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Abstract. We study the universal blow-up of sixth-order parabolic thin film equation with the
initial boundary conditions. We prove that the problem in finite time blow-up will happen, if the

initial datum ug € C91%(2) with —Jo (H(uo) + %|Au0|2) dx > 0. And then, we get some
nondegeneracy results on blow-up for this problem.
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1. INTRODUCTION

In this paper, we consider the following initial boundary problem of sixth-order
equation
ur—AAu—ulP"lu) =0, in2x(0,7),

u=Au=A*u=0, on d§2 x[0,7), (1.1)
U =up, inf2x{0},

where 2 C R" is a bounded smooth domain, p > 1.

During the past years, only a few works have been devoted to the sixth-order para-
bolic equation [1,4,5,7].

Recently, Evans, Galaktionov and King [4, 5] considered the sixth-order thin film
equation containing an unstable (backward parabolic) second-order term

?J_Ltl = diV[|u|”VA2u] —A(ulP"tu)y,n>0,p>1.

By a formal matched expansion technique, they show that, for the first critical ex-
ponent p = pg =n-+1+ % for n € (0, %), where N is the space dimension, the
free-boundary problem with zero-height, zero-contact-angle, zero-moment, and zero-
flux conditions at the interface admits a countable set of continuous br]avlnches of
radially symmetric self-similar blow-up solutions uy (x,t) = (T —t)” "N+6 fi.(y),

y = —>*—+— where T > 0 is the blow-up time.

(T—t) nN-+6
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In fact, when n = 0, the equation (1.1) is obtained. In this paper we study the
universal blow-up and some nondegeneracy results on blow-up of the equation (1.1).
Our method about universal finite time blow-up is similar to that of Elliott and Zheng
[3] which treats the blow-up problem for Cahn-Hilliard equation. We can show that
if the initial datum ug € C%(2) with — [, (H (uo) + 5| Aug|?) dx > 0, then the
solution to the above problem (1.1) should blow up in finite time.

We also establish some nondegeneracy results on the blow-up of the problem. We
mainly follow the purpose of Giga and Kohn [6] and Cheng and Zheng [2]. More
accurately, there is a constant ¢ > 0, depending on n, p and the constant in the estim-
ates of the fundamental solution to u; — A3u = 0 (see (3.1) below), such that if u is
a solution of the equation

us — AA?u—u|P~u) =0, on Q=B (a)x[t1—r% 1),
where 1 < p <3,aeR",t; €eRand 0 <r <1, and if
lu(x,t)| <e(ty —t)_3(P2—1) for all (x,1)€ Q,, (1.2)

then u does not blow up at (a, 7).

The following sections include our main results. In Section 2, we establish uni-
versal finite time blow-up. Section 3 is devoted to the nondegeneracy results on the
blow-up.

2. UNIVERSAL FINITE TIME BLOW-UP

Theorem 1. Assume ug € CT%(2) with — [ (H(uo) + 3|Auo|?) dx > 0. Then
the solution of the problem (1.1) must blow up at a finite time, namely, for some T > 0

lim [lu(z)]| = +o0,
t—T

_ _ Ju !
where H(u) =¥
Proof. Let
1
F(t):/ (H(u)+—|Au|2)dx,
Q 2
then
dF(t 1
@) :/ (—|u|P_1u<p(u)ut+—AuAut) dx
dt Q 2
1
:/ (—|u|1’_1u+—A2u)utdx
Q 2
1
= —/ |V (—|u|p_1u + —Azu) |2dx < 0.
Q 2
So

2/ H®u)dx —2F(0) < —|| Au|?, (2.1
2
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where .
F(0) =/ (H(u0)+—|Au0|2) dx.

Q 2
Let ¢ be the unique solution to

AP =u, inS2,

{ V¢ =0, onas2.
It is easy to get that
IV$I> < CllAp|3 < Cllull”. (2.2)

Now multiplying (1.1) by ¢ and integrating with respect x, we obtain

d
I8P =2 [ plaudx ~2] uldx
2

> 4/9 H(u)dx—4F(0)—2/Q<p(u)udx

:/(2— P tdx —4F(0)
2

p+1
2(p—1) =
> 2P ( / u2dx) _4F(0). 2.3)
r+1 \Ue
Combining (2.2), (2.3) and — F(0) > 0, we have
d 2C(p—1)
ZIVel? > 2\ ve||PTL 2.4
vl = 2= vy @4
Let y(¢) = ||V¢||% with ¢ € [0,T), then
r+1
YO =y 2, (2.5)
where y = %. A direct integration of (2.5) then yields

r—1 1
yz()=—= —.
Y2 (0) =ty
It turns out that the solution of the problem (1.1) will blow up in finite time. The
proof of this theorem is completed. g

3. NONDEGENERACY RESULTS ON THE BLOW-UP

Let I'(x,t) be the fundamental solution to u; — A3u = 0. According to [8], we
have the follow inequalities:

ME

1
13

|D;‘D;;F(x,t)|SCz—U"*GW“)exp{—w } >0, (3.1

where C > 0, w > 0 are constants, and p, v are nonnegative integers.
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Our purpose in this section is to have some nondegeneracy results on the blow-up.
We state that the solution u(x,¢) to blows up at (a,t;) if it is not locally bounded
nearby, i.e., if there is a sequence {(xx,t%)} C 2 x [0,71) with (xg, %) — (a,t1) as
k — oo such that |u(x, %) — oo.

Theorem 2. There is a constant € > 0, depending on n, p and the constant in
(3.1), such that if u is a solution of the equation

ur — AA2u—ul?P~tu)y=0, on Q, =B, (a)x[t1—r% 1),
wherel < p<3,aeR" tjeRand0<r <1, and if
w(x,0)| <eti—1) 50D for all (x.1)€ O, (3.2)
then u does not blow up at (a,t1).

Next, we introduce the two lemma which will be used in the article and whose
proofs can be found in [2] and [6].

Lemma 1. ForO<a < 1,0 >0, and 0 < h < 1, the integral

1
I(h) = /h (s—h)"%s 0ds,

satisfies

1 1

W 1=t y) ¥ ares

1
@) I(h) = y—+lloghl if a+6=1,
—da

1
(3) Ih) = T—a_0d

Lemma 2. If y(¢), r(¢) and q(t) are continuous functions defined on [ty,t1], such
that y(t) < yo+ [, y($)r(s)ds + [; q(s)ds, to <t <11, and r(t) = 0 on [tg.11],

then
t t t
(1) Sexp{/t V(‘C)dl’} |:yo+/t q(z)exp{—/t r(a)da} dr:|.

Then, we began to prove the main Theorem 2.

if a+6<1.

Proof. Without loss of generality, we may assume @ = 0 and #; = 0. By scaling,
it is sufficient to consider the case r = 1. In the fact, if u satisfies the assumptions

of the theorem with r < 1, then u,(x,?) = rﬁu(rx, r®t) satisfies them with r = 1
(using the same ¢), and clearly u, blow up at (0,0) if u does.
Let ¢ be a smooth function supported on B;(0) such that ¢ =1 on B 1 (0) and

0 < ¢ < 1. Consider w = ¢u; then w; — A3w == g where
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g =—2VA2uVep—A2uA¢
—AWA?p + 4V AUV + 6 AuAd +4VuV AP) — p A(|u|P " u)

The semigroup representation formula for w gives that

t
w(t) = e(t+1)A3a)(—1) +/ e(t_s)A3g(s)ds for —1<t<0, (3.3)
-1

A

where ¢?4” is the semigroup associated with the equation u; — A3u = 0in R”, i.e.,

@) = [ re-y.0he)d.
[Rl’l
Notice that [, I'(x — y,1)dy = 1. It follows that
3
le" " hll < 1hlloo. (3.4)
The (3.1) implies that

@ D)= [ Fe=y.0Dih()dy

9
L r(x—y,0)h(y)dy| < Ct76 |hllso, ¥i=1,2,....n,
R™ 8x,~

=|
So, we get that
|4 Diktlloo < C1 78| lloo.  [|€"Y* Dijhlloo < C175 [l oo,

< Ct73 ] oo,

3 _1 3

1€ Dijkhlloo < Ct™2|[Alloos  11€™ Dijkmhlloo
3 _35

1" Dijrmghlloo < C178 Ao, (3.5)

where i, j,k,m,q € {1,2,--- ,n}.
Now let g = g1 + g2, where go = —pA(Ju|?~'u). As above, we estimate

t
‘/ e(t_s)A3g2(s)ds
~1

t
S/
-1

t
— — p—1
<[ | are=ya-splu | ds
(I'(x—y,t —$)Ap+2VI (x —y,t —5)-VP)|ulP tu(y)dy|ds

t
g
—1 [Rﬂ

t 1
<cC /_ (=) H g7 foo(5)ds + C / | AguP oo (s)ds

L A(¢F(x—y,r—s>><|u|p-1u)(y,s)dy‘ds

t
-1
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t 1
e f (6 =) 4 [ VguP oo (s)ds
—1
t 1 t
<c / (=) 32 o lloo(s)ds + C / 14? lloo ()ds
—1 -1
t
e f (6 =) & ]2, (s)ds
-1
-1 ! 1 _2 ! __2p
e [ =589 H ol + Cor [ (s 0 ds
-1 -1

t
n Cgp/ (t — )% (—s) " TP20 ds, (3.6)
—1

due to our assumption.
On the other hand, it is found similarly that

t 3
/ ™94 . (5)ds

t
= ‘/ / I'(x—y,t—s)(—2VA2uVe — A%uA¢
_1 [Rn
—AA*¢ +4VAUVP +6AuA +4VuV Ap))dyds|

2

t t
< cf (t — )78 ||u]| oo (s)ds < Ce/ (t—s)"8(—s) 30-Dds.  (3.7)
-1 —1
By (3.2)-(3.4), (3.6) and (3.7), we get that for —1 <t <0,

t
Jo() oo < & 467" [ (0 =) 3 (=) 3 o lloo(s)ds
-1
t 1 2p t 5 2
+C8p/ (t—s)_é(—s)_3(ﬂ—1)ds+C8/ (t—s)"6(—s) 30—Dds
-1 -1

t
< 8+C8p_1/ (t —5)"3 (=) "3 |w]loo(5)ds + Ce(—1)s 31,
—1
(3.8)

dueto 1 < p <3 and Lemma (1).
Let y(t) = ||o(?) ]| 0o; therefore

1 t
Y(1) < &+ Ce(—1)6~3=D 4 CeP~! / (t—s5)"3(—s) 3y(s)ds. (3.9
-1

Define f(t) = x[—1,01(t)y(t), YVt < 0. We introduce a special maximal function
on (—o0,0):

1 t
(Mf)H@t)= sup—/ | f(s)|ds, Vt € (—00,0).
r>0" Jt—r
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Now Vr > 0,
t

/_ (=9 p(0ds = [_ (1 —5) 3 (=9)"3 f(s)ds

! 1 2 t=r 1 2
= (t—S)_3(—S)_3f(S)dS+f (t—5)"3(=s)"3 f(s)ds
t—r —00
=1+ 1.
We compute these two integrals, respectively.

L=< (073 / (t —5)"% f(s)ds

—r

2 s l_zkr I 1
—co 3y [ e s
k=0"1"

xr
2k

2 e _% t_2k’:‘rl
<(-1)73 (—r ) F(s)ds
2 X 1 % 2
<73y (2k+1) r3Mf)@)
k=0

= Cri(=)73(Mf) ),

and

[T 2 L[ 2 L[ 2
I §r_3/_ (—s)73 f(s)ds < r_3/; (=s) 3 f(s)ds=r"3 /_1(—s)_3f(s)ds.
Then,

(1) < e+ Co(—)4 T 4.CeP™! [r%(—r)—%(Mf)a) a tl (—sr%f(sws] ,

forall r > 0 and ¢t € (—00,0).
Let

GO VO
(=)~ 3(Mf)(2)

so we have
1 2 1 t 2 % 1
F(6) < e+ Co(—t)b 5D 4 Cer™) ((_,)—3 / (—S)‘3f(S)dS) (M)
—1

t
<e+ Cs(—t)%_ﬂpz—l) + Csp_l(—t)_éf (—s)_%f(s)ds
-1

+CeP Y (Mf)(). (3.10)
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If we define )
=07t [ o7 roas
then
’ -1 1 _1 ! _2
¢ =07 [3607 [ o+ ] 20
Hence g () is increasing in (—o00,0).
Then we get
max f(r) <e+ Cs(—t)é_ﬁ

—1<t<
+CePTlg(t) + CePh max (Mf)(r), Vie[-1,0), (1D
—1<t=<

—ﬁ<0since1<p<3.
Clearly, max—_1 <z <; (M f)(t) <max_j<¢<; f(7) by our definition of the maximal
function. Therefore (3.11) implies that for any —1 <t < 0,

max_ f(7) <
—1<t<t

where we have used %

1 1 2 L[ 2
- )6 3=D p—1/_\—3 _ 03
[—Cer 1 |:8+C8( t)6 3-D 4+ Ce (—1) 3/_1( s) 3f(s)ds],

provided that Ce?~! < 1. Especially,

SO =1"¢ert [8* Ce(—1)8 757D + CeP ™! (—1) /_1<—s>—%f<s>d5]

vVt € [-1,0).
Then for ¢ > 0 small enough, we obtain
t
(-3 f(1) <2 [” Ce(—1)2 351 4 CeP™! / (—s)‘l(—s)%ﬂs)ds]
-1
vVt € [-1,0).

Define /(t) = (—t)3 f(t); then
h(t) < 2¢+2Ce(—1)2~3G=D 4 2C P! ft (=) h(s)ds, (3.12)
Applying Lemma(2), we have -
h(t) < (—1)~2C"™! [2g+ C(p,s)e(—;)%—ﬁme"“]

2

<26(—1)2C¢" " L C(p,e)e(—1)27TF=D, Vi e[-1,0).

Then f(1) < 2e(—1)~3"2C5”™" L C(p,e)e(—1)6~3=D, V1t € [-1,0), or
Y1) < 26(—1)"572C" T L C(p,e)e(—1)sTIPD,  Vie[-1,0).  (3.13)
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Choose ¢ > 0 small enough that % +2CeP7 1 <
1 < p < 3. Define o = max{% +2C81’_1,ﬁ—
that o > %; then (3.13) implies y(z) < C(p,e)e(—t)~%, Vt € [—1,0). Hence

ﬁ which is possible since

3 =< ﬁ, it is easy to find
lu(x,1)] < C(p,e)e(—t)™%, V(x,t)e€ B%(O) x [~1,0). (3.14)

Now let ¢ be a function supported on B 1 (0) withp =1 on B 1 (0)and0<¢ <1,
and define @ = qSu; then we go back to (3.6)-(3.8) and we have that

- ! _1 _ - t
||w<z)||oosa+c/ (i—s s||u||501||w||oods+c/ lullZ.ds
-1 —1

t

+Cf_t1(r—s)—é||u||§ods+08/_ (t =) lulloods
<etCel! /_ tl (t —5) "3 (—s) 2PV (g5)=g5 4 CeP /_ tl (—s)"*Pds
+CeP / tl (t —5)"6(—s)"®Pds + Ce / tl (t —5)"8 (—s)"%ds
<etCel! /_ tl (t —5) 3 (—s)"%Pds + CeP /_ tl (—s)"*Pds

t t
+CeP / (1 —5) % (—s)"*Pds + Ce / (—5) 3 (s)ds (3.15)

due to (3.14).
Since § <a < ﬁ, we get
5 - 2 - 1
S—ap>-—ap>-—a.
6 WPT3TWT

Hence by Lemma(1), we obtain
()]l < &+ CeP™L 4+ CePL ()67 < 2+ CeP~ V) (=1)6™%, Vie[-1,0),
Which means, for small ¢ > 0,

lu(x,0)| < 2+ CeP V) (=1)6™%, V(x.,t) € By(0)x[~1,0). (3.16)

Iterating the argument finitely many times we can get that there is a number 0 <
ro < % such that

u(x.0)| < K(—1)"67,  V(x.1) € Bry(0) x [1,0), (3.17)

where K is constant.
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Next, we choose another cut-off function q§ supported on By, such that ¢3 =1on
B 0 and define @ = ¢u. Going back to (3.15) and applying Lemma(1), we have

t

~ ! _1 _ ~
||w<z>||w58+c/ (i—s s||u||£ol||w||oods+c/ lullZ.ds
-1 1

t t
+cf (z—s)—é||u||gods+Cs/ (t —5)7% lulloods
-1 —1
t t
§8+CK”_1/ (t—s)—%(—s)—éds+c1<l’/ (—s)"6ds
—1 -1

t t
+c1<1’/ (r—s)—é(—s)—e‘pderCK/ (t —s5)"% (=s)"ords
-1 -1

<eg4+CKPL, (3.18)

which means that |u(x,?)| < C in B ro X [—1,0). This completes the proof of the

theorem.
O

Using the same argument, we can easily draw the following conclusion.

Theorem 3. Suppose p > 3, then for any § € (0, ﬁ), there is a constant & > 0,

depending on n, p and the constant in (3.1), such that if u is a solution of the equation
us — A(A%u — [u|P~tu) =0, on Qr =B, (a)x[t1 —r% 1))
wherea € R",t1 e Rand 0 <r <1, and if

0| <ot =137 for all (x.1)€ Qr,

then u does not blow up at (a,t1).
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