Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 781-799 DOI: 10.18514/MMN.2014.554

The Fourier spectral approximation for
Kolmogorov-Spiegel-Sivashinsky equation

Xiaopeng Zhao, Bo Liu, and Peng Zhang



Miskolc Mathematical Notes HU e-ISSN 1787-2413
! Vol. 15 (2014), No. 2, pp. 781-799

THE FOURIER SPECTRAL APPROXIMATION FOR
KOLMOGOROV-SPIEGEL-SIVASHINSKY EQUATION

XIAOPENG ZHAO, BO LIU, AND PENG ZHANG
Received 28 June, 2012
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1. INTRODUCTION

In this paper, we study the initial-boundary value problem for the
Kolmogorov-Spiegel-Sivashinsky(KSS) equation

U+ kuxxxx + pu +Vu)2c +auxx_5(u?c)x =0, (x,1) € Or, (1.1a)
Ux(0,1) =ux(1,1) = uxxx(0,7) = uxxx(1,1) =0, (1.1b)
u(x,0) =up(x), xe€(0,1). (1.1¢)

where Q7 = (0,1) x(0,T), k, «, B, y and § are positive parameters.

Equation (1a), which was derived by Sivashinsky [10], is a fourth-order nonlinear
parabolic equation, which models the effective negative viscosity in a certain direc-
tion x of a large-scale flow. It is easy to check that if 8 = 0 and § = 0, the equation
(1a) is the classical Kuramoto-Sivashinsky equation (see [1,7,9, 11, 15]).

In [8], Nicolaenko presents mathematical and computational investigations of the
finite dimensional behavior of the solutions for the above equation, and points out the
existence of the global attractor and inertial manifold for the equation.

In [13], by discarding the linear damping term, Unal and Suhubi obtained the KSS
model’s periodic, quasi-periodic and solitary wave solutions analytically to a certain
degree of approximation. Melnikov analysis had also been carried out to identify
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the homoclinic bifurcation. Transient spatiotemporal chaos had been observed. Unal
and Suhubi[ 1 2] also studied the group invariant solutions to the KSS equation. And a
local analysis of the dynamical system obtained by the group theoretical means were
performed by employing normal form analysis.

Recently, Guo and Wang[5] made a simple transform for the equation (1a). Dif-
ferentiating the equation with respect to x and setting u = v, they obtained

Ut +kVgxxx + BV + 70 x + v —8(13)xx = f(X). (1.2)

Therefore it is interesting to study the periodic BVP of (1.2) in multidimensional ver-
sion. The authors first established the existence and uniqueness of the global solution,
and then showed the existence of the global attractor, which has finite Hausdorff and
fractal dimensions. Finally, they derived the Gevrey class regularity for the equation
and constructed approximate inertial manifolds.

Fourier spectral approximations are essentially discretization methods for the ap-
proximate solution of partial differential equations. They have the natural advantage
in keeping the physical properties of primitive problems. During the past years, many
papers have already been published to study Fourier spectral method, for example
[3,6,16,17].

In this paper, we consider the Fourier spectral method for Kolmogorov-Spiegel-
Sivashinsky equation (1a) with Neumann boundary condition (1b) and the initial con-
dition (1¢). Based on Sobolev’s embedding theorem and some important inequalities,
we obtain the error result O((At)? 4+ N %) (s = 2). Noticing that the existence of
a solution locally in time is proved by the standard Picard iteration, global existence
results are obtained by proving a priori estimates for the appropriate norms of u(x,1).
Adjusted to our needs, similar to the proof in [4, 18], the following results on global
existence and uniqueness of solution to problem (1)-(3) are given in the following
form:

Theorem 1. Assume that ug € Hz(0,1) = {w;w € H*, wx(0,1) = wx(1,1) = 0}.
Then there exists a unique global solution u(x,t) such that

u(x.1) € L0, T: HE (0. 1)) [\ L*(0.T: H*(0.1)).

This paper is organized as follows. In the next section, we consider a semi-discrete
Fourier spectral approximation, prove its existence and uniqueness of the numerical
solution and derive the error bound. In Section 3, we consider the full-discrete ap-
proximation for problem (1). Furthermore, we prove convergence to the solution of
the associated continuous problem. In Section 4, some numerical experiments which
confirm our results are performed. In the last section, conclusions are given.

Throughout this paper, we denote the L2, L?, L%, H* norms in (0, 1) simply by
-1 1 llps - lloo and - | & -
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2. SEMI-DISCRETE APPROXIMATION

In this section, we consider the semi-discrete approximation for problem (1). First
of all, we recall some basic results on the Fourier spectral method which will be used
throughout this paper. For any integer N > 0, we introduce the finite dimensional
subspace of H% (0,1):

Sy = span{cosknx;k =0,1,---,N}.
Let Py : L%(0,1) — Sy be an orthogonal projecting operator which satisfies:
(u—Pyu,v) =0, Yv e Sy. 2.1

For the operator Py, we have the following result (see [2, 16]):
(B1) Py commutes with derivation on H % (0,1), 1e.,

Pyuxx = (PNU)xx, Yue H%(O’l)-

Using the same method as previous papers [2, 4] , we can obtain the following
result (B2) for problem (1):
(B2) For any real 0 < u < 2, there is a constant ¢, such that

lu = Pyully < eNF72uxx|l, Yu e Hg(0,1).

We define the Fourier spectral approximation for problem (1): Find uy(¢) =
Z]I.\I:l aj(t)cos jmx € Sy such that

ou
(a_zN,UN)+k(“Nxx,UNxx)+,3(MN,UN)+V(M%VX’UN)_O‘(”Nx,va) 2.2)
—8((ux)x,vN) =0, Yoy € Sy,

for all T > 0 with un (0) = Pyup.
Now, we are going to establish the existence and uniqueness of the Fourier spectral
approximation solution u y (¢) for all 7 > 0.

Lemma 1. Lef ug € Hl%? (0,1), then (2.2) has a unique solution upy (t) satisfying
the following inequalities:

T
2 2 2 / 2
up(t <cillu , un(t dt <ci|lu , 2.3

where ¢y and ¢ are positive constants depend only on o, B, v, 8, T and ||”0||H§’
independents of N.

Proof. Set vy = cos jmx in (2.2) for each j (1 < j < N) to obtain

%a](t) = ﬁ(al(t)’az(t)"” ,CZN(Z)), J = 1’2"" ’Nv (24)
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where all f; : RY — R (1 < j < N) are smooth and locally Lipschitz continuous.
Note that u 5 (0) = Pyug. Therefore

a;j(0) = (up,cos jrx), j=12,---,N. (2.5)

Using the theory of initial-value problems of the ordinary differential equations, there
is a time T > 0 such that the initial-value problem (2.4)-(2.5) has a unique smooth
solution (a1(t),az(t),---,an(t)) fort € [0, Ty]. Therefore, there are three steps for
us to prove the lemma:

Step 1. Setting vy = uy in (2.2), we obtain

1d
EE””NHZ Fhllunx |+ Blun 1> +8lunxlz = =y @y un) =@y un).

Noticing that

2
Y
—y (e un) = 8lunll§ + 5l 12,

and

k 5 a2 5
T E A ER RS

Hence, by a simple calculation, we get

d 2 2_ v, a? 2
27 v 7 Kl ™ = (52 4+ 5= =2B) Jun [~ (2.6)

Using Gronwall’s inequality, we deduce that

2 az 2 a2
lun)? < e+ E 2P0y n )2 < e ST 2T u|?, Vie[0.T]. 27

Integrating (2.6) from O to 7', we obtain

T 1 )/2 Ol2 T
| Tuaaldr <0G+ 5 <28) [ luni2ar + Jun )]
0 0 (2.8)
<L+ 2p)e DT g 2
k25 k
Step 2. Setting vy = —uU N in (2.2), we obtain
g gl 2+ Bl P =y i)

—ofunxx ||2 + 38(uivxuNxx’uNxx) =0.

Noticing that

2 2 2
V(uNxquxx) =0, 5(uquNxx»uNxx)ZO7 aflunxxll® = —a(UNx UNxxx)-
Then, we have

1d

k Ol2
2 2 2 2 2 2
——||u +k|lu +B|lu <oa|lu < —llu + —lu ,
2 dt || Nx” ” Nxxx” || Nx” = ” Nxx” = 2” Nxxx” 2" ” Nx”
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that is
d 2 2 o? 2
E”uNx” + k|l unxxxl 5(7_213)””Nx” . (2.10)
Using Gronwall’s inequality, we get
(12 O(2
hunl? < eCF 2P Jun o (0)]7 < e 2PT Jluyo|?, Ve e0.T].  (2.11)

Integrating (2.10) from O to 7', we obtain

g 2 1 a? (22 28T 2 2
| T Pt < 1 =280 % DT fusoll + OV
0 o ] 2.12)
o az
<[ =20 T 2T 1ol

Step 3. Setting vy = U yxxxx i0 (2.2), We obtain

d
EE”uNxx”z +k||uNxxxx”2 +:3||“Nxx”2

+ V((uNx)z, UNxxxx) T (UNxx, UNxxxx) — 38((“Nx)2uNxxquxxxx) =0.

By Nirenberg’s inequality, we deduce that
2 1 7
lunxllg < C/”uNxxxx” Hlunx|*,

1 11

”ulelj = C/”uNxxxx” 3 ”uNxH 3,

and . ;
lunxxlla < C,”uNxxxx”ﬁ”“Nx”ﬁv

where ¢’ is a positive constant dependents only on the domain. Hence,

35((”Nx)2uNxxv UNxxxx) <38|unx ||§ llu v xx 11 N xxxx

5 7k
538(6/)2||uNxxxx” 3lunxll3 < g”uNxxxx”2 +ca,

where ¢ is a positive constant depends only on k, o, B, 8, T and ||ug|| 1, independ-
ents of N. On the other hand, we have

k 3y?
- V((uNx)z?uNxxxx) = E”uNxxxx”2 + 7

where c3 is a positive constant depends only on k, &, B, T and |[ug| g1, independents
of N. We also have

k
”uNx”i = g““Nxxxtz +cs,

2

o
_a(uNxxauNxxxx) = g”uNxxxx”2 + E”uNxxnz-
Summing up, we get
d 2 2 302 2
E”uNxx” +klunxxxxll® < (7 = 2B)[unxxll” +2(c2 +c3). (2.13)
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Using Gronwall’s inequality, we obtain

302 _
lunxxl? <5 722 (lupxx (0)[|% 4 2(c2 + €3)1) o1

O[2
<eCE 2T (o +2(ca + ¢3)T) = cq. Vi €[0.7],

where ¢4 is a positive constant depends only on k, o, B, v, 6, T and ||ug|| g2, inde-
pendents of N. Integrating (2.13) from O to 7', we obtain

d 2
[ v 2
0

1302 T

SHUCE=28) [ s Pdi 4202 + )T + s @) 219
0

1 3a?

E%[(T —2B)c3T 4 2(ca +¢3)T + |luxxol?] = cs.

where c5 is a positive constant depends only on k, o, 8, y, 8, T and |ug| g2, inde-
pendents of N.
Combining (2.7), (2.8), (2.11), (2.12), (2.14), (2.15) together, we get the result of

Lemma 1.
O

Hence, we have the following theorem on the existence and uniqueness of global
solution for problem (2.2).

Theorem 2. Let ug € H]% (0,1), then for any T > 0, problem (2.2) admits a unique
global solution u n (x,t), such that

un (x.1) € L% (0.T: H(0.1)) (| L*(0.T: H*(0.1)).

Proof. We are going to apply the Leray-Schauder fixed point theorem to complete
the proof. Define the linear space

X = {uN € L®(0.T: HE(0.1)) (| L*(0.T: H*(0.1)):
”Nx(()’t) = uNx(lvt) = O,UN(X,O) = U()(X)}.
Clearly, X is a Banach space. Define the associated operator 7',
T:X—>X, unr—w,

where w is determined by the following linear problem:

ow
E +hkWwxxxx + W+ oWxy = _Vu%\lx + S(u?vx)x, x €(0,1),

Wx(0,1) = wx(1,1) = Wxxx(0,7) = wxxx(1,£) =0, t €(0,7),
w(x,0) = up(x).
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Form the discussions in Lemmas 1 and by the contraction mapping principle, 7" has
a unique fixed point u, which is the desired solution of problem (1). Since the
proof of the uniqueness of the solution is easy, we omit it here. Then, Theorem 2 is
proved. ([l

Now, we give the following theorem.

Theorem 3. Let ug € H% (0,1), u(x,t) is the solution of problem (1) and un (x,1)
is the solution of semi-discrete approximation (2.2). Then, there exists a constant c,
depends on k, a, B, y, 8, T and ||”0||H%’ independent of N, such that
lu e, 0) —un (x,0)|| < (N2 + lug—un (0)]).
Proof. Denote ny = u(t) — Pyu(t) and ey = Pyu(t) —upn(¢). It then follows
from (1a) and (2.2) that
(entsON) +k(enxx,UNxx) + Blen,vN) + Y (UZE —u% ., ON) 2.16)
+04(eN,vax)+8(u§’c—u§’\,x,v1vx):0, Yoy € Sny. '
Setting vy = en in (2.16), we derive that

1d 5
1d k 2 g
57 len I +kllenxxl® + Bllenl (2.17)

=—y(u)2€—u%,x,eN)—(x(eN,eNxx)—S(ui—u?vx,eNx).
By Theorem 1, we have
luCe, D)l gz = clk, e, B, 7.8, [uoll g2
Using Sobolev’s embedding theorem, we get
lu(x,Ollwroo < clh,a, B,y.8. uollg2)-
We also have
lewll3e < cllen iz < cllenl” + lenx?) < ¢'(lew I> + llenxx 1),
and
lenxll3, < C”eN”szE < c(lenl” + llenxl” + llenxxl®) < ¢'(len 1> + lenxx|1?)-
Then
—y(ui —uj,.en)
=—y((ux +unx)(enx+nnx).en)
=y(en + 1N, (Ux +uNx)eNx + (Uxx +UNxx)EN)
<y(lenllllenxllux +unxlloo + Innllllenxllix +unxlloo
+ llen lluxx +unxxllllenlloo + Inn uxx +unzxlllen lloo)

k
Sgllezvxxll2 +eo(llen |+ llnw 1),
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and
—5(14)3C —u?\,x,eNx)
=—8((enx + NNx) U3 +UxUnx + Uk ). eNx)
=8(en + 1N, U2 +uxUny + U )eNxx)
S(en + 1NN, Quxuxx +UxUNxx T UxxUNx +2UNxx)ENx)
<S(llen |+ llnn Dllenxxllluz +uxunx +uRyyloo
+8(len | + Inn D II2uxtxx +uxtnxx + uxxtunx +2unxxlllenxlloo

k
=g llenxx I? +c7(llen I+ Inn %),

where cg and c7 are positive constants depends only on k, «, B, v, 8, T and ||u¢|| g2,
independents of N. We also have

k 3a?
aen.enxs) < ¢llenssl? + - llew®
Summing up, we deduce that

d 302
EHEN 12 +kllenxx|® < (2ce +2c7 + e —2B)llen 1> + (2c6 + 2¢7) N II>.

Noticing that
v 12 < e N luxx)? < es (k. 8,8, T luol| g2) N .

Therefore

d 2 2 3a? 2 —4

7 len 7+ kllenexl” = (s +2¢7 + ——=2p)llen ||+ cs(2c6 +2¢7)N ™.
Using Gronwall’s inequality, we complete the proof. U

3. FULLY DISCRETE SCHEME

Let Az be the time-step, the full-discretization spectral method for problem (1) is

read as: find ”{v eSy (j=0,1,2,--- | N) such that
J+1 J
u —Uu _j_l_L _j_l_l _j+l
(0 o) kG )+ B oy (D20 )

At 3.1)

_j+3 _j+3
+a(ufv zﬂvax)_f_S((u?sz):;’va) =O9 VUN € SN?

Jts 1,0 i+1

The solution ujv has the following property:

with u 5 (0) = Pyug, where u
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Lemma 2. Assume that ug € H 12,: (0,1). Suppose that ufv is a solution of problem
(3.1), then there exists positive constants cog, c19 depend only on k, «, B, v, §, T and
luoll H2 independent of N, such that

lup iz < con Iy llyree < cro.

Proof. We can use the same method as Lemma 1 to prove this lemma. Since the
proof is so easy, we omit it here. U

In the following, we analyze the error estimates between the numerical solution
u{\, and the exact solution u(#;). According to the properties of the projection oper-
ator Py, we only need to an_alyze the error between Pyu(t;) and ”;V Denoted by
u/ =u(tj), e/ = Pyu’ —uf\, and n/ = u’/ — Pyu’. Therefore

o . .
u —up =n' +e’.
If no confusion occurs, we denote the average of the two instant errors e” and e” 1!

+1 il 1
by &"t3 where &'t = i On the other hand, we let 7/ T2 = %
Firstly, we give the followmg error estimates for the full discretization scheme.

Lemma 3 (see [3]). For the instant errors e/t and e/, we have

Jj+1 J

u —Uu .
e/ 2 <lle 7 42 (e (1 ) — NN 43
At
™ 1 (3.2)
4 2 sj+52
— u dt + Atlle’ 72 ||-.
+335(40) / s 2t + ArfleT 4
of (1a) with e1+2 lettlngt—t 41, We obtain
CTARIIAS SN AL AR N TOVES T

@R el sl E ) =0

Taking vy = &"*Z in (3.1), we obtain

UJ+1 uj i1 j+ ]-|—
(u»éj+j) —|—k(1/_le)2€, €xx 2)+,B(

At
(%) b a2 2 ) + s ) =0

J+2 ej-f-%)
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Comparing the above two equations, we get
. Jj+1 J
W2 UN TUN Gty
! At
/+2 _j+3 —J 3 T Ry A | J+32
=—k(ux —UnNxxrCxx )— ,B(Mj 2—Uy el T2 —y((ux ?)

@R CadtE al dT) Csd T @ty et

Now, we investigate the error estimates of the five items in the right-hand side of
previous equation.

Lemma 4. Assume that ug € H% (0, 1), u is the solution for problem (1) and u{\,
is the solution for problem (3.1). Then

+1 _j+l _+
_k(] > M] 2 =JT73

Nax:@xx -) = ——|| [ wxxee P dt.

j+22 k(At)3 L+
=+ 192 t

Proof. Using Taylor’s expansion, we obtain

; 41 At 4l il
u’ :u1+2—7u{ 2+/ 2t —tj)ugdt,
L

. 141
i1 il At Jjt+3 7
u/* =uj+2+7ut 2+ (tj —t)usedt.
t. 1
]"rj

Hence

D 1 s 4
E(u’—l—u’“)—u/"'z =§ \/tj 2(l—tj)uttdt+/t (tj—t)uttdl
4 i+

By Hélder’s inequality, we have

j+ 1 2
Juxx ® — —(uxx +ul )|

tj4+1
H(/ ]+2 f—lj)uttd[+/;j (tj_t)uttdt)xxnz
1

i+
(At)3 /tj+1 )
= luxxee||“dt.
% J, xx

J
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Noticing that (nx+2 éi: 2) = 0. Therefore

j+2 _/+2 _/+2

—WUxx " —Upny ¥ € exx )
+1 +1 j ]+1
j+3 uxx—i-uj _j+3% u!cx +u!cx +MN —J+2
=— (uxx —’exx )—( - €xx 7)
2 2 2
J+1
j+ Udy +U% _j+i _j+L o _j+L _j+L
<lluxx 2 xx—llll x 2= (xx  +exx * . €xx ?)
1
(Ar)* [t 2\ aith J+y L i+
s( sl I e e I A AR B A
Zj
== J " e P — SR
u ——|le .
=2 J, xxtt 5 lexx
Then, Lemma 4 is proved. U

Lemma 5. Assume that ug € H? 7(0,1), u is the solution for problem (1) and u’ N
is the solution for problem (3.1). Then

i1 L1 s 1
@2 et —ait — il Bl

i L
_IB(”]+2_ »€xx

k +2”2 32
k

il _
g” xx — e’ T2+ e N,

where c11 Is a positive constant depends only on k, «, B, y, 8, T and ||u0||leE,
independent of N.
Proof. Noticing that
_ial _
17772 < c(k.ot. B..8. T, lluol 2 )N 2.
Hence
1 i+1 .1 !
—BItE R ey —aitE —al el
i1 | | -1 . L
= BETE LY —a@ )
-

_ipl o j+L j _itlio _ialo i1
——ale/ 2|l 2 —alli T2 Blle/ 212 — gl T2 le/ 2|

2
_jtyo 3at 1o iyl B 2
—|| x 2lIF+ 3 —le PP+ + = ||77’+2||
2
_]+ 3 _j+Ll .9 4
<Pl X e v

Then, Lemma 5 is proved. 0
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Lemma 6. Assume that ug € H% (0, 1), u is the solution for problem (1) and u{\,
is the solution for problem (3.1). Then

j+3 _jt+5a —igl
—y((ux )= (i, 2)2. e 12)

k _j+ At)3 [+ _igl -
<Shelt e 2(( I e L o §
L

96

where c1p is a positive constant depends only on k, o, B, y, §, T and ||u0||leg,
independent of N.

Proof. Noticing that

2 2, —j+L2
I 1P < elleg 12+ e 4R

_itl _
1772 < etk By 8. T, lluoll y2)N 2.
Hence, using the integration by parts, we have
it L irl :
— (P = g2 e )
==y (@R = @R -yl - e
_V((ux+2 +ui+2)(u1+2 —i"'i)’éj-i-i)
_j+1i _j+i i+l g+ a1
(@ >+ )@ T+ 2).el T 2)
_y((ux+2 +L—ti+2)(u]+2 —j+%)’éj+%)
+V(ej+2 +n]+2 (Mxx2+u5\]‘;)2€)ej+2+(uJ+2+—]+2) J+2)

By Holder’s inequality and Sobolev’s embedding theorem, we get

(il 22 =@l )2 e+

j+3 | -i+3 j+3 _j+i _ji4d
<ylux " i floolluy =ity (12|

YRS R ' S|
&2+ I TR Dk ? + 2 1272 oo

J

_j+1 _j+1 _ji+3
Hy T2+ I DL + i eollEn 2|

1

(Ar)> i+ Sl iyl L

Ecy( o I N I R s B Ll A
L

k A3 i+ 1 B
Iy z<( )/ luxee||2dt + &7 5|2+ N 4)'
tj

g” XX 9
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Hence, Lemma 6 is proved. O

Lemma 7. Assume that ug € H% (0, 1), u is the solution for problem (1) and u{\,
is the solution for problem (3.1). Then

sl @l et

_j+3 (Ar)3 U+ il _
—|| g MRS 3( luxeelPde + &/ 2|2+ N4
]

96

where c13 is a positive constant depends only on k, a, B, v, 8, T and ””0||H%’
independent of N.

Proof. Noticing that
_ial _
1772 < c(k.ot. .. 8. T, lluo | gr2)N 2.
Hence, using the integration by parts, we have
(A AT R RS

=Sl @l sy - 2y el

=" ((“x+2+"+2)((u el el ), _;+2)

1

_j+l__j+§
—I—S(u 2—uy 2,

_j+i ;+ _j+L_j+d _J+ j+i +3
ity Zixy > ity in‘*‘ xxzuN 2‘i‘zuquNxx)ex )

+5(ﬁj+é_ﬁ§;’+é’[(ﬁi+é)2 J+2 J+2_|_( 1+2)2] J+2)_

By Holder’s inequality and Sobolev’s embedding theorem, we immediately obtain
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sl @l et

J+3\2 , -itho _J+ j+3 j+3 _1+ _j+3
<8ll(ux 22+ (x4t ity loollux 2 —iix 2lllex 2
_]+ ./+ —]+ —]+ —]+ ]+
+8(”€j+2”+||77]+2”)”2ux PUxy >+l 2uNxx—i_uxxz Nx2

+
+2UNxUNxx] ”ex 2 [l oo

i1 il _jt+3 _j+3 J+5
+8(l17F 2| + 172 ) 2)2+ 2uNxZJr( ) loollexx 2 |

l

(At)3 Lji+1
5c8< [mIREE: ||e’+2||+68(||e’+2||+||n’+2||)||exx [
tj

96
—J+z 2 (Ar)* [+ 2 R T R—
<pel P e (G [ a4 10 P N
Zj
Then, Lemma 7 is proved. O

Thus, we obtain the following theorem.

Theorem 4. Assume that ug € lei (0,1), u(x,t) is the solution for problem (1)
satisfying
ue L®0,T; HZ(0,1)), us € L*(0,T; HE(0,1)), sy € L2(0,T;L%(0,1)).

Assume further that u{v is the solution for problem (3.1). Then, if At is sufficiently
small, there exists positive constants c14 depends on k, a, B, y 8, T, |uol g2, in-

dependent of N, and cis depends on k, o, B, v 8, T, |uoll g2 fOT ||utt||%_12dt
fOT luzee || dt, independent of N, such that, for j =0,1,2,---, N,
le/ T < cra(N "2+ |€®]) + c1s(Ar)>.
Proof. By Lemmas 3-7, we obtain
le/ 1% <lle? 1> + Arers(lle’ 1 + lle? |2 + N7
4 Eas 2 2 2 2
a0 *ers [ QP+ Ptsarl? + Tt P+ e ),
L
where c1¢ and c;7 are positive constants depend onlyonk,a,b, T and |ug| g2. For
At being sufficiently small, such that ¢17 At < 2, setting c18 = 2(c16 + €17), We get
le’ 11 < (1 + c1sAn) [l |* + c1s(AtN ~* + (A1)* BY),
where

) tit1 ) ) )
B/ = / tteee I + et | + atree |t
t

J
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Using Gronwall’s inequality for the discrete form, we have
. . j .
||€j+1 ”2 < ecls(] +1)At ||€0||2 + ClS(jA[N_4 + (Al)4 ZBI)
i=0

Directly computation shows that

j "
i . 2 2 2
E B’ < (leee 17 + Nluxxee |~ + lugeel|7)de.
, 0
i=0

Thus, Theorem 4 is proved. O
Furthermore, we have the following theorem.

Theorem 5. Assume that ug € H% (0,1), u(x,t) is the solution for problem (1)
satisfying
we L0, T Hg (0. 1), ure € L2O,T; HE(0,1), uger € L2(0,T5L3(0,1)).

Assume further that ”5\7 e Sy (j =0,1,2,--+) is the solution for problem (3.1) and
the initial value u?v satisfies

0 0 -2
le”ll = I Pnuo—upll < N7 Jluxx].

Then, there exists positive constants ¢’ depends onk, a, B,y 8, T, ||uo| g2, independ-

ent of N, and " depends onk, o, B, y 8, T, lluoll gz, fy luee32dt, [y lusee|dt,
independent of N, such that

lue, )| —uly || <’ N2 4c"(Ar)%, j =0,1,2,-,N.

4. NUMERICAL RESULT

In this section, using the Fourier spectral method described in (3.1), we carry out
some numerical computations to illustrate out results in previous section. The full-

discretization spectral method is read as: For v; = sinlzx, [ =1,---, N, find
N
uly = Za;’ CoSimX.
i=0

such that (3.1) hold.

As an example, we choose k = 1,8 =2,y =1L, a=1,8 =1, ug = (1 —x)*x* +
0.001, At = 0.001/2,0.001/4, N = 32, and get the solution which evolves from
t=0tot =0.1(cf. Figure 1) .

Now, we consider the variation of error. Since no exact solution to problem (1) is
known for us, we make a comparison between the solution of (3.1) on a coarse mesh
and on a fine mesh.
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timestep=0.001/2

FIGURE 1. The expanded property solution for N = 32, At = 0.0005.

We choose At = 0.001,0.001 x £,0.001 x £,0.001 x £,0.001 x -, respectively

to solve (3.1). Set u‘]‘\}i“(x,O.l) as the solution for Aty = 0.001 x 3—12 Denote

1 2
err(0.1,Ar) = (/ (ulli,(x,O.l)—u“N““(x,O.l)) dx)%,k =1,2,...,6. (4.1
0
Then the error is showed in the Table 1 at ¢t = 0.1.

TABLE 1. The error for difference time step at # = 0.1

At err(0.1, At) err
0.001 2.3691x107° 2.3691
0.001 x % 3.7397x 1077 1.4959
0.001 x 4 5.6875x10~% 0.9100
0.001 x % 8.4589x 1077 0.5413
0.001 x 1= 1.0349x 10~ 0.1035

In Table 1, it is easy to see that the third column % is monotone decreasing

along with the time step’s waning. Hence, we can find a positive constant C =
2.3691, such that
err(0.1, At)

<C, k=12,...,5,
(4>~
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which means the order of error estimates is O((At)?) proved in Theorem 5.
On the other hand, Choose N = 32,40,48,56, Atg = 0.001 x 3L2 respectively to
solve (3.1).

TABLE 2. The errors of different basic function numbers at t = 0.1

N err(0.1, Atg) %
32 1.8637x 10~10 1.908 x 10~
40 1.4862 x 10~10 2.378x 1077
48 8.6941 x 10~ 11 2.003x 1077
56 4.1655x 10711 1.306 x 10~/

Then the error is showed in Table 2 at = 0.1. In Table 2, it is easy to see that the
err(0.1,Atp)
(N)—2
waning. Hence, we can find a positive constant C = 2.378 x 1077, such that

err(0.1, Ar)

(Ar)?

third column is almost monotone decreasing along with the time step’s

<C, N =32,40,48,56,
which means the order of error estimates is O(N ~2) proved in Theorem 5.

5. CONCLUSIONS

Since the tools we have used work for the periodic boundary values, this result
is also valid for the 1D Kolmogorov-Spiegel-Sivashinsky equation with the periodic
boundary conditions. That is, for any ug € H I%e +(0,1), choose the finite dimensional

subspace of Hlfer(O, 1):
Sy = span{eikx;—N/Z <k <N/2},

the existence, uniqueness and optimal error bonds for semi-discrete and fully discrete
schemes can also be proved under the periodic boundary conditions

3 u(0,0) =08/u(l,t), t>0,j=0,1,2,3.

Since the original Kolmogorov-Spiegel-Sivashinsky(KSS) equation which

arises in physical systems such as the Kolmogorov flow (a turbulent system of small-
scale eddies supported by external energy sources) and the large-scale structure of
compressible non-Boussinesqian convection (large scale turbulent solar convection)
is formulated in R”. Here, we only consider the 1D case of the equation. If we
want to understand the properties of this model better, we should study the numer-
ical solutions for the multi-dimensional KSS equation, which is our intention in the
future.
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