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1. Introduction

There is a large number of methods which mathematicians elaborated for studying
boundary value problems (BVPs). In the papers [1], [2] the numerical-analytic method
based upon successive approximations was introduced. The polynomial version of this
method in which the successive approximations are polynomials was proposed in [1]
and then developed in [3], [4] for three- and multi-point boundary conditions. In this
paper the issue of existence and approximate construction of the solutions of multi-
point boundary conditions for the systems of implicit ordinary differential equations
of the first order are studied by using polynomial approximations.

2. Construction of successive polynomial approximations

Let us consider a system of implicit equations

()] (21)
with a multi-point boundary conditions
q
Aoz(0) + > Aga(ty) + Agaz(T) = d, (2.2)

k=1

where z,d € R", f:[0,T] x D1 x Dy — R™, Dy, Dy are closed bounded domains in
R 0=ty<t1 <...<tg<tgq1 =T, Ay (k=0,1,...,9+1) - are n X n matrices
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q=1
so that det [Z Aktk} #0.
k=1

First of all we will introduce some notations [1].
It is known that for f(¢) € C[0,T] there is a unique polynomial PY (t) among all the
polynomials P,,(t) with no more than m degree which is the best approximation for

f@):
NN - Pr@)] = Anf 1F(®) = P (@]l

Let us set in the interval [0,7] the nodes

T (20— 1) .
== |cos———+1], 1=1,2,...,p+1, 2.3
2( 2+ 1) ) g 29

which are obtained by the substitution 7 = £ (7' + 1) from the corresponding zeroes
! € [-1,1] of the Chebyshev polynomials

Tp11(t) = cos ((p+ 1) arccost) .

For arbitrary continuous function x,.(t) by f? (¢, z,(t),y-(t)) we denote the Lagrange
interpolation polynomial with p degree and with respect to the points (2.3):

fp (t,.i’,‘r(t, .To),yr(t, '770)) = (f{7 (ta xT(tva)vyT(taxO)) AR fvg: (t’ ‘TT(tva)vyT(ta '770))) ’

where y,(t) = dmd;t(t), I (o (t,20), yr (8 0)) = ag; +aft + ... +ap;, J =

17 27 RN 2 ff (TivajT(Ti)7yT(Ti)) = fj(Tiyxr(Ti)yy’r‘(Ti)v 1= 17 27 Y 4 + 1
Let us denote by

T
Z(f,x,y,@xo) = f(t,l‘(t,l‘o) t x() 1 /f S, ZL‘ S £C(] (va(])) dS,
0

T

£(Geaptian) = [ | £ (raro), () = 1 [ £ (sva(s,a0),y(s,m0)) ds | dr.
0 0

We assume that the following conditions hold for the BVP (2.1), (2.2):

a) the vector-function f(¢,z,y) is continuous in Q@ = [0,7] x Dy x Dy (and
therefore it is bounded by some vector M) and Lipschitzian in  and y, i.e.,

|z, )l < M, [f(tz,y) = f(6,7,7)] < Ki |z —T)| + Ka |y =), (2.4)

where M and n x n matrices K7, Ky have non-negative components. The
absolute value sign and the inequalities we understand component-wise;
b) domains Dy and Ds satisfy the conditions

Dg, :={z € R" | B(z,Bi(z)) CD1} #@, B(0,5(x)) C Do,
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where B (z, p(z)) is the ball of radius p(x) with center z and

Bi(z) = (€E+G)~(M’+Lp)+T|d(x)|, G=T-3 |HA - a1 (tr),
k=1
1 a1 -1
Bow) = 2(M+Ly)+ =G (M + Lp) +|d(x)] 2:““ :

q+1
N O o R R N
d(z) = H (d ;Ak ) 1(t) 2t<1 T),

1
M == t,z, t
2{@£%d(xy)(ﬁgkf(xyﬂ

Ly = (5+1gp) maxE, (£ (t,27+ (t,20) 9% (t,20))) =
= (5-+1gp) - (maxE, (fu (a2 (two) 2 (1,20))) -

. ,mﬁ}pr (fn (¢, 2Pt (¢, @0) , P (, xO)))) ;

c) the eigenvalues \;(Q) of the matrix @ = Ky ($E+G) + K2 (2E + #G)
satisfy the inequalities

N(@I <1, j=1...n (2.5)
Let us introduce the sequence of polynomials with p + 1 degree

Pt 20) = 20 + L (fp, fnﬂl,ym Lt x()) + tHd(z)—

; (2.6)
—tH Z Akrﬁ (fp7xfn+7117y£1717tk7x0> ) $g+1 (tva) = Zo, M= 17 27 s
k=1
Their derivatives look as follows:
yfn(t,xo) (fp’ I:n+117ym i Io) +Hd($0)_
2.7)

—-H Z Ak‘c (fp7 gj_llvym 1,tk,$0>, ?Jg (t,ﬂ')o) :07 m = 1727"'

Here the above index means that this expression is a polynomials of a correspondent
degree. Tt is easy to see that all the members of the sequence (2.6) satisfy the boundary
condition (2.2) for arbitrary zy € Dag, .

The next theorem establishes the convergence of the sequence (2.6) and the properties
of the limit functions.

Theorem 1. Let BVP (2.1), (2.2) satisfy the conditions a)-c). Then:

(1) the sequences (2.6) and (2.7) converge to the functions x*(t, zo) and y*(t, xo),
respectively, as m — oo, uniformly in (t,x0) € [0,T] x Dg, :

x* (tv 330) = n}i_l)nooxgj_l(tv 330)7 y* (ta 330) = nvlgnooy?;n(t’ 330)7
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where y*(t, xo) = 76”*2;“0);

(2) the limit function x*(t,x0) satisfies the "perturbed” BVP
% = f (ta z, %) + A(.’Eo),

a (2.8)
Aoz (0) + >0 Apx(te) + Ag+12(T) =d,
k=1
where
T
A('TO) = _% f fp (87 x* (87 330) 7y* (57 'TO)) ds + Hd(.%'o)—
0
(2.9)
q
—-H Z Ak£ (fp’x*7 y*v tkv ZL‘()) )
k=1
with the initial value =* (0, z9) = xo;
(3) the following error estimations hold:
|ﬂc* (t, ) — xP ! (t,xo)} <(u(t)E+G)- WP _,, (2.10)
1
0" tan) =8 (b < (28 56) - WE, 2.11)
where
m—1
W1 = { Zo Ql] Ly +QMTHE-Q)
(B {(BE+G) M+ T d(wo)l} + Kz {20 + 2GM + [d(zo)|}] -
Proof. In addition to (2.6), (2.7) let us introduce the sequence of functions.
Tm(t,20) = 20 + L(f, Tm—1,Ym—1,t,20) + tHd(z5)—
. (2.12)
_tHZAk‘C(f7xmflvym717tk7x0)7 xo(t,l‘o):xo, m:1727"‘7
k=1
ym(t7 QL‘(]) = W = Z (fv Tm—1sYm—1, ta LC(]) + Hd(x(])_
. (2.13)
-H Z Ak‘c (fvxm—lvym—lvtk7x0)7 Yo (t,l‘(]) :07 m= 1727"'
k=1
Also we introduce some notations:
Tm = T (t,20), 20 = 2Bt 20), Tmgi(t, 20) := [Tmgr (8, 20) — T (E, 20)|
Ym = Ym(t, o), Yh, = yh,(t,70), Tmy1(t,T0) = [Ym+1(t, 20) — ym (¢, 70)| -
We note [1] that
| fP(t 2t b)) — ftaht yh)| < Ly, (2.14)
and making use of (2.4) we get
|12 ) — £ty y)| < [FP( 2B yh) = F(E B k) [+
(2.15)

+ |f(t,$fn+1,y?n) - f(tvxﬂ’uym)} < LP + Kl }'ng+1 - 'Tm} + K2 |y£7n - ym| .
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Using Lemma 3 of [5] we have that

£(f. w0 < aa())M < S0 (216)
q ’
THZAkﬁ (f7x7y7tkvaj0) S GM ) (217)
k=1
}ﬁ (fp7ajgj17 ygw ta 'T(]) - ‘C’ (f7 ajgm+17 ygw tv :CO)} S al(t)pr (218)

<GL,  (2.19)

q
THZA]C [ﬁ (fpvxfn+17y?n7tkvx0) - L (f7 .Tfn—i_l,yfn,tk,ﬂfo):l
k=1

We have to show that (2.6) is a Cauchy sequence in the space of continuous vector
functions. To begin with, we establish for arbitrary (¢,z¢) € [0,7] x Dg,, and
m=0,1,2,... that 221 (t,z9) € Dy and y, (¢, 7o) € D2 by using (2.16)-(2.19):

q
).1‘11’4'1 _;130) < ),C (fp7ajg+1,yg7t, .7,’0)) + ‘TH Z Akﬁ (fp,xg+17yg7tk,ﬂf0> =+
k=1

+T|d($0)| g )‘C (fpvxg+17ygvta LU(]) - ‘C (fv x07y07ta :L‘O)‘ + |‘C (f7 x07y07ta $0)| +
! p+1 p
+T|d($0)| + TH Z Ak? |:‘C (fp,l‘o 7y07tk7x0) _ﬁ(f7x07y07tk:7x0)} +
k=1

+ ‘TH kZi:l AL (f, Jfo,yo,tk,ﬂio) < (Oél(t)E + G) (Lp + M’) +T |d(.1‘0)| < ﬁl(.’lio),

+T|d($0)| S )‘C (fp,$g+1,yg,t, LU(]) - ‘C (fv x07y07ta :L‘O)‘ + |‘C (f7 x07y07ta $0)| +

q
+T |d($0)| + ‘TH Z Ak? |:‘C (fpvxg+17yg7tk7x0) - ﬁ(fv x07y07tk:7x0)} ‘ +
k=1

q
+ ‘TH > ARL(f, %0, Y0, tk, To)
k=1

< (u()E+G) (L + M)+ T|d(zo)| < Br(x0),

— q
W1 < [Z (47,08 s two ) | + (o) | + \sz AL (£, 98ty mo) | <
=1

< ‘Z (fp,w’(}“,yg,t,:co) —Z(f, 'T(]vy(htv-r())) + |Z(f, Zo, Yo, t, CC(J)} + |d(zo)| +
q 1
+ ‘H Z Ak |:£ (fpvxg 7yg7tk7x0> - C(f7x07y07tkax0):| ‘ +
k=1

+ 'Hki Ak‘c (fv x()?y(]vtkvx()) < 2 (M + Lp) + G(MI + Lp) + |Cl(CL'())| < BQ((L‘(]).
c=1

It follows that 22" (t,z0) € D1, 4(t,z0) € Dy. By induction in a similar way we
can establish that

|zt —ao| < Bi(zo),  [yh] < Ba(wo).
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Now we consider the differences z,,, — 22! and y,, — y?,. For m = 1 we have

‘xl _leﬂ_l‘ < ‘,C(f,l'(),y(),t,l‘(]) _L (fp7xg+17yg7t’m0)’+

q
+ 'THkZ Ak |:[’ (f;x(]vy();tk:x(]) L (fp7xg+1vygvtkax0>:| ‘ < (220)
=1
< (1 (H)E+G)L,
|y1_y110| S ‘Z(fwx(by(]vtaw(]) (fp p+17y(2]77t;w0)’+
; PGP+l P (2.21)
+ szlAk [ﬁ(f,%,yo,tk,wo) L (f 5 T 7y07tk7$0>} < .

<(2E+5G)L
Using (2.14)-(2.21) and Lemma 4 of [5] we get

‘xZ - ngrl‘ g “C(.ﬂxl?ylvta 1“0) - L (fp,l'erl,yf,t, :L‘O)’""
z p+1l  p
+ 'TH Z Ak |:£ (f?xlvyhtkyx(]) - L (fp7x1 7y17tk7x0>:| ‘ S
k=1
< [ () E + Ky (a2(t)E 4+ a1 ()G) + an (1) K2 (2E + 7G)] L+

+ ‘TH i Ay, [Ozl(tk)E + K (ag(tk)E + Oél(tk)G) + al(tk)Kg (2E + %G)J L

HE+G)[E+ K ($E+G)+ Ky (2E+ 4G)| L, <
<(@E+G)[E+QIL

|y2 - yg| g ‘Z(.ﬂxl?ylvta :L‘O) _Z (fp,ZL‘erl,yf,t, ZL‘O) ‘ +
q
+'H Z Ak |:£ (f?xlvyhtkny) (fp p+17y{)7tk7x0>:|‘ S
k=1

< 2 max ‘f(t,xl,yl) fPt a8y +

te[0,T

q
+ ‘H > Ay ‘ﬁ1 (fsz1, 91, th, x0) — L1 (fpﬁlfﬂ,y{),tk,xo) H <
=1

< (2E+4G) [E+Q]L
We can obtain by induction that

| T (t,20) — 2B (8, @0)| < (1 (D) E + G)

nf Qi] Ly, (2.22)

=1

[ym (t, 0) — Y2, (t, x0)| < <2E—|— G) lz_ Qll Ly. (2.23)
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Now we have to estimate ry,+1(t, o) and Fpm41(t, o) for every m = 0,1,2,... by
using Lemmas 3 and 4 of [5]:

Tl(t; 'T(]) S |£ (f7 x07y07t7x0)| + T |d(.’13(])| =+

q
+|TH Z Akﬁ (f7x07y07tk7x0)
k=1

< (LE+G) M + T |d(zo)| = (x0),

— q
71(t,z0) < |L(f, w0, 90, t,20)| + |d(zo)| + [H Y ArL (f, 20,0, th, To)
k=1

<

< 2M + |d(=zo)| + %GM’ = ya(x0),

T2(t7x0) S |£ (fvxlvyhtva) - L (f7 x07y07ta ZL‘(])| +

q
+ 'TH Z Ak [£ (fvxhylvtkvxo) - L (fv x07y07tk7x0)] <
k=1

(K171 (7, 20) 4+ Ko (7, o)| dT + & [ [K171(T, 20) + KoT1 (7, 20)] dT+

<(l-7)

o o
s—_

q tx
+ 'TH SO A [(1 — %) [ [EKiri (7, x0) + KoFi1 (7, 20)] dT+
k=1 0

—l—%é‘-f [K1r1 (7, 20) + K21 (T, 20)] dT] <(a1(t)E+ G) - [K171(x0) + Kava(x0)] s

7/"\2(15,33()) S }Z(f7x17y17t7x0) _Z(f7x07y07taw0)| +

< 2 max |Kyr (7, z9) + Koy (7, 20)| +

t€[0,T]
q t
+ ‘H > 4, [(1 — ) [ 1Ky (r, w0) + Ko (o)) dr+
k=1 0

+% f[KlTl(T, .To) + Kg?l(T, 330)] dT‘| < (QE + %G) . [Kl’yl(x‘o) + KQ’)/Q(.’EQ)] .

tr

Similarly,
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+ 'TH S Ay [(1 — %) [ [Ki(a(1)E+ G) + Ky (2E + +G) | dr+

()

+ f (K1 (en(T)E +G) + K2 (2B + 7G)] dT]

122

} - [K1m1(w0) + Ka2v2(20)] <

<(a1(H)E +G)-Q - [Kimi(wo) + Kay2(z0)],

o) < {2 [ K (01(r)B + )+ K (28 + $6)] +

n 'sz: A, [(1 ) 2 Ky (y(1)E + G) + K (2B + 2G)] dret

i [ Ky (s (P)E + ) + Ky (2E + 4G)] dr

} [Kivi(wo) + Kaya(zo)] <

< (2E+ £G) - Q- [K171(x0) + Kaya(wo)] -

We can show by induction that for arbitrary m =0,1,2, ...
i1t 20) < (1(t)E + G) - Q™ - [Kiyi(wo) + Kav2(x0)] (2:24)

Terl(t .7,'0) (2E + G> . Qm_l . [Kl/yl (.’130) + KQ’}/Q(.Z‘Q)] . (225)

From (2.24) and assumption c) we obtain the inequality

j—1
|Zmtj (t,%0) — Tm (8, 20)| < X0 [Tmgitr (F,20) — T (8, w0)| <
1=0

< i (h0) €5 (@a(0E + G) QP Ky (o) + Kopa(ao)] < (226)

=0 =0

< (()E+G)- Q™ (E-Q)™" - [Kimi(w0) + Kava(wo)] -

For the derivatives y, (t,zo) from (2.25) in a similar way we have:
[Ym-+j (¢, T0) — Ym (¢, 20)| <

< 2B+ 1G) Qm1 (B — Q) [Kum (20) + Koo (wo) . (2.27)
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It follows that (2.12) and (2.13) are uniformly convergent sequences:

lim @, (¢, z0) = 2™ (¢, 20) ,T'}i_r)nooym (t,x0) = y* (£, 20).

m—00

Taking the limit as j — oo in (2.26) and (2.27) we get the error estimates
2% (t,20) — T (t,20)] < (1 () E + G) - Q™1 (E = Q)" - [K1mi (o) + Kava(wo)]

ly*(t,20) — Y (t,20)] < (2E + £G) - Q"1 (E - Q)™ - [K1m1(wo) + Koya ()] -

Combining the last two inequalities with (2.22) and (2.23), we get the error estimates
(2.10) and (2.11). Passing to the limit as m — oo in (2.6) we obtain that x*(¢, z¢)
satisfies the integral equation

q
.’If(t) =20 + L (f,ﬂf, y7t7x0) + tHd(.’Eo) - tHZAkE (f7 z, y7tkvaj0) .
k=1

While differentiating it, we get that z*(¢,z¢) is a solution of the perturbed BVP
(2.8)-(2.9). ]

The following statement gives necessary and sufficient conditions for the existence
of a solution of the BVP (2.1)-(2.2).

Theorem 2. Under the conditions of Theorem 1, the limit function x*(t,x§) is a
solution of the BVP (2.1)-(2.2) if and only if x§ verifies the determining equation

A(xo) = — [ f(s,2% (s,20) ,y* (s,20)) ds + Hd(zo)+

(2.28)
q
+H Z Ak‘c (f7 x*vy*vtknxO) =0.
k=1

Proof. The proof can be carried out in the same way as for the corresponding state-
ments from [2] (Theorem 2.3). O

3. Sufficient existence conditions

Consider the m-th approximation to the determining equation (2.28)

AL (w0) = = [ f? (s, 25, (s,20) , ¥, (5,%0)) ds + Hd(wo)+

(3.1)
q
+H > AL (fP 20 yP e, 20) = 0.
k=1

Theorem 3. Suppose that the conditions of Theorem 1 hold. Furthermore, assume
that

d) there exists a closed, convex subset D' = D} x Dy C Dy x Dy so that for
arbitrary m and fized p the approzimate determining equation (3.1) has only
one solution xo = xf),, with non-zero topological index;
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e) on the boundary OD of the subset D the inequality
1
; P —G\we

holds.
Then there exists a solution x = x*(t) to the BVP (2.1)-2.2) with the initial
value *(0) = x5, where x5 € Dj.

Proof. Similarly to (2.15) and making use of (2.10) and (2.11), we get
1
[£0007) = Pt )| < | K fon 08 +6) + Ko (284 36) | why+ 1,

For the deviation of the exact and approximate determining functions we have that

T
|A(zo) — A (20)] < 7 Of /7 (8,27 (s,20) 4™ (s, w0)) —

q
_fp (&xgjl (S,ZL‘(]) 7yr?;L (va(]))} +H Z Ay |‘C (fp7x*7y*7tk7x0) -
k=1
—L (fp7x%+17ygmtk7x0)} S (E+ %G) (Qngfl + LP) S (E+ %G) W’#L

Similarly to Theorem 3.1 of [2], one can prove that the vector fields A(zg) and AP, (x¢)
are homotopic, which completes the proof of Theorem 3. ]
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