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1. INTRODUCTION

Problems with non-local conditions have been extensively studied by several au-
thors in the last two decades. The reader is referred to [ 1,2, 5] and references therein.
In this work we study the existence of at least one absolutely continuous solution
x € ACJ0,1] for the nonlocal problem of the arbitrary (fractional) order differential
equation

x'(t) = f(@t, D¥'x(t), D*?x(t), ---, D*'x(t)) ,a; € (0, 1), a.e.1 € (0, 1) (1.1)

with the nonlocal condition
m D
Y apx(m)=p4)_ bj x(nj) (1.2)
k=1 j=1

where ag, bj >0, tp € (a, c), nje(d, b),0 <a <c=<d <b <1,

Shoiar # B Zle bj and B is parameter.
As an application, we deduce the existence of solution for the nonlocal problem of
the differential equation (1.1) with the nonlocal condition

> arx() =0, 7 €(a.c)C (0,1), (1.3)
k=1
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and the nonlocal integral conditions

c b
[ x(s)ds=;3/ x(s)ds,0 <a <c<d <b <1, (1.4)
a d
and .
/ x(s)ds = 0, (a,c) C (0,1). (1.5)

are also considered.

2. PRELIMINARIES

Let L'(I) denotes the class of Lebesgue integrable functions on the interval
I = [0,1],where 0 < a <b <ooandlet I'(.) denotes the gamma function. Recall
that the operator 7' is compact if it is continuous and maps bounded sets into relat-
ively compact ones. The set of all compact operators from the subspace U C X into
the Banach space X is denoted by C(U, X).

Definition 1. The fractional-order integral of the function f € L[a,b] of order
B > 0 is defined by (see [7])

t e B —1
1810 = [ ras

Definition 2. The Riemann-Liouville fractional-order derivative of f(¢) of order
a € (0,1) is defined as (see [6] and [7])

3 d -
Daf(f)—E/a mf(s)ds-

The following theorems will be needed.

Theorem 1 (Schauder fixed point theorem [3]). Let E be a Banach space and Q
be a convex subset of E, and T : Q —> Q is compact, continuous map, Then T has
at least one fixed point in Q.

Theorem 2 (Kolmogorov compactness criterion [4]). Let 2 C L? (0,1), 1 <p <
oo. If

(1) £2 is bounded in L? (0,1), and
(ii) up — u as h — 0 uniformly with respect tou € $2, then S2 is relatively
compact in L? (0,1), where

t+h
uy(t) = %/; u(s) ds.
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3. MAIN RESULTS
Consider firstly the fractional-order functional integral equation
y@) = f, '™ y(@), -, 117y (1)), 3.1)

Definition 3. The function y is called a solution of the fractional-order functional
integral equation (3.1), if y € L]0, 1] and satisfies (3.1).

Consider the following assumption:
(1) f :[0,1] x R, — R be a function with the following properties:
(a) foreacht €[0,1], f(z,.) is continuous,
(b) for each x € R,, f(.,x) is measurable,
(ii) there exist an integral function a, a € L1[0, 1] and constants ¢; >0, i =1, 2,
such that

n
|f(t.x)| < a(t) + > _qi |xi|, foreach 1 €[0.1], x € Ry,
i=1
Theorem 3. Let the assumptions (i) and (ii) be satisfied.

n

qi
If ;m < 1, (3.2)

then the fractional-order functional integral equation (3.1) has at least one solution
y € L1[0,1], where
el

r=

n qi
1 - Zi=1 r'2—a;)
Proof. Define the operator T associated with equation (3.1) by
Ty() = f(t, 1" y(@),, 1™ (1))

Let B, = {y e Li(I):|y|ll <r, r >0} andlet y be an arbitrary element in B,.
Then from the assumptions (i) and (ii), we obtain

1
1Tl =f0 Ty()] di

1
< [ 1 ey ey o)ar

0

[|a(r)|dr+Zqz/ [ porasar
<||a||+zq,/ / s dy ol ds

i=1



442 A.M. A. EL-SAYED AND E. O. BIN-TAHER

n . 1 ([_S)l—ot'
sllall+Zq,/O sl ds

<llall + qufo mwn ds

= llall+2m oyl =

which implies that the operator 7" maps B, into itself.

Assumption (i) implies that 7" is continuous.

Now, we will show that 7" is compact, applying Theorem 1. So, let £2 be a bounded
subset of B,. Then T'(£2) is bounded in L]0, 1], i.e. condition (i) of Theorem 2 is
satisfied. It remains to show that (Ty), — Ty in L]0, 1] as & — 0, uniformly with
respectto Ty € T §2. Now

1
(Ty)n =Tyl = /0 [(Ty)n(6) = (Ty) ()] dt

1 t+h
=[G [ aneras - anoar

1 1 t+h
<[ (z / |<Ty>(s)—<Ty)(z)|ds) dr

! 1 t+h 1—a 1—ay
< /O - / 6Ty (1), Ty (1))
— fE I (@), .. I Ty ()| ds dt.

Now, y € £2 implies (by assumption (ii)) that f € L1(0, 1), then

1 t+h

n — S Ty (@), T Ty (1)~
t

_f(tvll_aly(t)v"' 711_any(t))|ds — 0
Therefore, by Theorem 2, we have that 7'(£2) is relatively compact, that is, T is a

compact operator, then the operator 7" has a fixed point B, which proves the exist-
ence of a positive solution y € (0, 1) of equation (3.1). O

Theorem 4. Let the assumptions of Theorem 3 be satisfied. Then the nonlocal
problem (1.1)- (1.2) has at least one solution x € AC|0,1].
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Proof. Consider the nonlocal fractional differential equation

x'(t) = f(@t, D*'x(t), D*?x(t), ---, D% x(t)) ,a; € (0, 1), a.e. t € (0, 1),

m p
darx() =B Y bjx().  ax.bj >0, 1 €(0.¢).njed 1), c<d.
k=1 =1

Let y(t) = x/(¢), then
x() = x0) + Iy() (3.3)

and y is the solution of the fractional-order integral equation (3.1).
Let t = 11 in equation (3.3), we get

x(rk)=/0 ‘ y(s) ds+ x(0)

Z agx(tx) = Z ak/ ' y(s) dS-I-x(O)Z ag
k=1 k=1 0 k=1

And let f = 7n; in equation (3.3), we get

nj
() =/0 ¥(s) ds +x(0)

J

p p nj P
S bx =3 bj/o () ds+x(0) Y by
j=1 ji=1 =1

From equation (1.2), we get

m 73 m b nj p
> ak/ y(s)ds+x(0)Y  ar=8Y_ bj/ y(s)ds+x(0)B) " b;
k=1 0 k=1 j=1 70

Jj=1

Then we get

m Tk p nj
x(0) = 4 kZZjlak/O y(s)ds—ﬁ;bj/o y(s) ds |

where 4 = (B Zle bj =Y r—y ax)™!
and

m Tk p n; t
x(1) =4 ];ak/(; y(s) ds—ﬂ];bjfo y(s) ds | + fo y(s)ds (3.4)
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which, by Theorem 3, has at least one solution x € AC(0, 1).
Now, from equation (3.4), we have

0)= li 1)=A ds—A bj ds.

x(0) = lim x(1) Zakfo y(s)ds—Ap ) J/O y(s) ds
k=1 =1

Also

m 173 p nj
x(1) = tli)nll_x(t) =A kX::l ak/o y(s) ds—AB ; bj/(; y(s) ds

1
+ /0 y(s) ds

from which we deduce that equation (3.4) has at least one solution x € AC[0,1].
To complete the proof

dx

d
D% x(t)=1'"% Ex(t) =I17%y(r)

where
x'(t) = f(, x(t), D*'x(t), D*2x(t), ---, D*'x(1)).

Now letting B = 0 in (1.2), we can easily prove the following theorem.

Theorem 5. Let the assumptions (i) - (ii) be satisfied. Then the nonlocal problem
x'(t) = f@, D' x(t), D*2x(t), ---, D" x(t)) ,a; € (0, 1), a.e. t € (0, 1),

Z apx(tx) = 0, 7% € (a,c) C (0,1).
k=1

has at least one solution x € AC|0,1] represented by

m Tk t m
x(t) =A ay y(s) ds— v(s) ds, where A= ( ap)~ L.
o), o) >

4. NONLOCAL INTEGRAL CONDITION

Let x € ACJ0, 1] be the solution of the nonlocal problem (1.1-1.2).
Letay =t —T—1, th € (h—1.Tk), @ = o <711 <712,... <Tp=c¢ and b; =
nj—nj—1, tj € Mj-1.n;), d = no <n1 <1n2,... <np =b then the nonlocal
condition (1.2) will be

m p
Y (—m—) x(t) = BY_ (nj—nj—1) x(t)).

k=1 j=1
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From the continuity of the solution x of the nonlocal problem (1.1-1.2) we can
obtain

m b
Jim Y0 (= te-n) x (@) = B lim 3 (1 —nj-1) X(1).
k=1 Jj=1
and the nonlocal condition (1.2) is transformed to the integral one

c b
/ x(s)ds = ,8/6; x(s)ds . 4.1

Also from the continuity of the function /y(¢), where y is the solution of the
functional integral equation (3.1), we deduce that the solution (3.4) will be

c s b s
X(0)= (B (b—d)—(c—a)) " (/[)y(e)deds—ﬁ[l[)y(@)d@ds)

+ /Oty(s)ds.

Now, we have the following theorem.

Theorem 6. Let the assumptions of Theorem 4 be satisfied. Then there exist at
least one solution x € AC|0,1] of the nonlocal problem with integral condition,

x'(t) = f(@t, D*'x(t), D*?x(t), ---, D x(t)) ,a; € (0, 1), a.e. t € (0, 1),

c b
/x(s)ds:ﬂ/d y(is)ds,0<a<c<d<b=<1, B(b—d)+# (c—a).

Letting 8 = 0 in (4.1), we can easily prove the following corollary.
Corollary 1. Let the assumptions (i) - (ii) be satisfied. Then the nonlocal problem

X'(t) = f(t, D*'x(t), D®2x(1), ---, D*x(t)) ,a; € (0, 1), ae. t € (0, 1),

/C x(s)ds =0, (a,c)C(0,1),

has at least one solution x € AC[0,1] represented by

x(t) = /Oty(s) ds—(c—a)™! /:fos y(0) do ds.
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