalized Picard operators Py g (f;q)
depending on nonisotropic f—distance given in [3]. By continuing to deal with the nonisotropic
weighted L, g(R") space defined in [17], we introduce a new weighted L, g modulus of con-
tinuity depending on the nonisotropic distance to obtain the weighted rate of convergence. We
show that weighted convergence rate of P g (f;¢) to f can be made better not only depending
on the chosen ¢ but also the choice of 8. We get that Py g (f;q) satisfy the global smoothness
preservation property via weighted L, g modulus of continuity. Also we give direct approxi-
mation property of the generalized Picard operators Py g (f;¢) with respect to nonisotropic
weighted norm.
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1. INTRODUCTION

The g—analysis concept is comprehensive in appoximation theory, especially in
the study of various sequences of linear positive operators and singular integral ope-
rators, such as Picard and Gauss-Weierstrass singular integral operators (see [8, 10,

1). We previously studied Picard singular operators in multivariate setting defi-
ned as in [17]. For a general framework related to the classical Picard operators
[2,4,5,13] and [14] may be referred. In [7] and [6], multivarite Picard operators and
Gauss-Weierstrass operators with kernels including nonisotropic distance were intro-
duced and pointwise convergence result were given. Latterly, in [8], Aral introduced
a generalization of the Picard singular singular integral operators (see [4]) by using
the g—analogue of the Euler Gamma integral and entitled that operators as ¢— Picard
singular integral operators. Also, the author showed that these generalized operators
have a more flexible rate of convergence than the classical Picard singular integral
operators. In [3], Anasstasiou and Aral introduced the multivariate variant of the
g—Picard singular integral operators Py, g ( /) depending on nonisotropic norm (see
Definition 3). They introduced a suitable modulus of continuity depending on no-
nisotropic distance with supremum norm to measure the rate of convergence. Also,
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they proved the global smoothness preservation property of these operators. Also
generalized potential-type integral operators with nonisotropic kernel was studied in
[9].

In [17] we defined a weighted L, g (R") space (see Definition 2) and the concept
of nonisotropic f—Lebesgue point. Then we obtained a pointwise convergence result
for the family of Py g (f:q)to f for f € L, g(R"). We also studied the rate of this
pointwise convergence. Convergence in the norm of this space was also studied.

In this work, we introduce a weighted L, g modulus of continuity (see 2.1) de-
pending on nonisotropic distance in order to measure the rate of convergence in the
norm of L, g. Also, we show that the operators Py g (f:q) satisfy the global smo-
othness preservation property via new weighted L, g modulus of continuity. Fut-
hermore, we show that these operators retain direct approximation result in weighted
L, g(R") space with respect to the nonisotropic weighted norm.

Now, we give the concept of the nonisotropic S-distance. Let n € N and B,
B2, , Bn be positive numbers with |f| = 81+ B2+ -+ B and

181
1 1\ n
||X||ﬂ=(|x1|51 +~~-+|xn|f‘n> " xeR.

The expression [[x||g is called the nonisotropic B-distance between x and 0. Note
that this distance has the following properties of homogeneity for positive ¢ :
181

1N n
181
(‘tﬂ‘xl "”) — i [Ixllg .

Also, nonisotropic B-distance has following properties.
D [[xl[g=0«<x=0,
@ |[i#x], =" Il
3) |Ix+yllg = Mg (I1xllg +1Iyllg) -
where Bmin = min{f1,B2,...Bx} and Mg = 2(1+m)%, (see [16])

It can be seen that nonisotropic S-distance becomes the ordinary Euclidean dis-
tance |x| for §; = %, i =1,2,...,n. Also, this distance does not satisfy the triangle
inequality. Throughout the paper, we need the following notations of g—calculus.

The g—extension of exponential function e* is

1
Bl _"_.___"_‘tﬂl‘lxn

nn—1)

E4(x):= Zq 2)
n=0 n

——X" = (=X ¢)oo> (L.1)
— (4.4

n—1 o)

with (a; q), = k];[o (1 —aqk> and (—x; ¢)oo = k];[() (1 —|—qu) .
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For ¢ > 0, g—number is

l—q)\
g =4 tme° 771
A, qg=1
for all nonnegative A. If A is an integer, i.e. A = n for some n, we write [n], and call
it g—integer. Also, we define a g—factorial as

[n]q!:{ En]q[n_l]q"'[l]q’ Zz(l),2, '

For integers 0 < k < n, the ¢g—binomial coefficients are given by

|:I’li| _ [n]q'
k1, W=kl

For details see [15].
Another needed formula is g—extension of Euler integral representation for the
gamma function given in [12] and [I]for0 < g < 1

o0

() Ty () = 4 X(le)/ T 4 Rex >0 (12)
Ccq (X X) = —— —dt, ex .
a a lnq_lq E;(1—q)t)

0

where I (x) is the g—gamma function defined by

_ @9
(4% @)oo
and ¢4 (x) satisfies the following conditions:
(1) cg(x+1) =cq (x),
2)cgn)=1,n=0,1,2,...,
(3) lim ¢4 (x)=1.
qg—>1—

I, (x) 1-g¢)'™, 0<g<1

When x = n + 1 with n is a nonnegative integer, we obtain
Iy (n+1) =[n],. (1.3)

In [3], Anasstasiou and Aral introduced the g—Picard singular integral operators
depending on nonisotropic distance taking the following lemma and (1.2) into cons-
ideration.

Lemma 1. ForallA > 0,n € NandB; € (0, o0) (i =1,2,...n) with
|Bl = B1+ P2+ + Bn we have

c(n, B, q)

R”7
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where
(1— t
pu =176, [ =21l ) (14)
[Alg"
and .
1_ 1 -
e —1 1.5
ctn. B )" = 5gronn Fo ) iy (1)

Definition 1. Let f : R” — R be a function. For 0 <¢g <1, A >0, n € N and
Bi € (0, 00) (i =1,2,...,n) with |B| = B1+ B2+ -+ B, the g-Picard singular
integral of f depending on S-distance of f is

Py p(fiq.x) =Py g(f:x)

_"(” |ﬂq)/f( 1) 2, (B,1) dt, (1.6)

where &) (8,t) and c(n, B, q) are defined as in (1.4) and (1.5), respectively.

Note that, if we take f; = 5, i = 1,2,...,n, it reduces to P, 1 (f:q,x) opera-
tors introduced in [8]. If we take q — 1, then P)L ! (f; 1, x) operators are classical

multivariate Picard singular integral (see [3]).
From [17], we have the following definition and subsequent result.

Definition 2. For fixed 1 < p < oo, we denote by L, g (R") the non-izotropic

f ()
1+Ix][5

a function such that p-th power is Lebesgue integrable. The norm in L, g ([R”) is
defined by the formula

171 ={ [
y

Lemma 2. P, g (f) is a linear positive operator from the space L, g (R") into
L, g (R"). That is

18

weighted space of all real valued functions f defined on R” for which

S x)
1+ Ix[|

1 Pap ()], 5 <KOB.DISNpp-

where

K (n,B,q) = max {1, Mg} (1 +m"(” B a)opn-1cq (”_ﬁu)

1

lna (”*ﬁw%)z(nf#Jrl)
XFq( 208] 2) L '
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2. WEIGHTED Lj, g MODULUS OF CONTINUITY

We now introduce a weighted L, g modulus of continuity depending on nonisot-
ropic distance in order to measure the rate of convergence by P; g (f)in L, g norm.

Definition 3. Let f € L, g (R"), n € Nand B; € (0,00), i =1,...,n, with || =
B1+ B2+ ...+ Bn. For every 8 > 0, the nonisotropic weighted L, g modulus of
continuity of f is defined as

wp,p (f:8) = sup |f (x+h)=f X,z 2.1
Inllp=<8

Analogously, the modulus of continuity defined above has the following property

Lemma 3. Let f € L, g(R"), n € Nand B; € (0,00), i = 1,....n, with |B| =
B1+ B2+ ...+ Bn. Forevery § > 0and c > 0, then
18
wpp (f3¢78) < L+)wpp(£39). 22)

Proof. For k € Z, using similar arguments to that of in [3]. Using generalized
Minkowsky inequality we have the following

oy (f;k“%(ﬁ) = sup “f(x-l—kﬁh)—f(X)Hp’B =

Ikl =<8

( él [f(x+sﬂh)—f(x+(s—l)ﬁh)] ’
" iy [R/ T [Ty =

\

k

" Inlss S;[f (x+5"h) — 7 (x+ =17 n) y

k
< IIhSISgI)ssg H [f (x+sﬁh)—f(x+ (s—l)ﬂh)] iy
< i sup [f (X+sﬂh)1;]|(|£|)|(+ (S_l)ﬁhﬂ pdx

s=1Hs5h—(s—1)ﬁhHB§8 R” B

<kw,p(f:d),

where Hsﬁh— (s—l)BhHﬁ < |h|ig, by sPi —(s—l)'Bi <1fori =1,2,...,n. Since

wp,g (f:9) is a nondecreasing function of §, then (2.2) is attained easily. a
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Now, we give an estimate by means of nonisotropic weighted L, g modulus of
continuity of f.

Theorem 1. Let f: R" — R, f € L, g (R") and w, g (f:6) < oo. Then for any
6 > 0 we have

1220 (1)l = s (£ mf')M(n,q,ﬁ)

where
n(n 1)

(n+|m)(n+|m 1)
— a5

M(n,q,p)=1+

Iy (n)q
and wy, g (f:.) is the nonisotropic weighted L, g modulus of continuity of f given
by (2.1).

Proof. From (1.4) and (1.6), by the same reasoning as in Theorem 1 of [3], we
have

dx | P5.8.0dt

p
[Pop(fi0—f W], , < S0 /'[f(X+t)—f(x)]

ATl 1+ [Ixllp
LD [ (/1) 22 (B0 dL @3
[A]q R”

i

Using (2.2) with ¢ = A‘]S for t €R", we get that

(f IItll ) f ”t” 4 [)L]‘ | 14+ — ”t” / (f [A] Bl)
w ; =w ; Tl < w ; T,
p.B B 'p.B [A]q q [A]q p.B q

Therefore (2.3) results in

[Pap (f:0=f @), 5=

181 n_
<wpp (f:[k]q")x 4 el l/flﬁ)/ntn 7P (B.H)dt

Applying change of variable t = [/\]g y, dt= [/\]lf ld y, such that
[)k]q/8 y= ([)k]q/9 Viseeos [)L]lqg yn) and using the generalized S —spherical coordinates and
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finally taking (1.2) and (1.5) into consideration to the result, last inequality reduces
to

[P (fi0—f ), 4 <

Iyl i

Eq((1=9)lylg)

181
=wp.p (f:[k]q” )X l+c(n, B, q)/ dy

u2Pl=1204 (0)dod
X 1+C(l’l ,BQ)/ / ’B(;m .
0 gn—1 Eq (l_q)u " )

© Ly

[A], [A]F] ) Eq (1-q)u)

M(n,q,B),

nn—1) n n
g7 Iy (4 i) eatn 4 i)
(+1E 1+ =D ’
ih . . [l

M(n.q.p) =1+

Iy (n)q

d

Now, using weighted L,—modulus of continuity defined by (2.1), we show that

the g-Picard integral operators depending on the nonisotropic B-distance given by
(1.6) satisfy the global smoothness preservation property.

Theorem 2. Let f : R" — R, and w, g (f:8) < oo for any § > 0 and B; €
(0,00), (i =1,....,n) with |B| = B1 + B2+ ... + Bu, such that Py g (f:x) € R for
0 < g < 1. Then we have

wp.p (Prp(f3):8) < Ln,q,A By p(f;8), (2.4)

where

L(n,q,/\,ﬁ)=max{1,Mﬂ}x(1+mC(n 8, ‘])[/\]glfla)ﬂn 1Fq(n+1) q (;))

in which Mg is given by property (3) of nonisotropic distance.

Proof. From (1.6) we can write

c(n, B. q)

Prp(fix+h) =Py g(f:x)= [X‘ﬁl

/(f(x+t+h) £ (x+0) Py (B.0)dt.
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Taking L, g (R") norm and using generalized Minkowsky inequality, we obtain that

! gl

_(/ c(n B q) [(f (+t+h) —  (x+0) 2, (B.1)dt
Rﬂ

[A]F] L+ Ix]lg
_cn B, 9)
Y (R/

[Rn
c(n. B. q) (.,/ (f &+ t+h)— fx+1)]

Pap (fix+h)—P3 g (f:x)
L+ [x]]g

1
J2)
dx)

/(f(x+t+h) £ (x+0) Py (B0t

1
p P
dx)

1+l

IA

(A2 1+ x|

n

dx) 25 (B, t)dt.

[A]21 1+ |[x—t]lg

n

_c(n.p.q) (R/ f&x+h)—f(x) pdx)pg)/l(ﬂ t)dt

From the property (3), we have
1 I+Ixllpg 1 L+ [x—t+tllg

L+llxllg T+1Ix—tllg  T+IIxllg 1+]x—tllg
1 1+ Mg(lIx—tllg +1]tll)

<
1+ [[x]|g 1+ [[x—t]|g
~ max {1, Mg} (1+|Ix—t||g) (1+It|[5)
1+ |[x]|g L+ |[x—t][g

Using the above inequality we have

/

Smax{l,Mﬂ}

Prp (fix+h)=Py g (f:x)
1+[x[]g

1
dx) <

c(n, B, q) / (f x+h)— £ x|
T 1+ [1x]1

dx) (L+11tllg) #x (B. ) dt
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<max {1, Mg} || f (x+h)— f ®)||,,p (1+1ltllg) P2 (B. ) dt

R7

— max {1 M} ||/ (x+1) =/ @)l [ 1+ E2 ‘fm‘” / Il 22 (B0t

Using Lemma 1 and making change of variable t = [k] ¢ X we have

Prp(fix+h) =P g (f: x) |7
1+ [x]]g

dx

<max {1, Mg}||f (x+h)— f ®)|[, g x| 1 +c(n. B q)[k]@/ |11
< , N 8. : b
o Eq((1—q)|Ix[|)

We use generalized B-spherical coordinates ([16]) and consider the transformation

x1 = (ucos 81)2‘8‘

X2 = (usinfq cos 92)2’32

Xp—1 = (usin6; sinf; ---sin B, _» cos Qn_l)zﬂ”_l

Xp = (usinf sinfy---sinb,_1)2P

where 0 < 01,60, ,0,—2 <m,0 < 6,1 <2m, u > 0. Denoting the Jacobian of
this transformation by Jg (u, 61,..., 6,—1) we obtain
Jp @, 0., 6pmr) =171 024 (6),
J+1
n—1 281 Z 2Bi—1
where Qg (0) =2"B1...8, [] (cost) / (sm@ ) . We can easily
j=1

see that the integral
W p—1 = / Qp(0)do
Sn—1

is finite, where S”~! is the unit sphere in R”.
Thus we have

Prp(fix+h) =P g(f; x)|”
1+1[x]|g

dx

A
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< max {1, Mg} [|(/ x+h) ~ / ®)]|, 4

oo

2181+ 2711
| 14 e . 9] B/ /" a0 v
v Ea(0—pu)
<max {1, Mg}||(f (x+h)— f (X)), 4

7 udu
(l—l—ﬁc(n B, q) [)t] wﬂ,nl[m)

<max {1, Mg}||(f (x+h)— f (®)ll,4

18] lnq_l nn+1)
1+ — Al 11 1 T2
(1 5Tge0 B DV 0 il 0o ) T 5 )

Finally we find that

|Pap (fix+0)=Pr g (fi%)], 5 < [I(f x+h)— f x|, pL(1.q. 1. B)
proving (2.4). (]

Now we give direct approximation property of Py g (f;q) with respect to noni-
sotropic weighted norm.

Theorem 3. Let f € L, g (R"), n € Nand B; € (0,00), i =1,....n, with |B| =
B1+ P2+ ...+ Bn. We have

lim |25 (£ = f (0], 5 =0.

Proof. Taking Lemma 1 and generalized Minkowsky inequality into considera-
tion, we get

p
HPA,ﬁ(f;X)—f(x)”p’ﬂ_C(l’l B. q) (/ [f (x+t)— f (x)]

[A]F] 1+ 1x]]4

_ e, i}'q)/nf( +0— 1 X5 P (B.HdL.

dx) 25 (B.t) dt

For a § > 0 we can write

I\Pk,ﬂ(f;x)—f(x)l}p,ﬂSW/ If 40— W), P2 (B0
M ltll 5 <6
(n, B, q) )
Tﬂ'q f |f x+0—f @l P2 (B0t

ltll g>6
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=Li(A)+L2(2).
From Lemma 1 and definition of weighted L, g modulus of continuity, we have
c(n, p. q)
Ll(k)pr,ﬂ(fﬁ)w P (B, v)dt
T ltipss
c(n, B, q)
=wpp (1) ==L [ 2By dt=1,
TS
which implies that
lim L, (1) =0. (2.5)
A—0
Since
p
[/ &x+D—f ()]
If x+0=f @l = [ dx
P 1+ Ixllg
R”7
p p
< L0l 1| L0
J, 1+ x4 ’, 1+l

<max {1, Mg} (1+|Itllg) I fll, 8+ 1/,
we can write

Ly() < (1+max{1.Mg}) 1 £l c(’;]—ijlq) P (8.0 dt
T g>s
1l LD, 2 B a.
]
It g>6

Since the first and second term of above inequality tends to zero as A — 0 (see [
p.508]), we get

bl

lim L, (A) =0. (2.6)
A—0
From (2.5) and (2.6) we have desired result. O

Remark 1. Using similar arguments in [3, p.825] we can easily see that wp, g ( f';6)
tends to zero as § — 0. As a consequence of Theorem 1, we can say that resulting
approximation process turns out to have a weighted rate of convergence which is
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[A]4" atleast as good as that classical Picard singular integral operators. Also this
weighted convergence rate of Py g (f:q) to f can be made better not only depend-
ing on the chosen g but also the choice of 8. This convergence is shown directly in
Theorem 3.
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