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Abstract. For the generalized-Euler-constant function .a/,
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and for any positive integer q � 2, using the Bernoulli numbers B2m, the sequences n 7!
An.a;q/, n 7!Bn.a;q/ and n 7! Cn.a;q/, having the properties
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are determined.
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1. INTRODUCTION

The gamma-sequence

yn.a/D
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aCk
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a
.n 2N/ ; (1.1)

considered in [2,3] is convergent for a > 0 and defines the generalized-Euler-constant
function .a/,

.a/ WD lim
n!1

yn.a/ (1.2)
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The name generalized-Euler-constant function has its origin in the identity .1/D
C , where C is the Euler-Mascheroni constant. Several results on the rate of conver-
gence of the sequence (1.1) have been established in the literature.

Recently, A. Sı̂ntămărian [4] accelerated the convergence (1.2) using the Stolz-
Cesaro limit theorem. In this reference the sequences
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were considered and in Theorem 2 the equalities
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were derived. Similarly, in Theorem 3, were considered some sequences ˛n;3.a/,
ˇn;3.a/ and ın;3.a/ such that the following limits hold:
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In [4] the equalities above were demonstrated using rather tedious calculations.
The goal of this article is to complement/improve the results and the method of

derivation as presented in [4]. In our paper we present an approach of incessant
acceleration of the convergence (1.1) to any degree. We will present three classes of
sequences converging to .a/ much faster than the original sequence yn.a/ does.
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2. PRELIMINARIES

Referring to (1.1), (1.2) and [1, Theorems 1–3], we have the following equalities1
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The remainders are estimated as

jRn.a;q/j<
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1The sequence �n.a;q/ in the expression (2.5) is given in the corrected form appearing in the proof
of [1, Theorem 2], where in the first sum the start “k D 1” should be replaced by “k D 0” and where
the summands in the third sum of �n.a;q/ are written incorrectly.

2By definition
Pm

kD1 xk D 0 for m< 1.
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and ˇ̌
R�n.a;q/
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Here, the symbol Bk means the k-th Bernoulli number,

text

et �1
�

1X
kD0

Bk.x/
tj

j Š
.x 2 R; jt j< 2�/;

Bk � Bk.0/, Bk.x/ is k-th Bernoulli polynomial.

3. AN ACCELERATION OF CONVERGENCE

Referring to (2.4)–(2.6) we make the following definition.

Definition 1. For any a > 0 and any integer q � 2 we consider the following
sequences:

n 7! An.a;q/ WD Sn.a;q�1/; (3.1)
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and
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Now, we are in the position to formulate the following result.

Theorem 1. For any positive a and any integer q � 2 we have the following limits:

lim
n!1

n2q�2
�
.a/�An.a;q/

�
D
B2q�2

2q�2
DW LA.q/; (3.4)

lim
n!1

n2q�2
�
.a/�Bn.a;q/

�
D�

�
1�23�2q

� B2q�2

2q�2
DW LB.q/ (3.5)

and

lim
n!1

n2q�1
�
.a/�Cn.a;q/

�
D
1

2
B2q�2 DW LC.q/: (3.6)

Note that the limits are independent of a.

Proof. According to (2.1), (2.4) and (3.1), we have
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for n � 1, a > 0 and q � 2. Consequently, using (2.7), the equality (3.4) follows.
Similarly, referring to (2.2), (2.5) and (3.2), we get
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for n � 1, a > 0 and q � 2. Thus, considering (2.8), we confirm (3.5). Finally,
referring to (2.3), (2.6) and (3.3) we obtain
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for n � 1, a > 0 and q � 2. Denoting aC n D b, 2q � 3 D m and using Taylor’s
formula of order 1 around b for the function f .x/ � x�m, .bC 1/�m D b�m �
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for some # D #n.a;q/ 2 .0;1/. From (3.7) and (3.8) we get the expression
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which, recalling (2.9), demonstrates the relation (3.6). �

Example 1. Referring to (3.4)–(3.6) and using [5] we obtain the following tables:

q 2 3 4 5 6 7
LA.q/

1
12
�

1
120

1
252

�
1

240
1

132
�

691
32760

TABLE 1. The type A–limits; Theorem 1, Eq. (3.4).

q 2 3 4 5 6 7
LB.q/ �

1
24

7
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�
31

8064
127

30720
�
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67584

1414477
67092480

TABLE 2. The type B–limits; Theorem 1, Eq. (3.5).
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q 2 3 4 5 6 7

LC.q/
1

12
�

1
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1
84
�

1
60
�

5
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�
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TABLE 3. The type C–limits; Theorem 1, Eq. (3.6).
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