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1. INTRODUCTION

The problem of determining all integer solutions to Diophantine equations has
gained a considerable amount of interest among the mathematicians and there is a
very broad literature on this subject. In particular, several papers [3–6, 10, 11, 16, 21,
22, 26] deal with the Diophantine equation

ax2
CbxyC cy2

D d;

where a;b;c; and d are fixed integers. The name ”Diophantine” comes from Di-
ophantus, an Alexandrian mathematician of the third century A. D., who proposed
many Diophantine problems; but such equations have a very long history, extending
back to ancient Egypt, Babylonia, and Greece. The main problem when studying a
given Diophantine equation is that whether a solution exists, and, in the case it exists,
how many solutions there are. Moreover, another important problem closely related
to the previous one is that whether there is a general form for the solutions. Further
details on Diophantine equations can be found in [7, 8, 17–19, 23, 24].

In [12], the authors considered the Diophantine equations

x2
�LnxyC .�1/ny2

D˙5r

under the assumptions that n > 0; r > 1: They determined when the Diophantine
equations x2�LnxyC .�1/ny2 D˙5r have positive integer solutions. Moreover,
they found all positive integer solutions of these equations in terms of Fibonacci
and Lucas numbers. Based on the above equations, in this study, we consider the
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following Diophantine equations:

x2
�5Fnxy�5.�1/ny2

D 5r

and
x2
�5Fnxy�5.�1/ny2

D�5r

with n > 1; r � 0: The purpose of this study is to determine when the above equations
have positive integer solutions and then find all positive integer solutions of them by
using some properties of Fibonacci and Lucas sequences. As a reminder, for n � 2;

the well-known Fibonacci and Lucas sequences are defined by Fn D Fn�1CFn�2

and Ln D Ln�1CLn�2; where F0 D 0; F1 D 1; and L0 D 2; L1 D 1; respectively.
Also Fibonacci and Lucas numbers for negative subscripts are defined as F�n D

.�1/nC1Fn and L�n D .�1/nLn for n � 1: For more information about Fibonacci
and Lucas sequences we refer the reader to [9, 15, 20, 25].

2. PRELIMINARIES

In this section, we give some theorems and identities to be used in the proofs of
the main theorems. The following theorem is given in [6].

Theorem 1. Let k � 0 be an integer. Then all nonnegative integer solutions of the
equation u2�5v2 D 4:5k are given by

.u;v/D

�
.5.kC1/=2F2mC1;5.k�1/=2L2mC1/; k is an odd integer

.5k=2L2m;5k=2F2m/; k is an even integer

and all nonnegative integer solutions of the equation u2�5v2 D�4:5k are given by

.u;v/D

�
.5.kC1/=2F2m;5.k�1/=2L2m/; k is an odd integer
.5k=2L2mC1;5k=2F2mC1/; k is an even integer

with m� 0:

Now we give the following two theorems from [14].

Theorem 2. Let m > 3 be an integer and Fn D Fmx2 for some integer x. Then
nDm.

Theorem 3. Let m � 2 be an integer and Ln D Lmx2 for some integer x. Then
nDm:

Now we recall some divisibility properties of Fibonacci and Lucas numbers. These
properties are given in several sources such as [1,15,25]. Also one can find the proofs
of the following theorems in [1, 13].

Theorem 4. Let m;n 2Z and n� 3: Then FnjFm if and only if njm:

Theorem 5. Let m;n 2Z and n � 2: Then LnjFm if and only if njm and m=n is
an even integer.
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Theorem 6. Let m;n 2Z and n � 2: Then LnjLm if and only if njm and m=n is
an odd integer.

The following theorem is proved by Cohn in [2].

Theorem 7. Assume that n � 1: If Fn D x2, then nD 1;2;12. If Fn D 2x2, then
nD 3, 6. If Ln D x2, then nD 1;3; and if Ln D 2x2, then nD 6.

Now we give some well known identities involving Fibonacci and Lucas numbers.
The identities are as follows:

LmFn�FmLn D 2.�1/mFn�m; (2.1)

LmLn�5FmFn D 2.�1/mLn�m; (2.2)
LmLnC5FmFn D 2LnCm; (2.3)
LmFnCFmLn D 2FnCm; (2.4)

L3n D Ln.L2
n�3.�1/n/; (2.5)

F2n D FnLn; (2.6)

2jFn ” 2jLn” 3jn; (2.7)

.Fn;Ln/D 1 or .Fn;Ln/D 2; (2.8)

L2
n�5F 2

n D 4.�1/n; (2.9)

F 2
nCm�LnFnCmFmC .�1/nF 2

m D .�1/mF 2
n ; (2.10)

L2
nCm�5FnLnCmFm�5.�1/nF 2

m D .�1/mL2
n; (2.11)

and
5 − Ln (2.12)

for all m;n 2Z:

The proof of the following theorem is given in [14].

Theorem 8. There is no integer x such that Ln D 2Lmx2 for m > 1:

Before considering the main theorems of the paper, several theorems, which will
be useful during the proofs of the main theorems, are needed.

Theorem 9. Let m > 1 be an integer and Fn D 2Lmx2: Then mD 3; x2 D 1; and
nD 6 or mD 6; x2 D 4; and nD 12:

Proof. Assume that m > 1 and FnD 2Lmx2: Then LmjFn and therefore nD 2mk

for some natural number k by Theorem 5. Thus we get

Fn D F2mk D FmkLmk D 2Lmx2

by (2.6).
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Firstly, assume that k is an even integer. Then we can write .Fmk=Lm/Lmk D

2x2. It can be seen easily that if .Fmk=Lm;Lmk/D d; then d D 1 or d D 2 by (2.8).
Assume that d D 1: Then

Fmk

Lm
D u2; Lmk D 2v2 (2.13)

or
Fmk

Lm
D 2u2; Lmk D v2 (2.14)

for some integers u and v with gcd.u;v/D 1: Assume that (2.13) is satisfied. Then
mk D 6 by Theorem 7. Since m > 1 and k is an even integer, we get m D 3 and
k D 2: But this is impossible, since u2 D Fmk=Lm D F6=L3 D 2: Assume that
(2.14) is satisfied. Then mk D 1 or 3 by Theorem 7. But this contradicts the fact that
k is an even integer. Assume that d D 2: Then

Fmk

Lm
D 2u2; Lmk D .2v/2 (2.15)

or
Fmk

Lm
D .2u/2; Lmk D 2v2 (2.16)

for some integers u and v with gcd.u;v/D 1: A similar argument shows that (2.15)
and (2.16) are impossible.

Secondly, assume that k is an odd integer. Then we can write Fmk.Lmk=Lm/D

2x2: It can be easily seen that if d D .Fmk;Lmk=Lm/ ; then d D 1 or d D 2 by (2.8).
Assume that d D 1: Then

Fmk D u2;
Lmk

Lm
D 2v2 (2.17)

or

Fmk D 2u2;
Lmk

Lm
D v2 (2.18)

for some integers u and v with gcd.u;v/D 1: It can be seen that the identity (2.17) is
impossible by Theorem 8. Assume that (2.18) is satisfied. Then mk Dm; i.e., k D 1

by Theorem 3. Therefore Fm D 2u2 and this shows that m D 3 or 6 by Theorem
7. If mD 3 or 6; then it can be seen that x2 D 1 and nD 6 or x2 D 4 and nD 12;

respectively. Assume that d D 2. Then

Fmk D 2u2;
Lmk

Lm
D .2v/2 (2.19)

or

Fmk D .2u/2;
Lmk

Lm
D 2v2 (2.20)

for some integers u and v with gcd.u;v/ D 1: The identity (2.19) is impossible by
Theorem 3. The identity (2.20) is impossible by Theorem 8. This completes the
proof. �
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Theorem 10. Let m � 2 and Fn D Lmx2: Then m D 2; x2 D 1; and n D 4 or
mD 3; x2 D 36; and nD 12 or mD 12; x2 D 144; and nD 24:

Proof. Assume that m� 2 and Fn DLmx2: Then LmjFn and therefore nD 2mk

for some natural number k by Theorem 5. Thus we get

Fn D F2mk D FmkLmk D Lmx2

by (2.6).
Firstly, assume that k is an odd integer. Then Fmk.Lmk=Lm/ D x2: It can be

easily shown that if d D .Fmk;Lmk=Lm/ ; then d D 1 or d D 2 by (2.8). Assume
that d D 1: Then we get Fmk D u2; Lmk=Lm D v2 for some integers u and v with
gcd.u;v/D 1: Since m� 2; we get mk D 2;12 by Theorem 7. If mk D 2; then mD

2; k D 1 and therefore we get nD 4 and x2D 1: If mk D 12; then mD 12; k D 1 or
mD 4; k D 3: If mD 12 and k D 1; then nD 24 and x2 D 144: If mD 4 and k D 3;

then v2 DLmk=Lm DL12=L4 D 46; which is impossible. Now assume that d D 2:

Then it is easily seen that

Fmk D 2u2;
Lmk

Lm
D 2v2 (2.21)

for some integers u and v with gcd.u;v/D 1. Since Lmk D 2Lmv2 has no integer
solution v for m� 2 by Theorem 8, the identity (2.21) is impossible.

Secondly, assume that k is an even integer. Then .Fmk=Lm/Lmk D x2: It can be
easily seen that if d D .Fmk=Lm;Lmk/ ; then d D 1 or d D 2 by (2.8). Assume that
d D 1: Then Fmk=LmD u2 and Lmk D v2 for some positive integers u and v. Since
m � 2; we get mk D 3 by Theorem 7. But this contradicts the fact that k is an even
integer. Now assume that d D 2: Then it is easily seen that

Fmk

Lm
D 2u2; Lmk D 2v2 (2.22)

for some integers u and v with gcd.u;v/D 1: By Theorem 7, it follows that mk D 6

and therefore k D 2; mD 3: If k D 2 and mD 3; then we get nD 12 and x2 D 36:

This completes the proof. �

Theorem 11. Let r > 3 and Fr be a prime number: If FnD FrLmx2 with m� 2;

then mD 2; nD 12; r D 4; and x2 D 16 or mD r; nD 2m; and x2 D 1:

Proof. Assume that FnDFrLmx2: Then LmjFn and therefore nD 2mk for some
natural number k by Theorem 5. Thus we get

Fn D F2mk D FmkLmk D FrLmx2

by (2.6).
Firstly, assume that k is an odd integer. Then Fmk.Lmk=Lm/D Frx2: It can be

seen easily that if .Fmk;Lmk=Lm/D d; then d D 1 or d D 2 by (2.8). Assume that
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d D 1: Since Fr is a prime number, we get

Fmk D u2;
Lmk

Lm
D Frv2 (2.23)

or
Fmk D Fru2;

Lmk

Lm
D v2 (2.24)

for some integers u and v. Assume that (2.23) is satisfied. Then mk D 2 or mk D 12

by Theorem 7. If mk D 2; then mD 2; k D 1; and therefore Frv2 DLmk=Lm D 1;

which is impossible. If mk D 12; then mD 12; k D 1 or mD 4; k D 3: A similar
argument shows that mD 12; k D 1 and mD 4; k D 3 are impossible. Assume that
(2.24) is satisfied. Then by Theorem 2 and Theorem 3, we get mk D m D r: This
shows that nD 2m; and x2 D 1 by Theorem 2. Assume that d D 2: Then, since Fr

is odd prime number, it is seen that

Fmk D 2u2;
Lmk

Lm
D 2Frv2 (2.25)

or
Fmk D 2Fru2;

Lmk

Lm
D 2v2 (2.26)

for some integers u and v. Assume that (2.25) is satisfied. Then mk D 3 or mk D 6

by Theorem 7. If mk D 3; then m D 3; k D 1: If m D 3 and k D 1, then Frv2 D

Lmk=2LmD 1=2; which is impossible. If mkD 6; then mD 6; kD 1 or mD 2; kD

3: If mD 6; k D 1; then Frv2 D Lmk=2Lm D 1=2; which is impossible. If k D 3

and m D 2; then it can be seen that n D 12; r D 4; x2 D 16: The identity (2.26) is
impossible by Theorem 8.

Secondly, assume that k is an even integer. Then .Fmk=Lm/Lmk D Frx2. It can
be easily seen that if d D .Fmk=Lm;Lmk/ ; then d D 1 or d D 2 by (2.8). Assume
that d D 1: Then

Fmk

Lm
D u2; Lmk D Frv2 (2.27)

or
Fmk

Lm
D Fru2; Lmk D v2 (2.28)

for some integers u and v. Assume that (2.27) is satisfied. Then by Theorem 10, it
follows that mD 2; kD 2 or mD 3; kD 4 or mD 12; kD 2: But there is no solution
of the equation Lmk D Frv2 in all situations. Assume that (2.28) is satisfied. Then
mk D 1 or 3 by Theorem 7. But this is impossible since k is an even integer. Now
assume that d D 2: Then we get

Fmk

Lm
D 2u2; Lmk D 2Frv2 (2.29)

or
Fmk

Lm
D 2Fru2; Lmk D 2v2 (2.30)
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for some integers u and v. Assume that (2.29) is satisfied. Then m D 3; k D 2 or
mD 6; k D 2 by Theorem 9. But there is no solution of the equation Lmk D 2Frv2

when mD 3; k D 2 or mD 6; k D 2: Assume that (2.30) is satisfied. Then mk D 6

by Theorem 7. It follows that m D 3, k D 2 and therefore Fru2 D Fmk=2Lm D

F6=2L3 D 1: But this is impossible since Fr is a prime number. This completes the
proof. �

3. MAIN THEOREMS

In this section, we determine when the Diophantine equations

x2
�5Fnxy�5.�1/ny2

D 5r (3.1)

and
x2
�5Fnxy�5.�1/ny2

D�5r (3.2)

have positive integer solutions under the assumptions that n � 1; r � 0: After then,
we find all positive integer solutions of the related Diophantine equations. Firstly,
let us consider the above equations for n D 1: Then (3.1) and (3.2) turns into the
equations

x2
�5xyC5y2

D 5r

and
x2
�5xyC5y2

D�5r ;

respectively. Multiplying both sides of the above two equations by 4 and complet-
ing the square reduce them to the equations u2�5v2 D 4:5r and u2�5v2 D�4:5r ;

respectively. So by means of Theorem 1, we can easily find all positive integer so-
lutions of the equations x2� 5xyC 5y2 D 5r and x2�5xyC5y2 D �5r : Now we
will give all positive integer solutions of the equations x2 � 5xyC 5y2 D 5r and
x2�5xyC5y2 D�5r for the sake of completeness.

Theorem 12. Let r � 0 be an integer. If r is an even integer, then all posit-
ive integer solutions of the equation x2 � 5xyC 5y2 D 5r are given by .x;y/ D

.5r=2L2mC1;5r=2F2m/ or .x;y/D .5r=2L2m�1;5r=2F2m/ with m � 1; and all po-
sitive integer solutions of the equation x2�5xyC5y2 D�5r are given by .x;y/D

.5r=2L2mC2;5r=2F2mC1/ or .x;y/D .5r=2L2m;5r=2F2mC1/ with m � 0: If r is an
odd integer, then all positive integer solutions of the equation x2� 5xyC 5y2 D 5r

are given by .x;y/ D .5.rC1/=2F2mC2;5.r�1/=2L2mC1/ with m � 0 or .x;y/ D

.5.rC1/=2F2m;5.r�1/=2L2mC1/ with m � 1; and all positive integer solutions of the
equation x2�5xyC5y2D�5r are given by .x;y/D .5.rC1/=2F2mC1;5.r�1/=2L2m/

or .x;y/D .5.rC1/=2F2m�1;5.r�1/=2L2m/ with m� 0:

From now on, we will assume that n > 1 and k � 0:
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Theorem 13. If n is an even integer, then all positive integer solutions of the
equation x2�5Fnxy�5.�1/ny2 D 52k are given by

.x;y/D .5kL2mCn=Ln;5kF2m=Ln/

with m � 1 and njm; and if n is an odd integer, then all positive integer solutions of
the equation x2 � 5Fnxy � 5.�1/ny2 D 52k are given by .x;y/ D

.5kL2mCn=Ln;5kF2m=Ln/ or .x;y/ D .5kL2m�n=Ln;5kF2m=Ln/ with m � 1

and njm:

Proof. Assume that x2� 5Fnxy� 5.�1/ny2 D 52k for some positive integers x

and y: Multiplying both sides of the equation by 4 and then completing the square
give

.2x�5Fny/2
�

�
25F 2

n C20.�1/n
�
y2
D 4:52k : (3.3)

It is easily seen from (2.9) that 25F 2
n C20.�1/n D 5L2

n: Thus the equation (3.3) be-
comes .2x� 5Fny/2� 5.Lny/2 D 4:52k : By Theorem 1, we obtain j2x�5Fnyj D

5kL2m and LnyD 5kF2m: Since 5 − Ln and LnyD 5kF2m; it follows that LnjF2m:

Thus by Theorem 5, nj2m and 2m=n is an even integer. This shows that njm:

Then from the equality Lny D 5kF2m; we obtain y D 5kF2m=Ln: Assume that
2x � 5Fny D 5kL2m: Then substituting the value of y into 2x � 5Fny D 5kL2m;

we obtain

x D
5k.L2mLnC5FnF2m/

2Ln
:

By using the identity (2.3), we get xD 5kL2mCn=Ln: Now assume that 2x�5FnyD

�5kL2m: Then substituting the value of y into 2x�5Fny D�5kL2m and using the
identity (2.2), we obtain x D �5kLn�2m=Ln: If n is even, then x is negative and
we omit it. So n is odd and therefore x D 5kL2m�n=Ln: Thus when n is even, all
positive integer solutions of the equation x2�5Fnxy�5.�1/ny2D 52k are given by
.x;y/D .5kL2mCn=Ln;5kF2m=Ln/ with m� 1; and when n is odd, all positive in-
teger solutions of the equation x2�5Fnxy�5.�1/ny2 D 52k are given by .x;y/D

.5kL2mCn=Ln;5kF2m=Ln/ or .x;y/ D .5kL2m�n=Ln;5kF2m=Ln/ with m � 1:

Conversely, if n is an even integer and .x;y/ D .5kL2mCn=Ln;5kF2m=Ln/ with
m� 1 and njm; and if n is an odd integer and .x;y/D .5kL2mCn=Ln;5kF2m=Ln/

or .x;y/D .5kL2m�n=Ln;5kF2m=Ln/ with m � 1 and njm; then by (2.11), it fol-
lows that x2�5Fnxy�5.�1/ny2 D 52k : �

Theorem 14. The equation x2� 5Fnxy� 5.�1/ny2 D �52k has no positive in-
teger solutions x and y:

Proof. Assume that x2� 5Fnxy � 5.�1/ny2 D �52k for some positive integers
x and y: Multiplying both sides of the equation by 4 and then completing the square
give

.2x�5Fny/2
�

�
25F 2

n C20.�1/n
�
y2
D�4:52k : (3.4)
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If we use the fact that 25F 2
n C 20.�1/n D 5L2

n from (2.9), the equation (3.4) beco-
mes .2x� 5Fny/2� 5.Lny/2 D �4:52k : By Theorem 1, we obtain j2x�5Fnyj D

5kL2mC1 and Lny D 5kF2mC1: Since 5 − Ln and Lny D 5kF2mC1; it follows that
LnjF2mC1: Thus by Theorem 5, nj2mC1 and .2mC1/=n is an even integer, which
is impossible. This completes the proof. �

Theorem 15. If n is an even integer, then the equation x2�5Fnxy�5.�1/ny2D

52kC1 has no positive integer solutions x and y: If n is an odd integer, then all
positive integer solutions of the equation x2� 5Fnxy � 5.�1/ny2 D 52kC1 are gi-
ven by .x;y/ D .5kC1F2mC1Cn=Ln;5kL2mC1=Ln/ with m � 1 and nj2mC 1 or
.x;y/D .5kC1F2mC1�n=Ln;5kL2mC1=Ln/ with m > 1 and nj2mC1:

Proof. Assume that x2�5Fnxy�5.�1/ny2 D 52kC1 for some positive integers
x and y: Multiplying both sides of the equation by 4; we obtain 4x2 � 20Fnxy �

20.�1/ny2 D 4:52kC1: Next completing the square and using the fact that 25F 2
n C

20.�1/n D 5L2
n give

.2x�5Fny/2
�5.Lny/2

D 4:52kC1:

By Theorem 1, we obtain j2x�5Fnyj D 5kC1F2mC1 and Lny D 5kL2mC1: Since
5 − Ln and LnyD 5kL2mC1; it follows that LnjL2mC1; which implies that nj2mC1

and .2mC 1/=n is an odd integer by Theorem 6. This shows that n must be an odd
integer. Then from the equality Lny D 5kL2mC1; we obtain y D 5kL2mC1=Ln:

Substituting the value of y into the equality j2x�5Fnyj D 5kC1F2mC1 and using
(2.1) and (2.4) give x D 5kC1F2mC1Cn=Ln or x D 5kC1F2mC1�n=Ln: So .x;y/D

.5kC1F2mC1Cn=Ln;5kL2mC1=Ln/ with m � 1 and nj2m C 1 or .x;y/ D

.5kC1F2mC1�n=Ln;5kL2mC1=Ln/ with m > 1 and nj2mC 1: Conversely, if n is
an odd integer and

.x;y/D .5kC1F2mC1Cn=Ln;5kL2mC1=Ln/

with m� 1 and n j 2mC1 or .x;y/D .5kC1F2mC1�n=Ln;5kL2mC1=Ln/ with m >

1 and nj2mC1; then by (2.9) and (2.10), it follows that x2�5Fnxy�5.�1/ny2 D

52kC1: This completes the proof. �

Theorem 16. If n is an odd integer, then the equation x2�5Fnxy�5.�1/ny2 D

�52kC1 has no positive integer solutions x and y: If n is an even integer, then all
positive integer solutions of the equation x2 � 5Fnxy � 5.�1/ny2 D �52kC1 are
given by .x;y/D .5kC1FntCn=Ln;5kLnt=Ln/; where t is an odd integer.

Proof. Assume that x2�5Fnxy�5.�1/ny2D�52kC1 for some positive integers
x and y: Multiplying both sides of the equation by 4 and then completing the square
give

.2x�5Fny/2
�5.Lny/2

D�4:52kC1:
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By Theorem 1, we obtain j2x�5Fnyj D 5kC1F2m and LnyD 5kL2m: Since 5 − Ln

and Lny D 5kL2m; it follows that LnjL2m; which implies that nj2m and 2m=n is
an odd integer by Theorem 6. Then 2mD nt for some odd integer t: This shows that
n must be even. Then from the equality Lny D 5kL2m; we obtain y D 5kLnt=Ln:

Substituting the value of y into the equality j2x�5Fnyj D 5kC1F2m and using (2.1)
and (2.4) give x D 5kC1FntCn=Ln or x D 5kC1Fn�nt=Ln: Since njnt; it follows
that n � nt and so the solution x D 5kC1Fn�nt=Ln is zero or negative. Therefore
we omit it. Thus

.x;y/D .5kC1FntCn=Ln;5kLnt=Ln/;

where t is an odd integer. Conversely, if n is an even integer and .x;y/ D

.5kC1FntCn=Ln;5kLnt=Ln/; where t is an odd integer, then by (2.9) and (2.10),
it follows that x2�5Fnxy�5.�1/ny2 D�52kC1: �

Theorem 17. If k is an even integer, then the equation x2�5Fnxy2�5.�1/ny4D

52k has positive integer solutions x and y only when nD 2;3;12: Moreover, the only
positive integer solution of the the equation x2� 5F2xy2� 5y4 D 52k is given by
.x;y/ D .6:5k;5k=2/; all positive integer solutions of the equation x2� 5F3xy2C

5y4 D 52k are given by .x;y/ D .19:5k;6:5k=2/ or .x;y/ D .341:5k;6:5k=2/; and
the only positive integer solution of the the equation x2� 5F12xy2� 5y4 D 52k is
given by .x;y/ D .103681:5k;12:5k=2/: If k is an odd integer, then the equation
x2� 5Fnxy2� 5.�1/ny4 D 52k has positive integer solutions x and y only when
nD 5; in which case all positive integer solutions are given by .x;y/D .5k;5.kC1/=2/

or .x;y/D .124:5k;5.kC1/=2/:

Proof. Assume that x2�5Fnxy2�5.�1/ny4 D 52k for some positive integers x

and y: By Theorem 13, if n is even, then it follows that

.x;y2/D .5kL2mCn=Ln;5kF2m=Ln/ (3.5)

with m� 1 and njm; and if n is odd, then we clearly have that

.x;y2/D .5kL2mCn=Ln;5kF2m=Ln/ (3.6)

or
.x;y2/D .5kL2m�n=Ln;5kF2m=Ln/ (3.7)

with m� 1 and njm: Thus we obtain y2D 5kF2m=Ln: Now we divide the proof into
two cases.

Case 1: Assume that k is an even integer. Then it follows that F2m D Lnu2 for
some integer u: By Theorem 10, it is seen that n D 2; m D 2 or n D 3; m D 6 or
nD 12; mD 12: Substituting these values of n and m into (3.5), (3.6), and (3.7), we
obtain .x;y/D .6:5k;5k=2/ or .x;y/D .19:5k;6:5k=2/ or .x;y/D .341:5k;6:5k=2/

or .x;y/D .103681:5k;12:5k=2/; respectively.
Case 2: Assume that k is an odd integer. Then it follows that Ln D 5F2mv2 D

F5F2mv2 for some integer v: By Theorem 11, it is seen that n D 5 and m D 5:
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Substituting these values of n and m into (3.6), we obtain .x;y/D .5k;5.kC1/=2/ or
.x;y/D .124:5k;5.kC1/=2/: This completes the proof. �

Theorem 18. Assume that n is an odd integer. If k is an odd integer, then the equa-
tion x2�5Fnxy2�5.�1/ny4 D 52kC1 has no positive integer solutions x and y: If
k is an even integer, then there is only one positive integer solution of the equation
x2�5Fnxy2�5.�1/ny4 D 52kC1 given by .x;y/D .5kC1Fn;5k=2/.

Proof. Assume that x2 � 5Fnxy2 � 5.�1/ny4 D 52kC1 for some positive inte-
gers x and y: By Theorem 15, if n is an odd integer, then it follows that .x;y2/ D

.5kC1F2mC1Cn=Ln;5kL2mC1=Ln/ with m � 1 and nj2m C 1 or .x;y2/ D

.5kC1F2mC1�n=Ln;5kL2mC1=Ln/ with m > 1 and nj2mC1: Thus we obtain y2D

5kL2mC1=Ln: Now we divide the proof into two cases.
Case 1: Assume that k is an even integer. Then from the equality y2D 5kL2mC1=Ln;

it clearly follows that L2mC1 D Lnu2 for some integer u: By Theorem 3, it is seen
that nD 2mC1 and therefore .x;y/D .5kC1Fn;5k=2/:

Case 2: Assume that k is an odd integer. Since y2 D 5kL2mC1=Ln; we clearly
have that L2mC1 D 5Lnv2 for some integer v: But this is impossible since 5 − Ln:

This completes the proof. �

Theorem 19. Assume that n is an even integer. If k is an odd integer, then the
equation x2 � 5Fnxy2 � 5.�1/ny4 D �52kC1 has no positive integer solutions x

and y: If k is an even integer, then there is only one positive integer solution of the
equation x2�5Fnxy2�5.�1/ny4 D�52kC1 given by .x;y/D .5kC1Fn;5k=2/:

Proof. Assume that x2� 5Fnxy2� 5.�1/ny4 D �52kC1 for some positive inte-
gers x and y: By Theorem 16, if n is an even integer, then it follows that .x;y2/D

.5kC1FntCn=Ln;5kLnt=Ln/; where t is an odd integer. Thus y2 D 5kLnt=Ln:

Now we divide the proof into two cases.
Case 1: Assume that k is an even integer. Then it follows that Lnt D Lnu2 for

some integer u: By Theorem 3, it is seen that nt D n and therefore t D 1: Thus we
obtain .x;y/D .5kC1Fn;5k=2/:

Case 2: Assume that k is an odd integer. Then it follows that Lnt D 5Lnv2 for
some integer v: But this is impossible since 5 − Ln: This completes the proof. �

Theorem 20. The equation x4�5Fnx2y�5.�1/ny2 D 52k has positive integer
solutions x and y only when k is even and n is odd, in which case there is only one
positive integer solution given by .x;y/D .5k=2;5kFn/:

Proof. Assume that x4 � 5Fnx2y � 5.�1/ny2 D 52k for some positive integers
x and y: By Theorem 13, if n is an even integer, then it follows that .x2;y/ D

.5kL2mCn=Ln;5kF2m=Ln/ with m � 1 and njm; and if n is an odd integer, then it
follows that .x2;y/ D .5kL2mCn=Ln;5kF2m=Ln/ or .x2;y/ D

.5kL2m�n=Ln;5kF2m=Ln/ with m� 1 and njm: From now on, we divide the proof
into two cases.
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Case 1: Assume that n is an even integer. Then it follows that x2D 5kL2mCn=Ln:

Here if k is an even integer, then we get L2mCn D Lnu2 for some integer u: By
Theorem 3, it is seen that nD nC2m and thus mD 0; which contradicts the fact that
m� 2: If k is an odd integer, then a simple computation shows that L2mCnD 5Lnv2

for some integer v; which is impossible since 5 − Ln:

Case 2: Assume that n is an odd integer. Here we are not interested in the solution
x2D 5kL2mCn=Ln: Because it is clear from Case 1 that, we have no solutions. Thus
it follows that x2D 5kL2m�n=Ln: Here if k is an even integer, then we get L2m�nD

Lnu2 for some integer u: By Theorem 3, it is seen that 2m� n D n and therefore
mD n: Thus the only one positive integer solution is given by .x;y/D .5k=2;5kFn/:

If k is an odd integer, then a simple computation shows that L2m�n D 5Lnv2 for
some integer v; which is impossible since 5 − Ln: This completes the proof. �

Theorem 21. Assume that n is odd. If k is an even integer, then the equation
x4�5Fnx2y�5.�1/ny2 D 52kC1 has positive integer solutions x and y only when
nD 5; in which case all positive integer solutions are given by .x;y/D .5.kC2/=2;5k/

or .x;y/D .5.kC2/=2;124:5k/: If k is an odd integer, then the equation x4�5Fnx2y�

5.�1/ny2 D 52kC1 has positive integer solutions x and y only when n D 3; in
which case all positive integer solutions are given by .x;y/ D .6:5.kC1/=2;19:5k/

or .x;y/D .6:5.kC1/=2;341:5k/:

Proof. Assume that x4 � 5Fnx2y � 5.�1/ny2 D 52kC1 for some positive inte-
gers x and y: By Theorem 15, if n is an odd integer, then it follows that .x2;y/ D

.5kC1F2mC1Cn=Ln;5kL2mC1=Ln/ with m � 1 and nj2m C 1 or .x2;y/ D

.5kC1F2mC1�n=Ln;5kL2mC1=Ln/ with m > 1 and nj2mC 1: Assume that x2 D

5kC1F2mC1Cn=Ln: If k is even, then we get F2mCnC1 D 5Lnu2 for some integer
u: Since n is odd, it follows that n D 5; m D 2 by Theorem 11. Thus we obtain
.x;y/ D .5.kC2/=2;5k/: If k is odd, then we get F2mCnC1 D Lnv2 for some in-
teger v: Since n is odd, it is seen that n D 3; m D 4 by Theorem 10. Thus we
obtain .x;y/ D .6:5.kC1/=2;19:5k/: Now assume that x2 D 5kC1F2mC1�n=Ln: If
k is even, then we get F2mC1�n D 5Lnu2 D F5Lnu2 for some integer u: Since
n is odd, this shows that n D 5; m D 7 by Theorem 11. Thus we obtain .x;y/ D

.5.kC2/=2;124:5k/: If k is odd, then it follows that F2mC1�n D Lnv2 for some inte-
ger v: Since n is odd, it is seen that nD 3; mD 7 by Theorem 10. Thus we obtain
.x;y/D .6:5.kC1/=2;341:5k/: This completes the proof. �

Since the proof of the following theorem is similar to that of the above theorem,
we omit it.

Theorem 22. Assume that n is even. If k is an even integer, then the equation
x4�5Fnx2y�5.�1/ny2 D�52kC1 has no positive integer solutions x and y: If k

is an odd integer, then the equation x4�5Fnx2y�5.�1/ny2D�52kC1 has positive
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integer solutions x and y only when nD 2;12; in which cases there is only one solu-
tion given by .x;y/D .5.kC1/=2;5k/ and .x;y/D .12:5.kC1/=2;5k/; respectively.
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Nombres Bordx., vol. 14, no. 1, pp. 257–270, 2002.
[17] R. A. Mollin, “Quadratic Diophantine equations x2 �Dy2 D cn,” Ir. Math. Soc. Bull., vol. 58,

pp. 55–68, 2006.
[18] L. J. Mordell, Diophantine equations, ser. Pure and Applied Mathematics. London-New York:

Academic Press, 1969, vol. 30.
[19] T. Nagell, Introduction to number theory. Stockholm-New York: Almqvist & Wiksell; John

Wiley & Sons, Inc., 1951.
[20] P. Ribenboim, My numbers, my friends. Popular lectures on number theory. New York: Springer,

2000.
[21] J. P. Robertson, “Matthews’ method for solving ax2 C bxy C cy2 D N ,” manuscript,

http://www.jpr2718.org/mtthbin.pdf.
[22] T. N. Shorey and C. L. Stewart, “Pure powers in recurrence sequences and some related diophan-

tine equations,” J. Number Theory, vol. 27, pp. 324–352, 1987.
[23] T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, ser. Cambridge Tracts in Ma-

thematics. Cambridge: Cambridge University Press, 1986, vol. 87.
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