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RANK SOLUTIONS TO A SYSTEM OF MATRIX EQUATIONS
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Abstract. Let n�n complex matrices P andQ be nontrivial generalized reflection matrices, i.e.,
P � D P D P�1 ¤ In, Q� DQ DQ�1 ¤ In. A complex matrix A with order n is said to be
a .P;Q/ generalized anti-reflexive matrix, if PAQ D �A. We in this paper mainly investigate
the .P;Q/ generalized anti-reflexive maximal and minimal rank solutions to the system of mat-
rix equation AX D B . We present necessary and sufficient conditions for the existence of the
maximal and minimal rank solutions, with .P;Q/ generalized anti-reflexive, of the system. Exp-
ressions of such solutions to this system are also given when the solvability conditions are satis-
fied. In addition, in correspondence with the minimal rank solution set to the system, the explicit
expression of the nearest matrix to a given matrix in the Frobenius norm has been provided.
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1. INTRODUCTION

Throughout this paper, let C n�mr be the set of all n�m complex matrices with
rank r , UC n�n be the set of all n� n unitary matrices. Denote by In the identity
matrix with order n. Let Jn D .enen�1 : : : e1/, where ei is the i th column of In. For
a matrix A, A�, AC, kAk and r.A/ represent its conjugate transpose, Moore-Penrose
inverse, Frobenius norm and rank, respectively.

Definition 1. Let P;Q 2 C n�n be nontrivial generalized reflection matrices, i.e.,
P �DP DP�1¤ In,Q�DQDQ�1¤ In, then matrix A 2C n�n is said to be the
.P;Q/ generalized reflexive (or anti-reflexive) matrix, if PAQDA(or PAQD�A).

Obviously, if let P D Q D Jn in Definition 1, then matrix A is the well-known
centrosymmetric (or anti-centrosymmetric) matrix, which plays an important role in
many areas (see, e.g., [6, 13, 16–19]), and has been widely and extensively studied
(see, e.g., [1, 25, 28]). Moreover, let P D Q, then matrix A is called generalized
centrosymmetric (or anti-centrosymmetric) matrix [12, 22]. As being the extensions
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of the centrosymmetric matrices and generalized centrosymmetric matrices, the ge-
neralized reflection matrices and generalized reflexive matrices have many special
properties and practical applications, and have also been frequently investigated, see
for instance, [3, 7, 8, 26, 27].

In matrix theory and applications, many problems are closely related to the ranks
of some matrix expressions with variable entries, so it is necessary to explicitly cha-
racterize the possible ranks of the matrix expressions concerned. The study on the
possible ranks of matrix equations can be traced back to the late 1970s (see, e.g.
[2, 9–11, 23]. Recently, the extremal ranks, i.e. maximal and minimal ranks, of some
matrix expressions have found many applications in control theory [4, 5], statistics,
and economics (see, e.g. [14, 15, 21]).

In this paper, we consider the .P;Q/ generalized anti-reflexive extremal rank so-
lutions of the matrix equation

AX D B; (1.1)

where A and B are given matrices in C n�m. In 1987, Uhlig [23] gave the maximal
and minimal ranks of solutions to system (1.1). By applying the matrix rank met-
hod, recently, Tian [20] obtained the minimal rank of solutions to the matrix equation
A D BX CYC . Xiao et al. [24] in 2009 considered the symmetric minimal rank
solution to system (1.1). The .P;Q/ generalized reflexive and anti-reflexive mat-
rices with respect to the generalized reflection matrix dual .P;Q/ are two classes
of important matrices and have engineering and scientific applications. The .P;Q/
generalized anti-reflexive maximal and minimal rank solutions of the matrix equa-
tion (1.1), however, has not been considered yet. In this paper, we will discuss this
problem.

We also consider the matrix nearness problem

min
X2Sm



X � QX


F
; (1.2)

where QX is a given matrix in C n�m and Sm is the minimal rank solution set of Eq.
(1.1).

The matrix nearness problem (1.2) is the so-called optimal approximation prob-
lem, which has important application in practice, and has been discussed far and
wide (see, e.g., [7, 8, 12, 25, 27] and the references therein).

We organize this paper as follows. In Section 2, we first establish a representation
for the generalized reflection matrix dual .P;Q/. Then we give necessary and suffici-
ent conditions for the existence of .P;Q/ generalized anti-reflexive solution to (1.1).
We also give the expressions of such solutions when the solvability conditions are sa-
tisfied. In Section 3 we establish formulas of maximal and minimal ranks of .P;Q/
generalized anti-reflexive solutions to (1.1), and present the .P;Q/ generalized anti-
reflexive extremal rank solutions to (1.1). In Section 4 we present the expression of
the optimal approximation solution to the set of the minimal rank solution.
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2. .P;Q/ GENERALIZED ANTI-REFLEXIVE SOLUTION TO (1.1)

In this section we first introduce some structure properties of the generalized ref-
lection matrix dual .P;Q/ and establish the representations of .P;Q/ generalized
anti-reflexive matrix. Then we give the necessary and sufficient conditions for the
existence of and the expressions for the .P;Q/ generalized anti-reflexive solution of
Eq. (1.1).

Lemma 1 ([12]). Given generalized reflection matrices P;Q 2 C n�n. Let

P1 D
InCP

2
2 C n�nr ; Q1 D

InCQ

2
2 C n�ns ; P2 D

In�P

2
; Q2 D

In�Q

2
:

Then r.P2/ D n� r , r.Q2/ D n� s, and there exist column orthogonal matrices
U11 2 C

n�r , U22 2 C n�.n�r/, V11 2 C n�s , V22 2 C n�.n�s/, such that

P1 D U11U
�
11; P2 D U22U

�
22; Q1 D V11V

�
11; Q2 D V22V

�
22: (2.1)

Remark 1. Denote U D ŒU11;U22�, V D ŒV11;V22�, it follows from Lemma 1 that
U;V 2 UC n�n, and

P D U

�
Ir 0

0 �In�r

�
U �; QD V

�
Is 0

0 �In�s

�
V �; (2.2)

where the symbols ”0” stand for null matrices with associated orders .in the sequel,
we always mark them like this/.

Lemma 2 ([8]). Let A 2 C n�n and generalized reflection matrices P , Q with the
forms of .2:2/, then A is the .P;Q/ generalized anti-reflexive matrix if and only if

AD U

�
0 M

N 0

�
V �; (2.3)

where M 2 C r�.n�s/, N 2 C .n�r/�s are arbitrary.

Given matrices A1 2 Cm�n, B1 2 Cm�p, by making generalized singular value
decomposition to ŒA1;B1�, we have

A1 DM1˙A1
U1; B1 DM1˙B1

V1 (2.4)

where M1 is a m�m nonsingular matrix, U1 2 UC n�n, V1 2 UCp�p,

˙A1
D

2664
I 0 0

0 SA1
0

0 0 0

0 0 0

3775
r1� s1
s1

k1� r1
m�k1

; ˙B1
D

2664
0 0 0

0 SB1
0

0 0 I

0 0 0

3775
r1� s1
s1

k1� r1
m�k1

;

k1 D rŒA1;B1�, s1 D r.A1/C r.B1/� rŒA1;B1�, SA1
D diag.˛1; : : : ;˛s1/, SB1

D

diag.ˇ1; : : : ;ˇs1/, r1 D r.A1/, 0 < ˛s1 � � � � � ˛1 < 1, 0 < ˇ1 � � � � � ˇs1 < 1,
˛2i Cˇ

2
i D 1, i D 1; : : : ; s1.
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Lemma 3. Given matrices A1 2Cm�n, B1 2Cm�p, the generalized singular va-
lue decomposition of the matrix pair ŒA1;B1� is given by (2.4), then matrix equation
A1X D B1 is consistent, if and only if

rŒA1;B1�D r.A1/; (2.5)

and the expression of its general solution is

X D U �1

24 0 0

0 S�1A1
SB1

Y31 Y32

35V1; (2.6)

where Y31 2 C .n�r1/�.p�s1/, Y32 2 C .n�r1/�s1 are arbitrary.

Proof. With (2.4)(2.4) we have

r.B1�A1X/D r.M1˙B1
V1�M1˙A1

U1X/D r.˙B1
�˙A1

U1XV
�
1 /:

Let Y D U1XV �1 and Partition Y with Y D .Yij /3�3, then

˙B1
�˙A1

Y D

2664
�Y11 �Y12 �Y13
�SA1

Y21 SB1
�SA1

Y22 �SA1
Y23

0 0 IB1

0 0 0

3775
r1� s1
s1

k1� r1
m�k1

: (2.7)

Noting that Yij .i D 1;2;j D 1;2;3/ are arbitrary, then

minr.B1�A1X/Dminr.˙B1
�˙A1

Y /D k1� r1 D r.A1;B1/� r.A1/:

A1X D B1 is solvable in C n�p if and only if minr.B1�A1X/ D 0. Then matrix
equation A1X DB1 is consistent, if and only if (2.5) holds. In this case, from (2) and
Y D U1XV

�
1 , its general solution can be expressed as (2.6). The proof is completed.

�

Assume the given generalized reflection matrices P , Q with the forms of (2.2).
Let

AU D ŒA2;A3�; BV D ŒB2;B3�; (2.8)

where A2 2 Cm�r , A3 2 Cm�.n�r/, B2 2 Cm�s , B3 2 Cm�.n�s/, and the generali-
zed singular value decomposition of the matrix pair ŒA2;B3�, ŒA3;B2� are, respecti-
vely,

A2 DM2˙A2
U2; B3 DM2˙B3

V2; (2.9)

A3 DM3˙A3
U3; B2 DM3˙B2

V3; (2.10)

whereU2 2UC r�r , V2 2UC .n�s/�.n�s/,U3 2UC .n�r/�.n�r/, V3 2UC s�s , nonsin-
gular matricesM2;M3 2C

m�m, k2D rŒA2;B3�, r2D r.A2/, s2D r.A2/Cr.B3/�
rŒA2;B3�, and k3 D rŒA3;B2�, r3 D r.A3/, s3 D r.A3/C r.B2/� rŒA3;B2�,
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˙A2
D

2664
I 0 0

0 SA2
0

0 0 0

0 0 0

3775
r2� s2
s2

k2� r2
m�k2

; ˙B3
D

2664
0 0 0

0 SB3
0

0 0 I

0 0 0

3775
r2� s2
s2

k2� r2
m�k2

;

˙A3
D

2664
I 0 0

0 SA3
0

0 0 0

0 0 0

3775
r3� s3
s3

k3� r3
m�k3

; ˙B2
D

2664
0 0 0

0 SB2
0

0 0 I

0 0 0

3775
r3� s3
s3

k3� r3
m�k3

;

Then we can establish the existence theorems as follows.

Theorem 1. Let A;B 2 Cm�n and generalized reflection matrices P , Q of size
n be known. Suppose generalized reflection matrices P , Q with the forms of (2.2),
AU;BU have the partition forms of (2.8), and the generalized singular value decom-
positions of the matrix pair ŒA2;B3� and ŒA3;B2� are given by (2.9) and (2.10). Then
the equation (1.1) has a .P;Q/ generalized anti-reflexive solution X if and only if

rŒA2;B3�D r.A2/; rŒA3;B2�D r.A3/; (2.11)

and its general solution can be expressed as

X D U

26666664
0 U �2

24 0 0

0 S�1A2
SB3

Z31 Z32

35V2
U �3

24 0 0

0 S�1A3
SB2

W31 W32

35V3 0

37777775V
�; (2.12)

where Z31 2 C .r�r2/�.n�s�s2/, Z32 2 C .r�r2/�s2 , W31 2 C .n�r�r3/�.s�s3/, W32 2
C .n�r�r3/�s3 are arbitrary.

Proof. Suppose the matrix equation (1.1) has a solution X that is .P;Q/ genera-
lized anti-reflexive, then it follows from Lemma 2 that there exist M 2 C r�.n�s/,
N 2 C .n�r/�s satisfying

X D U

�
0 M

N 0

�
V � and AX D B (2.13)

By (2.8), that is

ŒA2 A3�

�
0 M

N 0

�
D ŒB2 B3�; (2.14)

i.e.
A2M D B3; A3N D B2: (2.15)

Therefore by Lemma 3, (2.11) holds, and

M D U �2

24 0 0

0 S�1A2
SB3

Z31 Z32

35V2; N D U �3
24 0 0

0 S�1A3
SB2

W31 W32

35V3; (2.16)
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where Z31 2 C .r�r2/�.n�s�s2/, Z32 2 C .r�r2/�s2 , W31 2 C .n�r�r3/�.s�s3/, W32 2
C .n�r�r3/�s3 are arbitrary. Substituting (2.16) into (2.13) yields that the .P;Q/
generalized anti-reflexive solution X of the matrix equation (1.1) can be represented
by (2.12). The proof is completed. �

3. .P;Q/ GENERALIZED ANTI-REFLEXIVE EXTREMAL RANK SOLUTIONS TO
(1.1)

In this section, we first derive the formulas of the maximal and minimal ranks of
.P;Q/ generalized anti-reflexive solutions of (1.1), then present the expressions of
.P;Q/ generalized anti-reflexive maximal and minimal rank solutions to (1.1).

Theorem 2. Suppose that the matrix equation (1.1) has a .P;Q/ generalized anti-
reflexive solutionX and˝ is the set of all .P;Q/ generalized anti-reflexive solutions
of (1.1). Then the extreme ranks of X are as follows:
.1/ The maximal rank of X is

minfn� s;r � r.A2/C r.B3/gCminfs;n� r � r.A3/C r.B2/g: (3.1)

The general expression of X satisfying (3.1) is

X D U

26666664
0 U �2

24 0 0

0 S�1A2
SB3

Z31 Z32

35V2
U �3

24 0 0

0 S�1A3
SB2

W31 W32

35V3 0

37777775V
�; (3.2)

whereZ31 2C .r�r2/�.n�s�s2/,W31 2C .n�r�r3/�.s�s3/ are chosen such that r.Z31/D
min.r � r2;n� s� s2/, r.W31/D min.n� r � r3; s� s3/, Z32 2 C .r�r2/�s2 , W32 2
C .n�r�r3/�s3 are arbitrary.
.2/ The minimal rank of X is

min
X2˝

r.X/D r.B2/C r.B3/: (3.3)

The general expression of X satisfying .3:3/ is

X D U

26666664
0 U �2

24 0 0

0 S�1A2
SB3

0 Z32

35V2
U �3

24 0 0

0 S�1A3
SB2

0 W32

35V3 0

37777775V
�; (3.4)

where Z32 2 C .r�r2/�s2 , W32 2 C .n�r�r3/�s3 are arbitrary.
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Proof. .1/ By (2.12),

max
X2˝

r.X/Dmax
Z31

r

24 0 0

0 S�1A2
SB3

Z31 Z32

35Cmax
W31

r

24 0 0

0 S�1A3
SB2

W31 W32

35 ; (3.5)

max
Z31

r

24 0 0

0 S�1A2
SB3

Z31 Z32

35D s2Cminfr � r2;n� s� s2g (3.6)

Dminfn� s;r � r2C s2g Dminfn� s;r � r.A2/C r.B3/g;
and

max
W31

r

24 0 0

0 S�1A3
SB2

W31 W32

35D s3Cminfn� r � r3; s� s3g (3.7)

Dminfs;n� r � r3C s3g Dminfs;n� r � r.A3/C r.B2/g:
Taking (3.6) and (3.7) into (3.5) yields (3.1).

According to the general expression of the solution in Theorem 1, it is easy to
verify the rest of part in (1).
.2/ By (2.12),

min
X2˝

r.X/Dmin
Z31

r

24 0 0

0 S�1A2
SB3

Z31 Z32

35Cmin
W31

r

24 0 0

0 S�1A3
SB2

W31 W32

35 ; (3.8)

min
Z31

r

24 0 0

0 S�1A2
SB3

Z31 Z32

35D s2 D r.B3/ (3.9)

and

min
W31

r

24 0 0

0 S�1A3
SB2

W31 W32

35D s3 D r.B2/: (3.10)

Taking (3.9) and (3.10) into (3.8) yields (3.3).
According to the general expression of the solution in Theorem 1, it is easy to

verify the rest of part in (2). The proof is completed. �

4. THE EXPRESSION OF THE OPTIMAL APPROXIMATION SOLUTION TO THE SET
OF THE MINIMAL RANK SOLUTION

Let ˝ D fX W AX D B;PXQ D �Xg be the solution set and Sm D fX 2 ˝ W
r.X/Dminfr.X

0

/ W X
0

2˝gg the set of minimal rank solutions. From (3.4), When
the solution set Sm is nonempty, it is easy to verify that Sm is a closed convex set,
therefore there exists a unique solution OX to the matrix nearness Problem (1.2).
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Theorem 3. Given matrix QX , and the other given notations and conditions are the
same as in Theorem 1. Let

U � QXV D

�
QX11 QX12
QX21 QX22

�
; QX12 2 C

r�.n�s/; QX21 2 C
.n�r/�s; (4.1)

and we denote

U2 QX12V
�
2 D

24 QZ11 QZ12
QZ21 QZ22
QZ31 QZ32

35 ; U3 QX21V
�
3 D

24 QW11 QW12
QW21 QW22
QW31 QW32

35 : (4.2)

If Sm is nonempty, then Problem (1.2) has a unique OX which can be represented as

OX D U

26666664
0 U �2

24 0 0

0 S�1A2
SB3

0 QZ32

35V2
U �3

24 0 0

0 S�1A3
SB2

0 QW32

35V3 0

37777775V
�; (4.3)

where QZ32; QW32 are the same as in (4.2).

Proof. When Sm is nonempty, it is easy to verify from (3.4) that Sm is a closed
convex set. Since C n�n is a uniformly convex Banach space under Frobenius norm,
there exists a unique solution for Problem (1.2). By Theorem 2, for any X 2 Sm, X
can be expressed as

X D U

26666664
0 U �2

24 0 0

0 S�1A2
SB3

0 Z32

35V2
U �3

24 0 0

0 S�1A3
SB2

0 W32

35V3 0

37777775V
�; (4.4)

where Z32 2 C .r�r2/�s2 , W32 2 C .n�r�r3/�s3 are arbitrary.
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Using the invariance of the Frobenius norm under unitary transformations, we have

kX � QXk2 D















26666664
0 U �2

24 0 0

0 S�1A2
SB3

0 Z32

35V2
U �3

24 0 0

0 S�1A3
SB2

0 W32

35V3 0

37777775�U
� QXV















2

D


Z32� QZ32

2C

W32� QW32

2C

S�1A2

SB3
� QZ22



2
C


S�1A3

SB2
� QW22



2C

 QX11

2C

 QX22

2C

 QZ11

2C

 QZ12

2
C


 QZ21

2C

 QZ31

2

 QW11

2C

 QW12

2C

 QW21

2C

 QW31

2 :

Therefore, kX � QXk reaches its minimum if and only if

Z32 D QZ32; W32 D QW32: (4.5)

Substituting (4.5) into (4.4) yields (4.3). The proof is completed. �
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