

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2013.531

On bivariate Meyer-König and Zeller operators

Ali Olgun

ON BIVARIATE MEYER-KÖNIG AND ZELLER OPERATORS

ALI OLGUN

Received 3 May, 2012

Abstract. This work relates to bivariate Meyer-König and Zeller operators, M_n , $n \in \mathbb{N}$ which are not a tensor product setting. We show the monotonicity of the sequence of operators for n under convexity, moreover we study the property of monotonicity in the sense of Li [9]. Finally, we provide an rth order generalization $M_n^{[r]}$ of M_n and also study approximation of $M_n^{[r]}$.

2010 Mathematics Subject Classification: 41A25; 41A36

Keywords: multivariate Meyer-König and Zeller operator, convexity, monotonicity, modulus of continuity

1. Introduction

The Cheney and Sharma modification of the well-known univariate Meyer-König and Zeller operators (MKZ) are defined as

$$M_n^*(f,x) = \sum_{k=0}^{\infty} m_{n,k}(x) f\left(\frac{k}{n+k}\right), n \in \mathbb{N}$$
 (1.1)

for
$$f \in C[0,1)$$
 and $x \in [0,1)$, $n \in \mathbb{N}$, where $m_{n,k}(x) = (1-x)^{n+1} \binom{n+k}{k} x^k$ [3].

The monotonic convergence of $\{M_n^*(f;x)\}_{n=1}^{\infty}$ under convexity was investigated in [2] by Cheney and Sharma by means of analytical approach, also studied in [8] by Khan, by means of probabilistic approach. Monotonic convergence of several approximation operators are studied deeply in [6] by Khan, Della-Vecchia and Fassih with probabilistic point of view. Some works related to MKZ operators can be viewed in [1–8, 13] and [10, 11].

We shall use the following standard notation. Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{t} = (t_1, t_2) \in \mathbb{R}^2$, $\mathbf{k} = (k_1, k_2) \in \mathbb{N}_0^2$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. $\mathbf{x}^{\mathbf{k}} = x_1^{k_1} . x_2^{k_2}$, $\mathbf{k}! = k_1! . k_2!$, $|\mathbf{k}| = k_1 + k_2$, $|\mathbf{x}| = k_1! . k_2!$

© 2013 Miskolc University Press

 $x_1 + x_2$, \mathbf{e}_i denotes the unit vector in \mathbb{R}^2 . Furthermore $\binom{n}{\mathbf{k}} = \frac{n!}{\mathbf{k}! (n - |\mathbf{k}|)!}$, and

$$\sum_{\mathbf{k}=0}^{\infty} = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty}.$$

Let $S_2 \subset \mathbb{R}^2$ be the open simplex defined by

$$S_2 = \{ \mathbf{x} \in \mathbb{R}^2; \ \mathbf{x}_i \ge 0, \ i = 1, 2, \ |\mathbf{x}| < 1 \}.$$

For a function $f \in C(S_2)$, bivariate MKZ operators are defined as

$$M_n(f, \mathbf{x}) = (1 - |\mathbf{x}|)^{n+1} \sum_{k=0}^{\infty} f\left(\frac{\mathbf{k}}{n + |\mathbf{k}|}\right) \binom{n + |\mathbf{k}|}{\mathbf{k}} \mathbf{x}^k, \ n \in \mathbb{N},$$
 (1.2)

where $C(S_2)$ denotes the space of continuous real valued functions defined on S_2 . It is obvious that M_n , $n \in \mathbb{N}$, are not a tensor product extension of the univariate MKZ operators M_n^* given by (1.2).

Now we give the following definitions which we shall use.

Definition 1. A continuous function f is said to be convex in $D \subset \mathbb{R}^m$, if

$$f\left(\sum_{i=1}^{r} \alpha_{i} \mathbf{x}_{i}\right) \geq \sum_{i=1}^{r} \alpha_{i} f\left(\mathbf{x}_{i}\right)$$

for every $x_1, x_2, ..., x_r \in D$ and for every non-negative numbers $\alpha_1, \alpha_2, ..., \alpha_r$ such that $\alpha_1 + \alpha_2 + ... + \alpha_r = 1$.

Definition 2. A continuous function f from $D \subseteq \mathbb{R}^2$ into \mathbb{R} is said to be Lipschitz continuous of order μ , $\mu \in (0,1]$, if there exists a constant A > 0 such that for every (x_1, x_2) , $(y_1, y_2) \in D$, f satisfies

$$|f(x_1, x_2) - f(y_1, y_2)| \le A \sum_{i=1}^{2} |x_i - y_i|^{\mu},$$

the set of Lipschitz continuous functions is denoted by $Lip_A(\mu, D)$.

In this work, we firstly show the monotonicity of the sequence of bivariate MKZ operators defined by (1.2) under convexity. Secondly we give a kind of monotonnicity similar to the property given by Li in [9]. Namely, we show that if $f(\mathbf{x})$ is a nonnegative function and $x_i^{-1} f(\mathbf{x})$ (i = 1, 2) is non-increasing for x_i on (0,1), then for each $n \ge 1$, $x_i^{-1} M_n(f; \mathbf{x})$ is also non-increasing for x_i on (0,1). Moreover we build an r - th order generalization $M_n^{[r]}$ of M_n analogues to Kirov and Popova's construction in [8] and investigate its approximation property.

2. MONOTONICITY FOR THE SEQUENCE OF BIVARIATE MEYER-KÖNIG AND ZELLER OPERATORS

In this section, we study the monotonic convergence of the sequence of bivariate MKZ operator under convexity. Note that monotonic convergence of univariate MKZ operator when f is convex, was first obtained by Cheney and Sharma in [3]. We note here that monotonic convergence of the multivariate Baskakov operator is studied in [2].

Theorem 1. If f is convex, then $M_n(f; \mathbf{x})$ is strictly monotonically non-decreasing in n, unless f is the linear function (in which case $M_n(f; \mathbf{x}) = M_{n+1}(f; \mathbf{x})$ for all $n \in \mathbb{N}$).

Proof. We have

$$M_{n}(f;\mathbf{x}) - M_{n+1}(f;\mathbf{x}) = (1 - |\mathbf{x}|)^{n+1} \times \left\{ \sum_{k_{2}=1}^{\infty} \left[f\left(0, \frac{k_{2}}{n+k_{2}}\right) \binom{n+k_{2}}{k_{2}} - f\left(0, \frac{k_{2}}{n+1+k_{2}}\right) \binom{n+1+k_{2}}{k_{2}} \right] \mathbf{x}^{\mathbf{k}} \right. \\ + \sum_{k_{1}=1}^{\infty} \left[f\left(\frac{k_{1}}{n+k_{1}}, 0\right) \binom{n+k_{1}}{k_{1}} - f\left(\frac{k_{1}}{n+1+k_{1}}, 0\right) \binom{n+1+k_{1}}{k_{1}} \right] \mathbf{x}^{\mathbf{k}} \right. \\ + \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} f\left(\frac{\mathbf{k}}{n+1+|\mathbf{k}|}\right) \binom{n+1+|\mathbf{k}|}{\mathbf{k}} x_{1}^{k_{1}+1} x_{2}^{k_{2}} \\ + \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} f\left(\frac{\mathbf{k}}{n+1+|\mathbf{k}|}\right) \binom{n+1+|\mathbf{k}|}{\mathbf{k}} x_{1}^{k_{1}} x_{2}^{k_{2}+1} \right\}.$$

Therefore the last equation reduces to the following:

$$\begin{split} &M_{n}(f;\mathbf{x}) - M_{n+1}(f;\mathbf{x}) = (1 - |\mathbf{x}|)^{n+1} \times \\ &\times \left\{ \sum_{k_{2}=1}^{\infty} \left[f\left(0, \frac{k_{2}}{n+k_{2}}\right) \binom{n+k_{2}}{k_{2}} - f\left(0, \frac{k_{2}}{n+1+k_{2}}\right) \binom{n+1+k_{2}}{k_{2}} \right. \right. \\ &+ f\left(0, \frac{k_{2}-1}{n+k_{2}}\right) \binom{n+k_{2}}{k_{2}-1} \right] x_{2}^{k_{2}} + \sum_{k_{1}=1}^{\infty} \left[f\left(\frac{k_{1}}{n+k_{1}}, 0\right) \binom{n+k_{1}}{k_{1}} \right. \\ &- f\left(\frac{k_{1}}{n+1+k_{1}}, 0\right) \binom{n+1+k_{1}}{k_{1}} + f\left(\frac{k_{1}-1}{n+k_{1}}, 0\right) \binom{n+k_{1}}{k_{1}-1} \right] x_{1}^{k_{1}} \\ &+ \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \left[f\left(\frac{k_{1}-1}{n+|\mathbf{k}|}, \frac{k_{2}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}-e_{1}} \right. \end{split}$$

$$+ f\left(\frac{k_1}{n+|\mathbf{k}|}, \frac{k_2-1}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}-e_2}$$

$$+ f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}} - f\left(\frac{\mathbf{k}}{n+1+|\mathbf{k}|}\right) \binom{n+1+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \right\}.$$

Let I_1 , I_2 and I_3 denote the followings

$$I_{1} = f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}} - f\left(\frac{\mathbf{k}}{n+1+|\mathbf{k}|}\right) \binom{n+1+|\mathbf{k}|}{\mathbf{k}}$$

$$+ f\left(\frac{\mathbf{k}-\mathbf{e}_{1}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}-\mathbf{e}_{1}} + f\left(\frac{\mathbf{k}-\mathbf{e}_{2}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}-\mathbf{e}_{2}},$$

$$I_{2} = f\left(0, \frac{k_{2}}{n+k_{2}}\right) \binom{n+k_{2}}{k_{2}} - f\left(0, \frac{k_{2}}{n+1+k_{2}}\right) \binom{n+1+k_{2}}{k_{2}}$$

$$+ f\left(0, \frac{k_{2}-1}{n+k_{2}}\right) \binom{n+k_{2}}{k_{2}-1},$$

$$I_{3} f\left(\frac{k_{1}}{n+k_{1}}, 0\right) \binom{n+k_{1}}{k_{1}} - f\left(\frac{k_{1}}{n+1+k_{1}}, 0\right) \binom{n+1+k_{1}}{k_{1}}$$

$$+ f\left(\frac{k_{1}-1}{n+k_{1}}, 0\right) \binom{n+k_{1}}{k_{1}-1}.$$

For I_1 , we take

$$\alpha_1 = \frac{\binom{n+|\mathbf{k}|}{\mathbf{k}}}{\binom{n+1+|\mathbf{k}|}{\mathbf{k}}}, \ \alpha_2 = \frac{\binom{n+|\mathbf{k}|}{\mathbf{k}-\mathbf{e}_1}}{\binom{n+1+|\mathbf{k}|}{\mathbf{k}}}, \ \alpha_3 = \frac{\binom{n+|\mathbf{k}|}{\mathbf{k}-\mathbf{e}_2}}{\binom{n+1+|\mathbf{k}|}{\mathbf{k}}}.$$

Clearly α_1 , α_2 and α_3 are non-negative numbers, and $\alpha_1 + \alpha_2 + \alpha_3 = 1$. On the other hand if we set

$$\mathbf{x}_1 = \frac{\mathbf{k}}{n + |\mathbf{k}|}, \ \mathbf{x}_2 = \frac{\mathbf{k} - \mathbf{e}_1}{n + |\mathbf{k}|}, \ \mathbf{x}_3 = \frac{\mathbf{k} - \mathbf{e}_2}{n + |\mathbf{k}|},$$

then it follows that

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3 = \frac{\mathbf{k}}{n+1+|\mathbf{k}|}.$$

Hence, from the convexity of f we obtain that $I_1 \leq 0$. For I_2 , we set

$$\alpha_1 = \frac{\binom{n+k_2}{k_2}}{\binom{n+1+k_2}{k_2}}, \quad \alpha_2 = \frac{\binom{n+k_2}{k_2-1}}{\binom{n+1+k_2}{k_2}}$$

and

$$\mathbf{y}_1 = \left(0, \frac{k_2}{n + k_2}\right), \ \mathbf{y}_2 = \left(0, \frac{k_2 - 1}{n + k_2}\right),$$

then, clearly, α_1 , $\alpha_2 \ge 0$, and $\alpha_1 + \alpha_2 = 1$. Morever we have

$$\alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2 = \left(0, \frac{k_2}{n + k_2}\right).$$

Thus, from the convexity of f we obtain that $I_2 \le 0$. Similarly we deduce that $I_3 \le 0$. So we have proved $M_n(f; \mathbf{x}) \le M_{n+1}(f; \mathbf{x})$ for all $n \in \mathbb{N}$. Using the similar arguments given in [2], the last part of the proof is given as follows: The equality of $M_n(f; \mathbf{x})$ and $M_{n+1}(f; \mathbf{x})$ can be satisfied only if $I_1 = 0$ for all $k_1, k_2 \in \mathbb{N}$ and $I_2 = I_3 = 0$ for all $k_1, k_2 \in \mathbb{N}_0$. But, if f is convex, then $I_1 = 0$ implies that its graph is a plane in triangle.

In the following, we show that the bivariate MKZ operators can retain a certain monotony, that is

Theorem 2. Let f be defined on S_2 . If $f(\mathbf{x})$ is a non-negative function such that $\frac{f(\mathbf{x})}{x_i}$ (i = 1, 2) is non-increasing for x_i on (0, 1), then for each $n \ge 1$, $\frac{M_n(f; \mathbf{x})}{x_i}$, is also non-increasing for x_i on (0, 1).

Proof. Straightforward computation gives that for $n \ge 1$ we have, for example with respect to x_1 ,

$$\begin{split} &\frac{\partial}{\partial x_1} \left(\frac{M_n(f; \mathbf{x})}{x_1} \right) = \\ &= \frac{\partial}{\partial x_1} \left\{ \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(1 - x_1 - x_2)^{n+1}}{x_1} f\left(\frac{k_1}{n + k_1 + k_2}, \frac{k_2}{n + k_1 + k_2} \right) \binom{n + k_1 + k_2}{k_1 + k_2} \right\} \\ &= \frac{\partial}{\partial x_1} \left\{ \sum_{k_2 = 0}^{\infty} \frac{(1 - x_1 - x_2)^{n+1}}{x_1} f\left(0, \frac{k_2}{n + k_2} \right) \binom{n + k_2}{k_2} \right\} \\ &\times (1 - x_1 - x_2)^{n+1} f\left(\frac{k_1}{n + k_1 + k_2}, \frac{k_2}{n + k_1 + k_2} \right) \binom{n + k_1 + k_2}{k_1 + k_2} x_1^{k_1 - 1} x_2^{k_2} \right\} \\ &= \sum_{k_2 = 0}^{\infty} \frac{\partial}{\partial x_1} \left(\frac{(1 - x_1 - x_2)^{n+1}}{x_1} \right) f\left(0, \frac{k_2}{n + k_2} \right) \binom{n + k_2}{k_2} x_2^{k_2} + \sum_{k_1 = 1}^{\infty} \sum_{k_2 = 0}^{\infty} \right. \end{split}$$

$$\begin{split} &\times f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}\frac{\partial}{\partial x_1}\left[(1-x_1-x_2)^{n+1}x_1^{k_1-1}x_2^{k_2}\right]\\ &=\sum_{k_2=0}^{\infty}\left(\frac{-(n+1)(1-x_1-x_2)^nx_1-(1-x_1-x_2)^{n+1}}{x_1^2}\right)f\left(0,\frac{k_2}{n+k_2}\right)\binom{n+k_2}{k_2}x_2^{k_2}\\ &+\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty}f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}x_2^{k_2}\\ &\times\left[-(n+1)(1-x_1-x_2)^nx_1^{k_1-1}+(1-x_1-x_2)^{n+1}(k_1-1)x_1^{k_1-2}\right]\\ &=\sum_{k_2=0}^{\infty}\frac{(1-x_1-x_2)^{n+1}}{x_1^2}\left(\frac{-(n+1)x_1}{1-x_1-x_2}-1\right)f\left(0,\frac{k_2}{n+k_2}\right)\binom{n+k_2}{k_2}x_2^{k_2}\\ &+\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty}f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}\left(1-x_1-x_2\right)^nx_2^{k_2}\\ &\times\left[-nx_1^{k_1-1}-x_1^{k_1-1}+(k_1-1)x_1^{k_1-2}-(k_1-1)x_1^{k_1-1}-(k_1-1)x_1^{k_1-2}x_2\right]\\ &\times x_1^{k_1-2}(1-x_2)(1-x_1-x_2)^nx_2^{k_2}\\ &=\sum_{k_2=0}^{\infty}\frac{(1-x_1-x_2)^{n+1}}{x_1^2}\left(-\frac{(1+nx_1-x_2)}{1-x_1-x_2}\right)f\left(0,\frac{k_2}{n+k_2}\right)\binom{n+k_2}{k_1+k_2}x_2^{k_2}\\ &+\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty}f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}\left(1-x_1-x_2\right)^nx_2^{k_2}\\ &\times\left[-(n+k_1)x_1^{k_1-1}+(k_1-1)(1-x_2)x_1^{k_1-2}\right]\\ &=\sum_{k_2=0}^{\infty}\frac{(1-x_1-x_2)^n}{x_1^2}\left(-(1+nx_1-x_2))f\left(0,\frac{k_2}{n+k_2}\right)\binom{n+k_2}{k_1+k_2}x_2^{k_2}\\ &+\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty}f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}x_1^{k_1-1}(-n-k_1)x_2^{k_2}\\ &\times(1-x_1-x_2)^n+\sum_{k_1=2}^{\infty}\sum_{k_2=0}^{\infty}f\left(\frac{k_1}{n+k_1+k_2},\frac{k_2}{n+k_1+k_2}\right)\binom{n+k_1+k_2}{k_1+k_2}x_1^{k_1-1}(-n-k_1)x_2^{k_2}\\ &=\sum_{k_2=0}^{\infty}\frac{-(1+nx_1-x_2)}{x_1^2}f\left(0,\frac{k_2}{n+k_2}\right)\binom{n+k_2}{k_1}x_2^{k_2}$$

$$\times (1 - x_1 - x_2)^n + \sum_{k_1 = 1}^{\infty} \sum_{k_2 = 0}^{\infty} f\left(\frac{k_1 + 1}{n + k_1 + k_2}, \frac{k_2}{n + k_1 + k_2}\right) \binom{n + k_1 + 1 + k_2}{k_1 + 1 + k_2}$$

$$\times (1 - x_2) x_1^{k_1 - 1} k_1 (1 - x_1 - x_2)^n x_2^{k_2}$$

$$\leq -\sum_{k_2 = 0}^{\infty} \frac{(1 + nx_1 - x_2)}{x_1^2} f\left(0, \frac{k_2}{n + k_2}\right) \binom{n + k_2}{k_2} (1 - x_1 - x_2)^n x_2^{k_2}$$

$$+ \sum_{k_1 = 1}^{\infty} \sum_{k_2 = 0}^{\infty} f\left(\frac{k_1 + 1}{n + k_1 + k_2 + 1}, \frac{k_2}{n + k_1 + k_2 + 1}\right) \binom{n + k_1 + k_2}{k_1 + k_2} \frac{n + k_1 + k_2 + 1}{k_1 + k_2 + 1} \frac{k_1}{x_1}$$

$$\times (1 - x_2) (1 - x_1 - x_2)^n x_1^{k_1} x_2^{k_2} - \sum_{k_1 = 1}^{\infty} \sum_{k_2 = 0}^{\infty} f\left(\frac{k_1}{n + k_1 + k_2}, \frac{k_2}{n + k_1 + k_2}\right) \binom{n + k_1 + k_2}{k_1 + k_2}$$

$$\times \frac{(n + k_1)}{k_1} \frac{k_1}{x_1} (1 - x_1 - x_2)^n x_1^{k_1} x_2^{k_2}$$

Since for $k_1, k_2 \ge 0$

$$\frac{n+k_1+k_2+1}{k_1+k_2+1} < \frac{n+k_1+k_2+1}{k_1+1}, \quad -\frac{n+k_1+k_2}{k_1} < -\frac{n+k_1}{k_1}$$

and

$$1 + nx_1 - x_2 \ge 0$$
, $1 - x_2 \le 1$, for $x_1, x_2 \in S_2$, $n \in \mathbb{N}$,

so we have for n > 1

$$\begin{split} &\frac{\partial}{\partial x_1} \left(\frac{M_n \left(f \, ; \mathbf{x} \right)}{x_1} \right) \leq \\ &\leq - \sum_{k_2 = 0}^{\infty} \frac{\left(1 + n x_1 - x_2 \right)}{x_1^2} f \left(0, \frac{k_2}{n + k_2} \right) \binom{n + k_2}{k_2} \left(1 - x_1 - x_2 \right)^n x_2^{k_2} \\ &+ \sum_{k_1 = 1}^{\infty} \sum_{k_2 = 0}^{\infty} \left\{ f \left(\frac{k_1 + 1}{n + k_1 + k_2 + 1}, \frac{k_2}{n + k_1 + k_2 + 1} \right) \frac{n + k_1 + k_2 + 1}{k_1 + k_2 + 1} \right. \\ &- f \left(\frac{k_1}{n + k_1 + k_2}, \frac{k_2}{n + k_1 + k_2} \right) \frac{\left(n + k_1 + k_2 \right)}{k_1} \right\} \\ &\times \binom{n + k_1 + k_2}{k_1 + k_2} \frac{k_1}{x_1} \left(1 - x_1 - x_2 \right)^n x_1^{k_1} x_2^{k_2}, \end{split}$$

is non-positive, since f is a non-negative function, such that $\frac{f(\mathbf{x})}{x_i}$ (i = 1, 2) is non-increasing for x_i on (0, 1). Similar calculations can be obtained for x_2 .

3. A GENERALIZATION

This section provides an r—th order generalization of the bivariate MKZ operators in the sense of Kirov and Popova's construction [8].

Let $C^r(S_2)$, $r \in \mathbb{N}_0$, denote the space of all functions f defined on S_2 and having all continuous partial derivatives up to order r. By $M_n^{[r]}$, we denote the following generalization of M_n . For $\mathbf{x}, \mathbf{t} \in S_2$,

$$M_n^{[r]}(f;\mathbf{x}) = M_n\left(P_{r,\frac{\mathbf{k}}{n+|\mathbf{k}|}}(\Delta\mathbf{x}, f)\right),\tag{3.1}$$

where

$$\Delta \mathbf{x} := (\Delta x_1, \Delta x_2) = \mathbf{x} - \frac{\mathbf{k}}{n + |\mathbf{k}|} = \left(x_1 - \frac{k_1}{n + |\mathbf{k}|}, x_2 - \frac{k_2}{n + |\mathbf{k}|} \right),$$

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \right),$$

$$(\Delta \mathbf{x}.\nabla)^r := \sum_{i+j=r} \binom{r}{j} (\Delta x_1)^i (\Delta x_2)^j \frac{\partial^r}{\partial x_1^i \partial x_2^j},$$
(3.2)

 $\binom{r}{i}$ are binomial coefficients, and

$$P_{r,\frac{\mathbf{k}}{n+|\mathbf{k}|}}(\Delta \mathbf{x}, f) = f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) + (\Delta \mathbf{x}.\nabla) f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) + \frac{(\Delta \mathbf{x}.\nabla)^2}{2!} f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) + \dots + \frac{(\Delta \mathbf{x}.\nabla)^r}{r!} f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right), \quad (3.3)$$

the Taylor polynomial for f at $\frac{\mathbf{k}}{n+|\mathbf{k}|} \in S_2$.

Now we state the following pointwise estimate for $M_n^{[r]}$

Theorem 3. If $f \in C^r(S_2)$ and $\frac{\partial^r f}{\partial x_1^i \partial x_2^j} \in Lip_A(\gamma)$, i + j = r, then we have

$$\left| M_n^{[r]}(f; \mathbf{x}) - f(\mathbf{x}) \right| \le \frac{2A}{(r-1)!} \frac{\gamma}{\gamma + r} B(\gamma, r) M_n(g; \mathbf{x}) \tag{3.4}$$

for $x \in S_2$, where $g(\mathbf{s}) = |\mathbf{x} - \mathbf{s}|^{r+\gamma}$, $B(\gamma, r)$ is the familiar beta function, $r, n \in \mathbb{N}_0$, $0 < \gamma \le 1$ and A > 0.

Proof. From (3.1) and (3.3) we have

$$f(\mathbf{x}) - M_n^{[r]}(f; \mathbf{x}) = \sum_{k=0}^{\infty} R_{r, \frac{k}{n+|\mathbf{k}|}} (\Delta \mathbf{x}, f) \binom{n+|\mathbf{k}|}{k} \mathbf{x}^k (1-|\mathbf{x}|)^{n+1}, \qquad (3.5)$$

where

$$R_{r,\frac{\mathbf{k}}{n+|\mathbf{k}|}}(\Delta\mathbf{x},f) := f(\mathbf{x}) - \sum_{h=0}^{r} \frac{(\Delta\mathbf{x}.\nabla)^{h}}{h!} f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) \binom{n+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} (1-|\mathbf{x}|)^{n+1}.$$
(3.6)

(3.6) can be given by

$$R_{r,\frac{\mathbf{k}}{n+|\mathbf{k}|}}(\Delta \mathbf{x},f) = \frac{1}{(r-1)!} \int_{0}^{1} (\Delta \mathbf{x}.\nabla)^{r} \times \left[f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|} + t\Delta \mathbf{x}\right) - f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) \right] (1-t)^{r-1} dt.$$
 (3.7)

Using (3.2),(3.7) results in

$$R_{r,\frac{\mathbf{k}}{n+|\mathbf{k}|}}(\Delta\mathbf{x},f) = \frac{1}{(r-1)!} \int_{0}^{1} \sum_{i+j=r} {r \choose j} (\Delta x_{1})^{i} (\Delta x_{2})^{j} \frac{\partial^{r}}{\partial x_{1}^{i} \partial x_{2}^{j}} \times \left[f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|} + t\Delta\mathbf{x}\right) - f\left(\frac{\mathbf{k}}{n+|\mathbf{k}|}\right) \right] (1-t)^{r-1} dt.$$
 (3.8)

Substituting (3.8) into (3.5) and taking into account that $\frac{\partial^r f}{\partial x_1^i \partial x_2^j} \in Lip_A(\gamma)$ we arrive at the following.

$$\left| f\left(\mathbf{x}\right) - M_{n}^{[r]}\left(f;\mathbf{x}\right) \right| \leq \frac{A}{(r-1)!} \sum_{\mathbf{k}=0}^{\infty} \left(|\Delta x_{1}| + |\Delta x_{2}| \right)^{r} \left(|\Delta x_{1}|^{\gamma} + |\Delta x_{2}|^{\gamma} \right)$$

$$\times \binom{n+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \left(1 - |\mathbf{x}| \right)^{n+1} \int_{0}^{1} t^{\gamma} \left(1 - t \right)^{r-1} dt$$

$$\leq \frac{2A}{(r-1)!} \sum_{\mathbf{k}=0}^{\infty} \left(|\Delta x_{1}| + |\Delta x_{2}| \right)^{r+\gamma} \binom{n+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \left(1 - |\mathbf{x}| \right)^{n+1} B\left(\gamma + 1, r \right)$$

$$\leq \frac{2A}{(r-1)!} \frac{\gamma}{\gamma + r} B\left(\gamma, r \right) \sum_{\mathbf{k}=0}^{\infty} \left| \mathbf{x} - \frac{\mathbf{k}}{n+|\mathbf{k}|} \right|^{r+\gamma} \binom{n+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \left(1 - |\mathbf{x}| \right)^{n+1},$$
which proves (3.4).

For the uniform convergence of $M_n^{[r]}(f)$, let us consider the above mentioned function $g(\mathbf{s}) = |\mathbf{x} - \mathbf{s}|^{r+\gamma}$. Obviously $g(\mathbf{x}) = 0$ and g is continuous on S_2 . From multivariate extension of the Bohman-Korovkin theorem (see [12]) we have

$$||M_n(g)||_{C(S_2)} \to 0 \text{ as } n \to \infty.$$

Therefore by means of Theorem 3 we arrive at the following result

$$\left\|M_n^{[r]}(f) - f\right\|_{C(S_2)} \to 0 \text{ as } n \to \infty.$$

REFERENCES

- [1] A. Altın, O. Doğru, and F. Taşdelen, "The generalization of Meyer-König and Zeller operators by generating functions," *J. Math. Anal. Appl.*, vol. 312, no. 1, pp. 181–194, 2005.
- [2] F. Cao, C. Ding, and Z. Xu, "On multivariate Baskakov operator," *J. Math. Anal. Appl.*, vol. 307, no. 1, pp. 274–291, 2005.
- [3] E. W. Cheney and A. Sharma, "Bernstein power series," Can. J. Math., vol. 16, pp. 241-252, 1964.
- [4] O. Doğru and O. Duman, "Statistical approximation of Meyer-König and Zeller operators based on *q*-integers," *Publ. Math.*, vol. 68, no. 1-2, pp. 199–214, 2006.
- [5] O. Doğru and V. Gupta, "Korovkin-type approximation properties of bivariate *q*-Meyer-König and Zeller operators," *Calcolo*, vol. 43, no. 1, pp. 51–63, 2006.
- [6] M. Khan, B. Della Vecchia, and A. Fassih, "On the monotonicity of positive linear operators," *J. Approx. Theory*, vol. 92, no. 1, pp. 22–37, art. no. at 963 113, 1998.
- [7] R. A. Khan, "Some probabilistic methods in the theory of approximation operators," *Acta Math. Acad. Sci. Hung.*, vol. 35, pp. 193–203, 1980.
- [8] G. Kirov and L. Popova, "A generalization of the linear positive operators," *Math. Balk., New Ser.*, vol. 7, no. 2, pp. 149–162, 1993.
- [9] Z. Li, "Bernstein polynomials and modulus of continuity," *J. Approx. Theory*, vol. 102, no. 1, pp. 171–174, art. no. jath.1999.3374, 2000.
- [10] A.-J. López-Moreno and F.-J. Muñoz-Delgado, "Asymptotic expansion of multivariate conservative linear operators," *J. Comput. Appl. Math.*, vol. 150, no. 2, pp. 219–251, 2003.
- [11] T. Trif, "An elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators," *JIPAM, J. Inequal. Pure Appl. Math.*, vol. 4, no. 5, p. 3, 2003.
- [12] V. I. Volkov, "On the convergence of sequences of linear positive operators in the space of continuous functions of two variables," *Dokl. Akad. Nauk SSSR*, vol. 115, pp. 17–19, 1957.
- [13] H. Wang, "Properties of convergence for the *q*-Meyer-König and Zeller operators," *J. Math. Anal. Appl.*, vol. 335, no. 2, pp. 1360–1373, 2007.

Author's address

Ali Olgun

Kırıkkale University, Faculty of Art and Science, Department of Mathematics, 71450, Yahşihan, Kırıkkale, Turkey

E-mail address: aliolgun71@gmail.com