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1. INTRODUCTION

Problems with non-local conditions have been extensively studied by several au-
thors in the last two decades. The reader is referred to [1,2,5] and references therein.
In this work we study the existence of at least one absolutely continuous solution
x 2 ACŒ0;1� for the nonlocal problem of the arbitrary (fractional) order differential
equation

x0.t/ D f .t; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t// ;˛i 2 .0; 1/; a.e. t 2 .0; 1/ (1.1)

with the nonlocal condition
mX
kD1

ak x.�k/D ˇ

pX
jD1

bj x.�j / (1.2)

where ak; bj > 0; �k 2 .a; c/; �j 2 .d; b/; 0 < a < c � d < b < 1;Pm
kD1 ak ¤ ˇ

Pp
jD1 bj and ˇ is parameter.

As an application, we deduce the existence of solution for the nonlocal problem of
the differential equation (1.1) with the nonlocal condition

mX
kD1

akx.�k/ D 0; �k 2 .a;c/� .0;1/; (1.3)

c
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and the nonlocal integral conditionsZ c

a

x.s/ ds D ˇ

Z b

d

x.s/ ds; 0 < a < c � d < b < 1; (1.4)

and Z c

a

x.s/ ds D 0; .a;c/� .0;1/: (1.5)

are also considered.

2. PRELIMINARIES

Let L1.I / denotes the class of Lebesgue integrable functions on the interval
I D Œ0;1�,where 0� a < b <1 and let � .:/ denotes the gamma function. Recall
that the operator T is compact if it is continuous and maps bounded sets into relat-
ively compact ones. The set of all compact operators from the subspace U � X into
the Banach space X is denoted by C.U; X/.

Definition 1. The fractional-order integral of the function f 2 L1Œa;b� of order
ˇ > 0 is defined by (see [7])

Iˇa f .t/ D

Z t

a

.t � s/ˇ � 1

� .ˇ/
f .s/ ds:

Definition 2. The Riemann-Liouville fractional-order derivative of f .t/ of order
˛ 2 .0;1/ is defined as (see [6] and [7])

D˛a f .t/ D
d

dt

Z t

a

.t � s/� ˛

� .1 � ˛/
f .s/ ds:

The following theorems will be needed.

Theorem 1 (Schauder fixed point theorem [3]). Let E be a Banach space and Q
be a convex subset of E, and T WQ �! Q is compact, continuous map, Then T has
at least one fixed point in Q.

Theorem 2 (Kolmogorov compactness criterion [4]). Let˝ �Lp .0;1/, 1� p <
1. If

(i) ˝ is bounded in Lp .0;1/, and
(ii) uh ! u as h ! 0 uniformly with respect to u 2 ˝, then ˝ is relatively

compact in Lp .0;1/, where

uh.t/ D
1

h

Z tCh

t

u.s/ ds:
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3. MAIN RESULTS

Consider firstly the fractional-order functional integral equation

y.t/D f .t; I 1�˛1y.t/; � � � ; I 1�˛ny.t//; (3.1)

Definition 3. The function y is called a solution of the fractional-order functional
integral equation (3.1), if y 2 L1Œ0;1� and satisfies (3.1).

Consider the following assumption:
(i) f W Œ0;1��Rn!R be a function with the following properties:

(a) for each t 2 Œ0;1�;f .t; :/ is continuous,
(b) for each x 2Rn;f .:;x/ is measurable,

(ii) there exist an integral function a; a 2L1Œ0;1� and constants qi >0; i D 1; 2;
such that

jf .t;x/j � a.t/ C

nX
iD1

qi jxi j; for each t 2 Œ0;1�; x 2Rn;

Theorem 3. Let the assumptions (i) and (ii) be satisfied.

If
nX
iD1

qi

� .2�˛i /
< 1; (3.2)

then the fractional-order functional integral equation (3.1) has at least one solution
y 2 L1Œ0;1�, where

r �
kak

1 �
Pn
iD1

qi

� .2�˛i /

Proof. Define the operator T associated with equation (3.1) by

Ty.t/D f .t; I 1�˛1y.t/; � � � ; I 1�˛ny.t//

Let Br D fy 2 L1.I / W kyk < r; r > 0g and let y be an arbitrary element in Br .
Then from the assumptions (i) and (ii), we obtain

jjTyjjL1
D

Z 1

0

jTy.t/j dt

�

Z 1

0

jf .t; I 1�˛1y.t/; � � � ; I 1�˛ny.t//jdt

�

Z 1

0

ja.t/jdt C

nX
iD1

qi

Z 1

0

Z t

0

.t � s/�˛i

� .1�˛i /
jy.s/j ds dt

� kak C

nX
iD1

qi

Z 1

0

Z 1

s

.t � s/�˛i

� .1�˛i /
dt jy.s/j ds
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� kak C

nX
iD1

qi

Z 1

0

�
.t � s/1�˛i

.1�˛i /� .1�˛i /
j
1
s jy.s/j ds

� kak C

nX
iD1

qi

Z 1

0

1

� .2�˛i /
jy.s/j ds

� kakC

nX
iD1

qi

� .2�˛i /
kykL1

� r;

which implies that the operator T maps Br into itself.
Assumption (i) implies that T is continuous.
Now, we will show that T is compact, applying Theorem 1. So, let ˝ be a bounded
subset of Br . Then T .˝/ is bounded in L1Œ0;1�, i.e. condition (i) of Theorem 2 is
satisfied. It remains to show that .Ty/h! Ty in L1Œ0;1� as h! 0, uniformly with
respect to Ty 2 T ˝. Now

jj.Ty/h�Tyjj D

Z 1

0

j.Ty/h.t/� .Ty/.t/j dt

D

Z 1

0

j
1

h

Z tCh

t

.Ty/.s/ ds � .Ty/.t/j dt

�

Z 1

0

 
1

h

Z tCh

t

j.Ty/.s/ � .Ty/.t/j ds

!
dt

�

Z 1

0

�
1

h

Z tCh

t

jf .s;I 1�˛1y.t/; :::;I 1�˛ny.t//

�f .t;I 1�˛1y.t/; :::;I 1�˛ny.t//j ds dt:

Now, y 2 ˝ implies (by assumption (ii)) that f 2 L1.0;1/, then

1

h
�

Z tCh

t

�jf .s;I 1�˛1y.t/; � � � ;I 1�˛ny.t//�

�f .t;I 1�˛1y.t/; � � � ;I 1�˛ny.t//jds ! 0

Therefore, by Theorem 2, we have that T .˝/ is relatively compact, that is, T is a
compact operator, then the operator T has a fixed point Br , which proves the exist-
ence of a positive solution y 2 .0; 1/ of equation (3.1). �

Theorem 4. Let the assumptions of Theorem 3 be satisfied. Then the nonlocal
problem (1.1)- (1.2) has at least one solution x 2 ACŒ0;1�.
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Proof. Consider the nonlocal fractional differential equation

x0.t/ D f .t; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t// ;˛i 2 .0; 1/; a.e. t 2 .0; 1/;

mX
kD1

ak x.�k/ D ˇ

pX
jD1

bj x.�j /; ak; bj > 0; �k 2 .0; c/; �j 2 .d; 1/; c � d:

Let y.t/ D x0.t/; then
x.t/ D x.0/ C Iy.t/ (3.3)

and y is the solution of the fractional-order integral equation (3.1).
Let t D �k in equation (3.3), we get

x.�k/D

Z �k

0

y.s/ dsCx.0/

mX
kD1

akx.�k/D

mX
kD1

ak

Z �k

0

y.s/ dsCx.0/

mX
kD1

ak

And let t D �j in equation (3.3), we get

x.�j /D

Z �j

0

y.s/ dsCx.0/

pX
jD1

bjx.�j /D

pX
jD1

bj

Z �j

0

y.s/ dsCx.0/

pX
jD1

bj

From equation (1.2), we get

mX
kD1

ak

Z �k

0

y.s/ dsCx.0/

mX
kD1

ak D ˇ

pX
jD1

bj

Z �j

0

y.s/ dsCx.0/ˇ

pX
jD1

bj

Then we get

x.0/D A

0@ mX
kD1

ak

Z �k

0

y.s/ ds�ˇ

pX
jD1

bj

Z �j

0

y.s/ ds

1A ;
where AD .ˇ

Pp
jD1 bj �

Pm
kD1 ak/

�1

and

x.t/ D A

0@ mX
kD1

ak

Z �k

0

y.s/ ds�ˇ

pX
jD1

bj

Z �j

0

y.s/ ds

1AC Z t

0

y.s/ ds (3.4)
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which, by Theorem 3, has at least one solution x 2 AC.0;1/:

Now, from equation (3.4), we have

x.0/D lim
t! 0C

x.t/D A

mX
kD1

ak

Z �k

0

y.s/ ds�Aˇ

pX
jD1

bj

Z �j

0

y.s/ ds:

Also

x.1/D lim
t! 1�

x.t/D A

mX
kD1

ak

Z �k

0

y.s/ ds�Aˇ

pX
jD1

bj

Z �j

0

y.s/ ds

C

Z 1

0

y.s/ ds

from which we deduce that equation (3.4) has at least one solution x 2 ACŒ0;1�:

To complete the proof
dx

dt
D y.t/;

D˛ix.t/D I 1�˛i
d

dt
x.t/D I 1�˛iy.t/

where
x0.t/ D f .t; x.t/; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t//:

�

Now letting ˇ D 0 in (1.2), we can easily prove the following theorem.

Theorem 5. Let the assumptions (i) - (ii) be satisfied. Then the nonlocal problem

x0.t/ D f .t; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t// ;˛i 2 .0; 1/; a.e. t 2 .0; 1/;
mX
kD1

akx.�k/ D 0; �k 2 .a;c/� .0;1/:

has at least one solution x 2 ACŒ0;1� represented by

x.t/ D A

mX
kD1

ak

Z �k

0

y.s/ ds�

Z t

0

y.s/ ds; where AD .

mX
kD1

ak/
�1:

4. NONLOCAL INTEGRAL CONDITION

Let x 2 ACŒ0;1� be the solution of the nonlocal problem (1.1-1.2).
Let ak D �k � �k�1; tk 2 .�k�1; �k/; a D �0 < �1 < �2; ::: < �m D c and bj D

�j � �j�1; tj 2 .�j�1;�j /; d D �0 < �1 < �2; ::: < �p D b then the nonlocal
condition (1.2) will be

mX
kD1

.�k � �k�1/ x.tk/ D ˇ

pX
jD1

.�j ��j�1/ x.tj /:
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From the continuity of the solution x of the nonlocal problem (1.1-1.2) we can
obtain

lim
m!1

mX
kD1

.�k � �k�1/ x.tk/ D ˇ lim
p!1

pX
jD1

.�j ��j�1/ x.tj /:

and the nonlocal condition (1.2) is transformed to the integral oneZ c

a

x.s/ ds D ˇ

Z b

d

x.s/ ds : (4.1)

Also from the continuity of the function Iy.t/; where y is the solution of the
functional integral equation (3.1), we deduce that the solution (3.4) will be

x.t/D .ˇ .b�d/� .c�a//�1

 Z c

a

Z s

0

y.�/d� ds�ˇ

Z b

d

Z s

0

y.�/ d� ds

!

C

Z t

0

y.s/ds:

Now, we have the following theorem.

Theorem 6. Let the assumptions of Theorem 4 be satisfied. Then there exist at
least one solution x 2 ACŒ0;1� of the nonlocal problem with integral condition,

x0.t/ D f .t; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t// ;˛i 2 .0; 1/; a.e. t 2 .0; 1/;

Z c

a

x.s/ ds D ˇ

Z b

d

y.s/ ds ; 0� a < c � d < b � 1; ˇ .b�d/¤ .c�a/:

Letting ˇ D 0 in (4.1), we can easily prove the following corollary.

Corollary 1. Let the assumptions (i) - (ii) be satisfied. Then the nonlocal problem

x0.t/ D f .t; D˛1x.t/; D˛2x.t/; � � � ; D˛nx.t// ;˛i 2 .0; 1/; a.e. t 2 .0; 1/;

Z c

a

x.s/ ds D 0; .a;c/� .0;1/;

has at least one solution x 2 ACŒ0;1� represented by

x.t/ D

Z t

0

y.s/ ds� .c�a/�1
Z c

a

Z s

0

y.�/ d� ds:
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