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Abstract. In the present paper we construct new piecewise linear functions using a special
partition of the interval [—1,1]. This construction leads to the definition of some new linear
operators and we shall obtain global estimates for the remainder in approximating continuous
functions by these operators using the second order modulus of smoothness of Ditzian -
Totik.
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1. Introduction

Let (6;x)?__,, be a sequence such that 6 = 6_x (k = 1,2,...,n) and 1/n? = §, <
Op—1 < ... < 01 < dp < cg/n. Furthermore, let (xp)p__,, : =1 =2_p < T_py1 <
.o. < Tp—1 <z, =1 be a partition of the interval [—1, 1] with the properties:

() e 0 < w1 —a < 2 (k=-n,...,n—1)
2 (i) for any u € [zp,xp41] (B = -n+1,...,n—2) we have zp1; — ) <
PRy

n

Here and throughout cg, ¢1, c2 and ¢ denote absolute constants and the value of ¢ may
vary with each occurrence, even on the same line.

The existence of (0x)p__,, and (xy)p__,, is guaranteed by the constructive proof
of DeVore and Yu given in [1, p. 326 and p. 329]. This proof establishes a pointwise
estimate of the Timan - Teljakovski type for monotone polynomial approximation [1,
p. 324, Theorem 1]. The idea of DeVore and Yu was successfully applied by Leviatan
[3, p. 3, Theorem 1’] to give a global estimate on monotone approximation. Both
proofs are based on a two - stage approximation. At first the function f € C[-1,1] is
approximated by a piecewise linear function S, f which interpolates f at the points
zp (k=-n,—n+1,...,n). By Newton’s formula we have

(Suf)(@) = f(2) = (2 —2p) @h1 =) [2h, @ 215 [,



102 Z. Finta

2 < < xpy1 (k= —n,...,n—1), where the square brackes denote the divided
difference of f at xy,z,xk41. Using the proof of [3, p. 7, Theorem 7 ] we can deduce
the following result:

If = Sufll < cwi(f,n™h), (1.1)
where || - || is the sup - norm on [-1,1], ¢(z) = V1 —22, z € [-1,1] and w2 (f,t) =
SUPg<p<t HAfw(w)f(x)H is the Ditzian - Totik modulus of smoothness [2], where

AG ooy f (@) = (@ = ho(x)) — 2f (2) + f (2 + he(x)),
if x + ho(x) € [-1,1] and Afw(m)f(x) = 0, otherwise.

In this note we are interested in uniform approximation by piecewise linear func-
tions different from S, f.

2. Approximation by piecewise linear functions

Using a representation theorem given by Popoviciu for the operator S, [5], we consider
the following piecewise linear function:

(Unf)(z) =
_ T—n+1 _-T+|-T—n+1 _-T|
- 2(x7n+1 — x,n) ! f(m—n) +
n—1
+ Z W'[ﬂ%q, Th, Thg1; [t—x] ], -
k=—n+1
A flen +n"Vp(ar) — flar) + flar —n 7 e(zr) } +
b It o gl g

2(xp — Tp—1)
where f € C[—1,1] and v > 1 such that ¢;6_,, = ¢;n~? > n~7. Here we denote

by [ zk—1, Tk, Trp4+1 ; |t — x|z the fact that the divided difference is applied to the
variable t.

The operator U,, : C[—1,1] — C[-1,1] is linear which preserves the linear func-
tions. The function U, f interpolates f at the endpoints of the interval [—1,1]. More-
over, if f € C[—1,1] is a positive, convex function, then U, f is also positive. Indeed,
fork=-n+1,...,n—1 we have f(zr +n "p(xg)) — f(zr) + flxx —n Yp(zy)) >
f(zr) > 0. Hence, by definition of U,f we obtain (U,f)(z) > (Snf)(z) > 0,

x € [-1,1] because S, : C[—1,1] — C[—1,1] is a positive linear operator.
Our first result is the following:
Theorem 1. If f € C[-1,1], then ||f — Upf|| < cw2(f,n™1).
Proof. By (i) we get n ™ 7p(x_pn11) <n 7 <e¢10_p, <z_py1 —2_p. Hencez_, <

Tepg1 — N Yp(T_pt1) < T_py1. Again, by (i) and by the properties of (dx)}__,, we
have n V() <n™7 < 10— < 10 < g1 — 2k (k=-n+1,...,n—1). Then
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xp <z +nYo(xg) < xpy1 (k= -n+1,...,n—1). With the same hypotheses
we obtain n”Vp(xp_1) < 7Y < 10_y < 1051 < xp — -1 (K= —n+2,...,n).
Hence 1 <z —n Vp(zr_1) <2 (k=-n+2,...,n). This means that U, [ is
well - defined.
Now, in view of Popoviciu’s representation theorem [5] we have

Tl — T2 g — 1

(Snf)(x) = flan) +

2(-7:—11+1 - -T—n)

n—1

x — Tp—
+ Z %'[xk—h T, Thy1 5 [t =zl ], - flaw) +
k=—n+1

T —Tpo1+|T—Tp_1]
2(xy, — Tp_1)

Hence

(Unf)(@) = (Snf)(z) =

— - . - _
PE— {f@ i1 +n770(2 ny1))

= 2f(@ng1) + f@onpr — (@ ng)) (2.1)

forx_, <x<x_py1;
(Unf)(@) = (Snf)(z) =

Tk4+1 — T —
= _— T +n v €T j—
pp— {f(zx o(zr))

2 f(zk) + flaw —nVo(zi)} +

T — Tk _
+ 2 L f(@eer +n (@) —
P— {f(@rt (@k+1))

= 2 f(@pe1) + fl@rprr —n 7 Vp(zr41)) } (2.2)
forzp <x <z (k=-n+1,...,n—1);

(Unf)(@) = (Snf)(x) =

= b)) -
— 2 f(wn1) + F@not —n 7 p(20-1))} (2.3)

for xp_1 <z <z,

On the other hand, by definition of the Ditzian-Totik modulus of smoothness we
obtain from (2), (3), (4) and v > 1 the estimates

[(Unf)(@) = (Snf) ()] =

- ﬁ ' |Ai_7@($7n+1)f(x—"+1)|
“n n

< HAZ*’Y@(T)JC(:E)H Sw?o(fvn_l)v
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where z_,, <x < T_p41;

[(Unf)(@) = (Snf)(@)] <

Tpy1 — X 5
< A
T Xpg1 — Tk | n W‘P(wk,)f(xk” +
T — Tk 9
" Ths1 — T 1A% o) (Tr41)]

< AN @ f @] S Wi (f,nh),

where zp, <z < Tpy1;

L

(U F)(@) = (Suf)@)] = =2 A2 Fana)

Tp — Tp—1

||A121—”fgo(m)f(x)” < w?p(fvnil)v

IA

where x,, 1 <2 < x,. Hence |U,f—S,fl| < wi(f,n~!). Using (1) we obtain the
assertion of the theorem. (]

Our next piecewise linear function is the following:

Vaf)w) = dnzo 1 /MM%fwdu+

The1 — Tk C10k o,

_ Th41
L oo / F(u) du,

Tht1 — Tk €10k Sy —cyo)

if ap <z <1 (k=-n,...,n—1) and (V,,f)(z) = f(zx), if =z =ar (k=
—n,...,n).

Then V,, : C[—1,1] — Lo[—1,1] is a linear, positive operator such that V,, f interpo-
lates the function f at the points z; (k = —n,...,n). The main difference between
V., and S, is that V,, f is not necessarily continuous at z (k = —n+1,...,n—1).
Moreover, Vp,eo = eg and Vyep = e; + O(n~!) (here ep(z) = 1 and e;(z) = x for
x € [—1,1]). Indeed, the first statement is obvious and for the second one we have for
T <x < xppr (k=-n,...,n—1):

xkt-l-l —x 1 1 2 ¢2
V. T S ) ) 1)
(Vne1)(z) Tpt1 — T €10 2 ( TROLOK k) "
T —x 11
4k - (2xk+1015k - 0%513)

Tk+1 — Tk Cl(sk 2

1 Tpi1— T T — Xy
T+ = c10k + - .
2 Thyl — Tk Tpyl — Tk

Hence, by properties of (d;)7__,, we obtain

[(Vner)(z) —ex(z)] <
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Furthermore, we denote the set of all algebraic polynomials of degree at most n by 11,
and the best uniform approximation on [—1,1] by E,(f) =inf{||f —p| : p € I,}.
Our next results are the following:

Theorem 2. Let f € C[—1,1] and V,, (n € N, n > 2) be defined as above. Then
If=Vafll <

IN

c {wi(f,n_l) + nt /15 w?pg,t) dt + nt Eo(f)}

Corollary 1. Let f € C[-1,1], n € N, n>2. Then

3 W2(fit
I~ Vafl < en” {/ 200 g 4 Ifll}'

To prove our statements we need a lemma:
Lemma 1. For g € C%*[—1,1], n > 2 we have
lg = Vagll < ¢ {n7" llg'll + 272 llp®g"|I} -

Proof. Ifz, <z <wzpi1 (k=-n+1,...,n—2), then
(Vag)(@) — g(x) =

_ LTk+1 — X )
Tr+1 — Tk
1 Tp+c10k
[ ot~ g@)] dut g(an) - gla)
Cl k Tk
Lo
LTh+1 — Tk
1 Tht1
o [ o)~ glonen)) dut o) - g(o)
C10k  Jazpi1—c16k

Simple computations show that
B B
[ s —g@)du = [ (5-w g du

and

53 53
/ 19(8) — g(w)] du = / (4 ) g'(u) du.

(03
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Hence

(Vag)(z) — g(2)

_|_

_|_

T+l — T )
Tk4+1 — Tk

1 wk+01§k X
{m / (2 + 10k —u) ¢'(u) du —/ g (u) du}
T — Tk { 1
Tp+1 — Tk | c1k

LTk+1
/ (Tpr1 — 10k —u) ¢'(u) du —|—/

k+1—C10k x

Tr+41

g'(u) du
Thy1 — X 1

Th41 — Tk C10k

wk+01§k xX
{/ (T + 10 —u) ¢'(u) du —/ c10kg (u) du}

. 1 Tht1
T~ L {/ ($k+1 — 10k —u) gl(u) du +

Tyl — Tk C10g j1—C16k

Tht1
/ 109 () du}

Tht1 — 1
The1 — Tp €10k

z Ti+c16k
{/ (z) —u)g'(u) du —|—/ (T + 10 — u)g' (u) du}

Tht1 — Tk C10k

_ 1 *
T L {/ ($k+1 — 10 — u)gl(u) du +

k+1—C10k

R du} .

By partial integration we obtain

(Vag)(z) — g(z)

LT+l — T . 1 _1 _ 2 7
Tyl — Tk 015k{ 2(3% o) g@) +

@ 1
/ (zr —u)?g" (u) du+ 3 (zk + 10k — 2)* ¢'(x) +

k

N~ N

Tp+c10k
/ (zr 4 10k — u)?g" (u) du p +
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1 Tp+Cc10k
+ 3 / (zg + c16, —u)?g" (u) du p +

T — T 1 1 9
R S B ~ei6h —
* T+l — Tk C10k { 2 (@1 =10 —2)°g (@) +
1 T
+ = (Tpr1 — 16 — u)2g" (u) du +
2 Tp41—C10k
1 2/ 1 Th 2 1
+ 5 @ —2)g (@) + 5 (@1 —u)7g" (u) du o (2.4)

On the other hand, we get for z; < u < x4y by (i) and (i4)

‘ —% (v — )% + % (k + 16k — )2

1 1
= |016k(1'k — ;L‘) + 5 (Cl(sk)2| = 015k|(3ck — ;L‘) + = 015k|

2
1 3
< abp(e — o + 3 c10) < 5 10 (Tp41 — Tk)
3 V1—u? 0
< 5 10k - ¢ — — < '—Clnk; (2.5)

we have for xp <u <z < zp41, by (i)
9 9 1—u?
(g —u)” < (g1 — k) <c — (2.6)

and for z < x <u <z + €10k < Tpg1 or T < T + 16k < u < T < TRy we have
in view of (i) and (i7)

(2 + 10k — )2 < 2 (a3 — ) +2 (e164)2 < 4 (wps1 — 24)2 < o ;2“2 (2.7)
Using the same arguments we obtain
—% (g1 — 10 — x)> —|—% (Tpr1 —2)? | < ccl—sk (2.8)
for 1, <u < Tpy;
(@1 — 1ty —u)? < o 2 2.9
for o, <xpp1 — 10 Su< T <Ry or T < < U< Tpyg — 10 < Tg1 and
(e — ) < et (2.10)

n

for xp, < © < wu < xgy1. Then (5) — (11) and (43) imply
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[(Vag) (@) — g(2)] <

X - 1 1 1
= mm {' 2 (xk_x)2+§ (zk + 10k — )
1 T
@+ [ wma?ly' )] du +
T
1 Tp+c1og ,
+ 5 / (:Ek + 10k — u) |g”(u)| du +
T — Tk 1 1 1
T m ’ 015k {' - 5 ($k+1 - 01619 — J,‘)Z + 5 (xk+1 _ J,‘)2|
1 xT
|9'($)| + 5 / 5 (:Ek‘—‘,-l _ 015k _ u)2|gll(u)| du +
Th41—C10k

1 e 2 1
+t 3 (Tr41 — u)?|g" (u)| du

Tpal1 — X 1 c10k
$ -8 { gl +

IN

Tht1 — T C10k

1 [* 1—u?
+ g [ el

2
k n

Tp+c1dg 1— 2
/ e 2 g (w)] du
xT

1
2 n?

n T — Tk { clék J|
Tht1 — Tk C15k
1-—

/ e 1o g (w)] du
Tp41—C10k

Th41 1— u2
/I ¢ —j lg" (u)] du}. (2.11)

x T+c10k x T +c10k g +c10k
T x T x Tr

if z, < x < xp + €10} O

T Tk +c10k T
Lol L, =L L-2
T T T T +c10k

if xp + 16, < < zp41 and

€T Tk+41 x LTh+1 Tr+41
/ " / N / " / N /
ZTp41—C10k x Tpp1—C10k x Tpp1—C10k

}+

_|_

N~ N

But
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if 41 — 10 < T < Tpgq O

x Thi1 ZTp41—C10k Thi1
/P L A A A
Tp41—C10k T T T
Tr+41 LTh4+1 T+1
[
T X T

if o, < x <xpy1 —c1dk.  So we obtain in view of (12) that

|(Vag) (@) — g(2)] <

IN

T -z 1 16,
S k+1 . {C' 10k ||g/H +
Tkt1 — Tk C10k n

2 1
+c- ”(’;‘g” -max (¢105; ¢ — ﬂck)}
n
T — X 1 10k
n 5 {2 +
LTk4+1 — Tk C10k n
2 1
+c- w -max(cy0k; Tyl — x)}
< o {ut i et e (12 )
016k
By (i) we have x5 — xp < c20g. Therefore
[(Vag)(z) = g(x)] < ¢ {n7Ygll + n2[le’g"|} . (2.12)
Ifx_, <z <x_pqq then
(Vag)(@) —g(z) =
B Topt1 — T 1
o Tptl1 — T—n 015—11

T_p+c1d_n
/ l9(u) — gla—n)] du+ ge_n) g<x>}

xr—T_p 1
+ . .
Lontl —T—n 81(5,71

/m_n+1 [9(w) — g(z—ns1)] du+ g(z_pi1) — g(x)}

—n41—C16—n
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- {L‘_n_;’_l — X { 1

Toptl —T—p 10,

/ ” o0 = sl du= [ 5/ du}

T—T_n { 1
_|_ .

Topt1 —T_p c10_p

/w T ) = ()] dut / T W du}

—n+1—C10_n x

LTntl1 —T 1
LTnt+l — T—n 016—n

/:;n—wl&_n [/:n g (v) dv] du — /T: g’ (u) du}

T—T_p 1
_|_ . —

Hence

|(Vag) () — g(z)| <

LTnit1 —T 1
016_n

L-nt+l —T—n

T_ptcid_n u
/ / 19/ (0)] do

T—T_p 1
+ . .
T_pt+1l — T—n Cl(sfn

T—nt+1 T—nt+1 T—nt+1
/ [T e as [T g
T_py1—C10_n u x

LT_nt1 — T 1
clé_n

wu+ [ 19/ (@) du}

IN

LTntl —T—n

T_pt+c1d_n
/ (u—z_p) du+ (x—x_n)} gl

T—T_y, 1
. [
T_ptl — T—n 0167’”

T_pt1
/ (—pt1 —u) du+ (T—py1 — 90)} lg'll-

—n41—C10—n
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In view of (i) we have x_,, <u < z_,, + 10—y < Tpi1, Top < Topp1 — C10—p <
U< T py1 and x_, < x < T_py1, respectively. So

[(Vag) (@) — g(2)] <

IN

01(5,71

Teptl1 — 1
LTontl —T—n

T_n+cid_n
/ (@it — @) du+ (21 — 7—0) ¢ |||
T—n

T—T_p 1
+ .
Tnyl1 —T—pn 015—11

L —n41
/ (T_py1 — T—p) du+ (x_n+1 - -T—n)} HQIH

—nt1—C10_p

< 2 (x—n-&-l - x—n) ||9/||
Again, (¢) implies ©_p4+1 — 2_p, < c20_,. This means that
c
|(Vag)(x) —g(@)] < 2¢c2 0 |9l < — g'll- (2.13)

Analogously
(Vag)(@) —9@)| < — g/l (2.14)
for x,,—1 < & < z,,. In conclusion (13), (14) and (15) imply
lg = Vagll < ¢ {n7"llg'll + n72 lle?g"Il },
which completes the proof. O

Proof of Theorem 2. We have

Tr+c10k
@l < St L] i

Th+1 — Tk C10k

Pk TR / [Fw) du < |If]

Tht1 — Tk C10k k+1—C10k

[f ()] du

Tk

for o, < < agy1 (k=-n,...,n—1). Thus
IVafl < II£1- (2.15)

On the other hand, let us denote by p, € II, the best nth degree polynomial
approximation to f. Then we know for f € C[—1,1] (see [2, p. 79, Theorem 7.2.1])
that

Eu(f) = If =pall < cwi(fin™). (2.16)

Moreover, we have the following Bernstein type inequality [2, p. 84, Theorem 7.3.1]
for the best approximation polynomial

l?*phll < n? wi(f,n™h). (2.17)
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Then, using (16), Lemma 1, (17), (18) and the proof of [4, pp. 83 - 84, Theorem 3.2]
we obtain the conclusion of our theorem. [J

Proof of Corollary 1. In view of [4, p. 86, Remark 3.4], the proof is a direct
consequence of the fact that we can drop the first term on the right hand side of the
estimate given in Theorem 2 because of

1 2 1
> wy(fit) Sy [P dt -
L SOtigdt > w?p(f,n 1)A 5 > en®wl(f,n), n>2.

n

O
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