

Miskolc Mathematical Notes Vol. 3 (2002), No 2, pp. 83-89

# Some results on one-sided generalized Lie ideals with derivation

Neşet Aydin, Kâzim Kaya, and Öznur Gölbaşi

# SOME RESULTS ON ONE-SIDED GENERALIZED LIE IDEALS WITH DERIVATION

Neşet Aydın

Mersin University, Faculty of Arts and Science, Department of Mathematics Mersin, Turkey

neseta@mersin.edu.tr

KÂZIM KAYA 18 Mart University, Faculty of Arts and Science, Department of Mathematics

Çanakkale, Turkey kkaya@comu.edu.tr

ÖZNUR GÖLBAŞI Cumhuriyet University, Faculty of Arts and Science, Department of Mathematics Sivas, Turkey ogolbasi@cumhuriyet.edu.tr

[Received: June 6, 2001]

**Abstract.** Let *R* be a prime ring with a characteristic not equal to two,  $\sigma, \tau$  be automorphisms of *R*, and *d* be a nonzero derivation of *R* commuting with  $\sigma$  and  $\tau$ . It is proved that for any  $(\sigma, \tau)$ -left Lie ideal *U* of *R*: (1) if  $d(U) \subseteq Z$ , then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ , (2) if  $d^2(U) = 0$ , then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ , (3) if char  $R \neq 2, 3, d(U) \subseteq U$  and  $d^2(U) \subseteq Z$ , then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

Mathematical Subject Classification: 16N60, 16W25, 16A72, 16U80 Keywords: prime ring, Lie ideal, generalized Lie ideal, derivation

## 1. Introduction

Let R be a ring and  $\sigma, \tau$  be two mappings from R into itself. We write [x, y],  $[x, y]_{\sigma,\tau}$  for xy - yx and  $x\sigma(y) - \tau(y)x$ , respectively, and make extensive use of basic commutator identities: (xy, z) = x[y, z] + (x, z)y = x(y, z) - [x, z]y,  $[xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y$ .

An additive mapping  $D: R \to R$  is called a *derivation* if D(xy) = D(x)y + xD(y) holds for all  $x, y \in R$ . A derivation D is *inner* if there exists an  $a \in R$  such that D(x) = [a, x] holds for all  $x \in R$ .

For subsets  $A, B \subset R$ , let [A, B]  $([A, B]_{\sigma,\tau})$  be the additive subgroup generated by all [a, b]  $([a, b]_{\sigma,\tau})$  for all  $a \in A$  and  $b \in B$ . We recall that in a *Lie ideal*, *L* is an additive subgroup of R such that  $[R, L] \subset L$ . We first introduce the generalized Lie ideal in [6] as follows. Let U be an additive subgroup of R,  $\sigma, \tau : R \to R$  two mappings. Then (i) U is a  $(\sigma, \tau)$ -right Lie ideal of R if  $[U, R]_{\sigma, \tau} \subset U$ . (ii) U is a  $(\sigma, \tau)$ -left Lie ideal of R if  $[R, U]_{\sigma, \tau} \subset U$ . (iii) U is both a  $(\sigma, \tau)$ -right Lie ideal and  $(\sigma, \tau)$ -left Lie ideal of R then U is a  $(\sigma, \tau)$ -Lie ideal of R. Every Lie ideal of R is a (1, 1)-left Lie ideal of R, where  $1 : R \to R$  is the identity map. As an example, let Ibe the set of integers,

$$R = \left\{ \left( \begin{array}{cc} x & y \\ z & t \end{array} \right) \mid x, y, z, t \in I \right\},$$
$$U = \left\{ \left( \begin{array}{cc} x & y \\ 0 & x \end{array} \right) \mid x, y \in I \right\} \subset R,$$

and  $\sigma, \tau : R \to R$  the mappings defined by  $\tau(x) = axa$ ,  $\sigma(x) = bxb^{-1}$ , where  $a = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$  and  $b = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in R$ . Then U is a  $(\sigma, \tau)$ -left Lie ideal but not a Lie ideal of R. Some algebraic properties of  $(\sigma, \tau)$ -Lie ideals are considered in [2], [3] and [6], where further references can be found.

Let R be a prime ring with a characteristic not equal to two,  $d: R \to R$  a nonzero derivation of R and U a Lie ideal of R. In [5] Bergen at all state that if  $d^2(U) = 0$ , then  $U \subset Z$ . Lee and Lee extended this result that if  $d^2(U) \subset Z$ , then  $U \subset Z$  in [4]. Let d be a nonzero derivation such that  $\sigma d = d\sigma, \tau d = d\tau$  and U a  $(\sigma, \tau)$ -Lie ideal of R. Aydın and Soytürk [3] proved that if  $d^2(U) = 0$ , then  $U \subset Z$ . In the present paper, we generalize this result on  $(\sigma, \tau)$ -left Lie ideal of R. Furthermore, we shall extend this theorem by proving that  $d^2(U) \subset Z$  then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  in the case of a characteristic not equal to two and three.

Throughout, R will represent a prime ring with a characteristic not equal to 2 with automorphisms  $\sigma, \tau$  and non-zero derivation d such that  $\sigma d = d\sigma, \tau d = d\tau$  and Z the center of R, U a  $(\sigma, \tau)$ -left Lie ideal of R. Further, we often use the relations:

 $[xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau}y.$ 

### 2. Results

**Lemma 1.** Let U a  $(\sigma, \tau)$ -left Lie ideal of R.  $d^2(U) = 0$  and  $d(U) \subset Z$  then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

*Proof.* If  $U \subset Z$ , then the proof is obvious. So, we assume that  $U \not\subset Z$ . For any  $u \in U$  and  $x \in R$ ,  $\tau(u)[x, u]_{\sigma,\tau} = [\tau(u)x, u]_{\sigma,\tau} + [\tau(u), \tau(u)]x \in U$ . By hypothesis,  $0 = d^2(\tau(u)[x, u]_{\sigma,\tau}) = d(d(\tau(u))[x, u]_{\sigma,\tau} + \tau(u)d([x, u]_{\sigma,\tau})) = 2d(\tau(u))d([x, u]_{\sigma,\tau})$ . Since  $charR \neq 2$ , we obtain  $d(\tau(u))d([x, u]_{\sigma,\tau}) = 0$ , for all  $x \in R, u \in U$ . Because of  $d(U) \subset Z$  we have,

$$d(u) = 0 \qquad or \qquad d([x, u]_{\sigma, \tau}) = 0 \qquad \forall x \in R, u \in U.$$
(2.1)

Assume  $d(u) \neq 0$ . Then  $d([x, u]_{\sigma,\tau}) = 0$ , for all  $x \in R$ . Writing  $x\sigma(u)$  by x in this equation,  $0 = d([x\sigma(u), u]_{\sigma,\tau}) = d([x, u]_{\sigma,\tau}\sigma(u)) = d([x, u]_{\sigma,\tau})\sigma(u) + [x, u]_{\sigma,\tau}d(\sigma(u))$ 

we obtain

$$[x, u]_{\sigma,\tau} d(\sigma(u)) = 0 \qquad \forall x \in R.$$
(2.2)

Substituting  $xy, y \in R$  for x in (2.2), we have  $0 = [xy, u]_{\sigma,\tau} d(\sigma(u)) = x[y, u]_{\sigma,\tau} d(\sigma(u)) + [x, \tau(u)]y d(\sigma(u))$  and so,

$$R, \tau(u)]Rd(\sigma(u)) = 0.$$

By primeness of R, we obtain  $u \in Z$ . Thus, if we return to (2.1), then we get

$$d(u) = 0 \qquad or \qquad u \in Z.$$

Now, let us define the subsets  $L = \{u \in U \mid u \in Z\}$  and  $K = \{u \in U \mid d(u) = 0\}$ . Clearly, each L and K is an additive subgroup of U. Moreover, U is the set-theoretic union of L and K. But a group cannot be the set-theoretic union of two proper subgroups, hence L = U or K = U. In the former case,  $U \subset Z$ , which is a contradiction. Therefore, it must be d(U) = 0 and so,

$$0 = d([x, u]_{\sigma, \tau}) = [d(x), u]_{\sigma, \tau} \quad \text{for all } x \in R, \ u \in U.$$

By [7, Lemma 1], we obtain  $\sigma(u) + \tau(u) \in \mathbb{Z}$ , for all  $u \in U$ . Hence the proof is complete.

**Theorem 1.** Let U a  $(\sigma, \tau)$ -left Lie ideal of R. If  $d(U) \subset Z$  then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

*Proof.* Assume that  $U \not\subset Z$ . For any  $x, y \in R$  and  $u, v \in U$ , by hypothesis,  $d([d(v)x, u]_{\sigma, \tau}) = d(d(v)[x, u]_{\sigma, \tau} + [d(v), \tau(u)]x) = d(d(v)[x, u]_{\sigma, \tau}) \in Z$  and so,

$$d^{2}(v)[x,u]_{\sigma,\tau} + d(v)d([x,u]_{\sigma,\tau}) \in Z$$

Since Z is a subring of R and  $d(U) \subset Z$ , we have

$$d^{2}(v)[x,u]_{\sigma,\tau} \in Z \qquad \forall x \in R, u, v \in U.$$

$$(2.3)$$

Replacing x by  $x\sigma(u), u \in U$  in (2.3) and applying the above argument, we obtain

$$d^2(v)[x,u]_{\sigma,\tau}\sigma(u) \in Z \qquad \forall x \in R, u, v \in U.$$

Since  $d^2(v)[x, u]_{\sigma,\tau} \in \mathbb{Z}$  and R is prime ring, we get

$$d^2(v)[x,u]_{\sigma,\tau} = 0 \qquad or \qquad u \in Z.$$

If  $d^2(v)[x, u]_{\sigma,\tau} = 0$  for all  $x \in R$ . In this equation by taking  $xy, y \in R$  for x and using this equation, we have  $0 = d^2(v)[xy, u]_{\sigma,\tau} = d^2(v)[x, u]_{\sigma,\tau}y + d^2(v)x[y, \sigma(u)] = d^2(v)x[y, \sigma(u)]$ . By the primeness of R, it implies that  $d^2(U) = 0$  or  $U \subset Z$ . In the former case, we get  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  by Lemma 1. Thus, we conclude that  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

Now, suppose that U is a  $(\sigma, \tau)$ -left Lie ideal of R. Since for all  $u, v \in U$  and  $x \in R$ ,

$$[x, d(u) + v]_{\sigma,\tau} = [x, d(u)]_{\sigma,\tau} + [x, v]_{\sigma,\tau}$$
  
=  $[x, d(u)]_{\sigma,\tau} + [d(x), u]_{\sigma,\tau} - [d(x), u]_{\sigma,\tau} + [x, v]_{\sigma,\tau}$   
=  $d([x, u]_{\sigma,\tau}) - [d(x), u]_{\sigma,\tau} + [x, v]_{\sigma,\tau} \in d(U) + U.$ 

We conclude that d(U) + U is a  $(\sigma, \tau)$ -left Lie ideal of R. Furthermore, if  $d^2(U) = 0$ then  $d(d(U) + U) \subset d(U) \subset d(U) + U$  and  $d^2(d(U) + U) = 0$ . Therefore without losing generality, we may assume that if U is a  $(\sigma, \tau)$ -left Lie ideal of such that  $d^2(U) = 0$ , then  $d(U) \subset U$ .

**Lemma 2.** Let U a  $(\sigma, \tau)$ -left Lie ideal of R.  $d^2(U) = 0$  and a be an element of R. If  $ad([R, U]_{\sigma, \tau}) = 0$ , then a = 0 or  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

*Proof.* For  $x[\sigma(u), \sigma(u)] + [x, u]_{\sigma,\tau}\sigma(u) = [x\sigma(u), u]_{\sigma,\tau} \in [R, U]_{\sigma,\tau}$  by hypothesis  $0 = ad([x, u]_{\sigma,\tau}\sigma(u)) = ad([x, u]_{\sigma,\tau})\sigma(u) + a[x, u]_{\sigma,\tau}d(\sigma(u))$  and so

$$a[x, u]_{\sigma, \tau} d(\sigma(u)) = 0, \forall x \in R, u \in U.$$

$$(2.4)$$

Since  $d^2(U) = 0$ , from the above remark we may assume  $d(U) \subset U$ . So, replacing  $u + d(v), v \in U$  by u in (2.4)

$$0 = a[x, u + d(v)]_{\sigma,\tau} d(\sigma(u + d(v)))$$

Expanding the last equation and using  $d^2(U) = 0, \sigma d = d\sigma$  and (2.4), we get  $a[x, d(v)]_{\sigma,\tau} d(\sigma(u)) = 0$ , for all  $u, v \in U, x \in R$ . That is,

$$\sigma^{-1}(a[x, d(v)]_{\sigma, \tau})d(U) = 0.$$

By [1, Theorem 2] we have  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  or  $a[x, d(v)]_{\sigma,\tau} = 0$ . Replacing  $xy, y \in R$  in the last equation, we obtain  $ax[y, \sigma(d(v)] = 0$ . Since R is a prime ring, we conclude a = 0 or  $d(U) \subset Z$ . It gives  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  from Theorem 1. This completes the proof.

**Theorem 2.** Let U a  $(\sigma, \tau)$ -left Lie ideal of R. If  $d^2(U) = 0$  then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

*Proof.* Assume that  $U \not\subseteq Z$ . There exists a  $u_0 \in U$  such that

$$\sigma(u_0) + \tau(u_0) \notin Z. \tag{2.5}$$

For  $[x, u]_{\sigma, \tau} \sigma(u) \in U$ ,

$$0 = d^2([x, u]_{\sigma, \tau} \sigma(u))$$
  
=  $d^2([x, u]_{\sigma, \tau})\sigma(u) + 2d([x, u]_{\sigma, \tau})d(\sigma(u)) + [x, u]_{\sigma, \tau}d^2(\sigma(u)).$ 

In view of the hypothesis and  $charR \neq 2$ , we have

$$d([x, u]_{\sigma, \tau})d(\sigma(u)) = 0, \forall x \in R, u \in U.$$
(2.6)

Similarly for  $\tau(u)[x, u]_{\sigma, \tau} \in U$ , we get

$$d(\tau(u))d([x,u]_{\sigma,\tau}) = 0, \forall x \in R, u \in U.$$

$$(2.7)$$

By hypothesis  $0 = d^2([u, v]_{\sigma, \tau}) = [d^2(u), v]_{\sigma, \tau} + 2[d(u), d(v)]_{\sigma, \tau} + [u, d^2(v)]_{\sigma, \tau}$ . Using  $d^2(U) = 0$  and  $char R \neq 2$ , we obtain

$$[d(u), d(v)]_{\sigma,\tau} = 0, \forall u, v \in U,$$

That is

$$d(u)\sigma(d(v)) = \tau(d(v))d(u), \forall u, v \in U.$$
(2.8)

Now, let us linearize (2.7) on u = u + v and use (2.8), then we have

$$l(\tau(u))d([x,v]_{\sigma,\tau} + d(\tau(v))d([x,u]_{\sigma,\tau}) = 0, \forall x \in R, u, v \in U.$$
(2.9)

Multiply on the right by  $d(\sigma(u))$  and use (2.8), (2.6), we obtain

$$(d(\tau(u)))^2 d([x,v]_{\sigma,\tau}) = 0, \forall x \in R, u, v \in U.$$

The last equation reduces to  $(d(\tau(U)))^2 d([R, U]_{\sigma,\tau}) = 0$ . By Lemma 2 and (2.5), we get  $(d(U))^2 = 0$ . Otherwise, writing d(v) for v in (2.9) and using  $d\tau = \tau d$ , we see that

$$d(U)\tau^{-1}([d(x), d(v)]_{\sigma,\tau}) = 0, \forall x \in R, v \in U$$

This means from [1, Theorem 2]  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  or  $[d(x), d(v)]_{\sigma,\tau} = 0$ . By our assumption, we get  $[d(x), d(v)]_{\sigma,\tau} = 0$ , for all  $x \in R, v \in U$ . If we write  $xd(u), u \in U$  for x in the last equation, we have  $0 = [d(xd(u), d(v)]_{\sigma,\tau} = [d(x)d(u), d(v)]_{\sigma,\tau} = [d(x), \tau(d(v)]d(u)$  and so,

$$[d(R), \tau(d(U))]d(U) = 0$$

From the above argument, we have  $d(U) \subset Z$  by [1, Theorem 2]. That is  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  from Theorem 1.

**Theorem 3.** Let  $U \ a \ (\sigma, \tau)$ -left Lie ideal of R and  $char R \neq 2, 3$ . If  $d(U) \subset U$  and  $d^2(U) \subset Z$ , then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ .

*Proof.* If  $U \subset Z$ , then the proof of the theorem is obvious. So, we assume that  $U \nsubseteq Z$ . That is,

$$\sigma(u_0) + \tau(u_0) \notin Z, \ \exists u_0 \in U.$$

$$(2.10)$$

Suppose that d(Z) = 0. Thus, we have

$$d^{3}(U) = d(d^{2}(U)) \subset d(Z) = 0.$$

Now, for  $\tau(u)[x, u]_{\sigma, \tau} \in U$ , where  $x \in R$  and  $u \in U$ ,

$$0 = d^{3}(\tau(u)[x, u]_{\sigma, \tau})$$
  
=  $3(d^{2}(\tau(u))d([x, u]_{\sigma, \tau}) + d(\tau(u))d^{2}([x, u]_{\sigma, \tau})$ 

Since  $charR \neq 3$ , we get

$$d^{2}(\tau(u))d([x,u]_{\sigma,\tau}) + d(\tau(u))d^{2}([x,u]_{\sigma,\tau}) = 0.$$

Taking d(u) by u and using  $\tau d = d\tau$ ,  $d^3(U) = 0$ , we obtain

$$d^{2}(\tau(u))d^{2}([x,d(u)]_{\sigma,\tau}) = 0$$

Since  $d^2(U) \subset Z$ , the last equation gives us

$$d^{2}(u) = 0$$
 or  $d^{2}([x, d(u)]_{\sigma, \tau}) = 0.$ 

Let us define  $K = \{u \in U \mid d^2(u) = 0\}$  and  $L = \{u \in U \mid d^2([x, d(u)]_{\sigma,\tau}) = 0, \forall x \in R\}$ . Clearly, both K and L are additive subgroups of U. Moreover, U is the set-theoretic union of K and L. But a group cannot be the set-theoretic union of two proper subgroups, hence K = U or L = U. If K = U then  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  by Theorem 2 and it contradicts (2.10). So, we get L = U. That is,

$$d^{2}([x, d(u)]_{\sigma, \tau}) = 0, \forall x \in R, u \in U.$$
(2.11)

In this equation replace x by  $\tau(d(u))x, u \in U, x \in R$ , then we get

$$0 = d^{2}(\tau(d(u))[x, d(u)]_{\sigma,\tau})$$
  
=  $\tau(d^{3}(u))[x, d(u)]_{\sigma,\tau} + 2\tau(d^{2}(u))d([x, d(u)]_{\sigma,\tau}) + \tau(d(u))d^{2}([x, d(u)]_{\sigma,\tau}).$ 

Using (2.11) and  $d^3(U) = 0$ ,  $charR \neq 2$ , we obtain  $\tau(d^2(u))d([x, d(u)]_{\sigma,\tau}) = 0$ . Since  $d^2(U) \subset Z$ , we have

$$d^{2}(u) = 0$$
 or  $d([x, d(u)]_{\sigma, \tau}) = 0$ 

Let  $K = \{u \in U \mid d^2(u) = 0\}$  and  $L = \{u \in U \mid d([x, d(u)]_{\sigma, \tau}) = 0, \forall x \in R\}$ . Each of K and L is an additive subgroup of U such that  $U = K \cup L$ . The above trick gives us U = K or U = L. In the former case,  $d^2(U) = 0$ , which forces  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$  by Theorem 2, which is a contradiction. Thus U = L and hence  $d([x, d(u)]_{\sigma, \tau}) = 0$  for all  $u \in U$ . Replacing  $\tau(d(u))x, u \in U, x \in R$  by x we have  $\tau(d^2(u))[x, d(u)]_{\sigma, \tau} = 0$ . Since  $d^2(U) \subset Z$ , we obtain

$$d^{2}(u) = 0$$
 or  $[x, d(u)]_{\sigma,\tau} = 0$  for all  $x \in R$ . (2.12)

Again applying the above trick, we obtain  $[x, d(u)]_{\sigma,\tau} = 0$ . Taking  $xy, y \in R$  in place of x and using (2.12), we have

$$0 = [xy, d(u)]_{\sigma,\tau} = x[y, d(u)]_{\sigma,\tau} + [x, \sigma(d(u))]y = [x, \sigma(d(u))]y.$$

Since R is a prime ring, we obtain  $d(U) \subset Z$ . By Theorem 1, it gives  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ , which is a contradiction. Thus, in the case of d(Z) = 0 the proof is completed.

Now, we would like to settle the problem when d(Z) is different from zero. There is a non-zero  $d(\alpha) \in d(Z)$  such that  $\alpha \in Z$ . In view of the hypothesis for  $[\alpha x, u]_{\sigma,\tau} = \alpha[x, u]_{\sigma,\tau} \in U$ ,

$$d^{2}(\alpha[x,u]_{\sigma,\tau}) = d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}) + \alpha d^{2}([x,u]_{\sigma,\tau}) \in \mathbb{Z}.$$

Since  $d^2(U) \subset Z$ , the third term is in the center of R. So, we get

$$d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}) \in \mathbb{Z}, \forall x \in \mathbb{R}, u \in U.$$

$$(2.13)$$

Replace x by  $x\alpha$  in (2.13) to get

$$(d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}))\alpha + 2d(\alpha)[x,u]_{\sigma,\tau}d(\alpha) \in \mathbb{Z}.$$

However, in view of (2.13) and  $\alpha \in Z$ , this equation reduces to  $2d(\alpha)[x, u]_{\sigma,\tau}d(\alpha) \in Z$ . Since R is a prime ring,  $charR \neq 2$  and  $0 \neq d(\alpha) \in Z$ , we have  $[x, u]_{\sigma,\tau} \in Z$  for all  $x \in R, u \in U$ . By [8, Lemma 1], we obtain  $\sigma(u) + \tau(u) \in Z$ , for all  $u \in U$ . This completes the proof.

### REFERENCES

- AYDIN, N.: Notes on generalized Lie ideals, Analele Universitatii din Timisoara Seria, Matematica-Informatica-Vol., XXVI(2), (1999), 7-13.
- [2] AYDIN, N. and KANDAMAR, H.: (σ, τ)-Lie ideals in prime rings, Doğa Tr. J. of Math., 18(2), (1994), 143-148.

- [3] AYDIN, N. and SOYTÜRK, M.:  $(\sigma, \tau)$ -Lie ideals in prime rings with derivations, Doğa Tr. J. of Math. **19**, (1993), 239-244.
- [4] LEE, P. H. and LEE, T. K.: Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica., 11, (1983), 75-80.
- [5] BERGEN, J., HERSTEIN, I. N. and KERR, J. W.: Lie ideals and derivation of prime rings, J. of Algebra, 71, (1981), 259-267.
- [6] KAYA, K.:  $(\sigma, \tau)$ -Lie ideals in prime rings, An. Univ. Timisoara Stiinte Math., **30**(2-3), 251-255.
- [7] KAYA, K., GÖLBAŞI, Ö. and AYDIN, N.: Some results for generalized Lie ideals in prime rings with derivation II., Applied Mathematics E-Notes, 1 (2001), 24-30.
- [8] SOYTÜRK, M.: (σ, τ)-Lie ideals in prime rings with derivations, Doğa Tr. J. of Math., 18, (1994), 280-283.