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1. INTRODUCTION

Systems of linear equations have an enormous amount of applications in many
areas of science and technology. For our present research we took chemistry (stoi-
chiometry) as a direct motivation; these applications are outlined in the last section.
But beside them and beyond pure theoretical interest, it is plausible to guess that our
results can be applied in further areas, too, e.g. in physics (dimensionless groups).

The main targets of our research are the minimal solutions of systems of linear
equations. We call a solution minimal if it uses a minimal set of column vectors of
the coefficient matrix; see Definition 1. (The difference and connections between
minimal and base solutions are explained in Remark 3.)

The structure of the set of minimal solutions is revealed in Proposition 3 and
in Propositions 7 through 8, the connection between minimal and other solutions
(without any restrictions) is dealt with in Proposition 5 and Theorems 2 and 6.

The results obtained in Theorem 4 and in Theorem 8 have a crucial effect in stoi-
chiometry: all stoichiometrical reactions can be obtained as linear combinations of
minimal ones. This result could also simplify the research question raised in Section
5 concerning “The second level” in the hierarchy of equations.

Some related notions, their combinatorial and geometrical aspects are surveyed in
[7].

The sections below give thorough extensions of A. Pethő’s results in [3].

c
 2012 Miskolc University Press



530 I. SZALKAI, GY. DÓSA, ZS. TUZA, AND B. SZALKAI

2. BASIC PROPERTIES

Let us consider the systems of linear equations

A �x D b (2.1)

and
A �x D 0 (2.2)

where A 2 Rn�m, b 2 Rn are given, and the solution vectors are x 2 Rm. We invest-
igate the solution sets

MA;b WD fx 2 Rm
W A �x D bg (2.3)

and
MA;0 WD fx 2 Rm

W A �x D 0g . (2.4)

Clearly the cases MA;0 ¤ f0g and
ˇ̌
MA;b

ˇ̌
> 1 are the interesting ones.

We denote the column vectors of A by a1;a2; : : : ;am 2 Rn , that is

AD
�
a1;a2; : : : ;am

�
. (2.5)

The assumptions below are not only for simplicity, they have real effect in stoi-
chiometry.

Condition 1. It will be assumed that
i) A does not contain parallel column vectors,

especially
ii) A does not contain 0 as a column vector.

In the inhomogeneous case (b ¤ 0) we also assume that
iii) A does not contain a column vector parallel to b .

We are interested in the structure of the sets of column vectors of A which effect-
ively take part in the equality (2.1).

Definition 1. (i) For any vector x 2 Rm we write

supp.x/ WD fi �m W xi ¤ 0g (2.6)

and call it the support of x . (Especially supp.0/D¿ .)
(ii) For any set of vectors M � Rm we say that a nonzero vector ´ 2M has min-

imal support forM if the set supp
�
´
�

is minimal, that is there exists no other nonzero

vector y 2M for which supp
�
y
�

¤ supp
�
´
�

holds.
We will call such (nonzero) vectors ´ 2M shortly minimal (for M ).

(iii) For any set of vectorsM � Rm we denote byMmin the set of all minimal (for
M ) vectors in M , that is

Mmin
WD
˚
´ 2M W ´ is minimal

	
. (2.7)
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(iv) Clearly Mmin
A;b

and Mmin
A;0 stand for the sets of minimal elements in MA;b and

MA;0 , respectively. We call the vectors inMmin
A;b

andMmin
A;0 the minimal solutions of

the equalities .2:1/ and .2:2/.

Clearly, when solving (2.1) or (2.2), we only need those column vectors ofAwhich
correspond to supp.x/ . This is discussed in details in Definition 2 and Proposition 5
below.

We explain the difference between the popular base solutions and our minimal
solutions in Remark 3.

The following observations are obvious; we extensively use them later without
further mentioning.

Proposition 1. For the three parts of Condition 1 the following equivalences hold.
Considering the homogeneous equation .2:2/ we have:

i) ” jsupp.x/j � 3 for all x 2MA;0nf0g ,
ii) ” jsupp.x/j � 2 for all x 2MA;0nf0g .

For inhomogeneous equations .2:1/ (b ¤ 0) we have:
iii) ” jsupp.x/j � 2 for all x 2MA;b .

Proposition 2. For any nontrivial solution x 2MA;0 of .2:2/ there is a minimal
solution ´ 2Mmin

A;0 such that

supp
�
´
�

j supp.x/ . (2.8)

The same is valid for .2:1/ with x 2MA;b and ´ 2Mmin
A;b

.

Proposition 3. For any set of vectors M � Rm the sets supp
�
´
�

j f1;2; : : : ;
mg for minimal vectors ´ 2Mmin form a Sperner system, that is for any two (dis-
tinct) minimal vectors ´1;´2 2M we have supp

�
´1

�
¤ supp

�
´2

�
and supp

�
´2

�
¤

supp
�
´1

�
.

We want to extract and investigate the nonzero components of the solution vectors
x and the corresponding column vectors of A . To simplify our later discussion we
introduce one more notion.

Definition 2. For an arbitrary vector x 2 Rm, matrix A 2 Rn�m, and set H �
f1; : : : ;mg of indices we define the restrictions of x and A to the set H as

x jH WD Œxi W i 2H� (2.9)

and
A jH WD

�
ai W i 2H

�
, (2.10)

so x jH2 Rh and A jH2 Rn�h where hD jH j .

We clearly have
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Proposition 4. For any (fixed) vector x 2 Rm the set-function

�x W P f1; : : : ;mg �! Rn

�x W H 7�! .A jH / � .x jH / (2.11)

for H j f1; : : : ;mg is additive.

The following correspondence between x jsupp.x/ and x is trivial.

Proposition 5. If x 2 Rm is any solution of the equation A �x D b then x jsupp.x/

satisfies the equality �
A jsupp.x/

�
�
�
x jsupp.x/

�
D b . (2.12)

On the other hand, for any subset H � f1; : : : ;mg and solution y 2 Rh (hD jH j) of
the equality

.A jH / �y D b (2.13)
there is at least one solution x 2 Rm of the equation A �x D b .2:1/ such that

y D x jH . (2.14)

Especially, supp.x/jH can be assumed.

Note that the solution x above is not unique in general.
Proposition 5 will be extended for homogeneous equations in Theorem 2 and for

inhomogeneous ones in Theorem 6 below. It is interesting that these results are very
different.

3. HOMOGENEOUS EQUATIONS

We start with the extension of Proposition 5 for homogeneous equations.

Theorem 2. Let ´ 2Mmin
A;0 be any minimal solution of .2:2/, ´ ¤ 0 . Then the

equation �
A jsupp.´/

�
�y D 0 (3.1)

for y 2 Rh (hD
ˇ̌
supp

�
´
�ˇ̌

) has the only solutions

y D � �´ jsupp.´/ (3.2)

where � 2 R is any number.

Proof. Clearly y
1
WD ´ jsupp.´/2Rh is a solution of (3.1), in which no coordin-

ate is 0 . Let further y
2
2 Rh be any nontrivial solution of (3.1), distinct from � �´ for

all � 2 R . Since y
2
¤ 0 , the i th coordinate of y

2
is nonzero for some i 2 supp

�
´
�
,

so we can find some � 2 R such that the i th coordinate of the vector

´2 WD y1
�� �y

2

is zero.
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If ´2 D 0 then y
1

and y
2

are parallel, i.e. (3.2) holds.
If ´2¤ 0 then ´2 2Rh has supp

�
´2

�
¦ supp

�
´
�

which is a contradiction since
´ was assumed to be minimal. �

Remark 1. We consider the solutions x and �x identical for all �2R , but through-
out our investigation we do not call 0 a solution of .2:2/. According to Theorem 2
we can say that the solution of .3:1/, for any minimal ´ 2Mmin

A;0 , is unique (i.e. up to
a scalar multiplier).

Our main problem for both homogeneous and inhomogeneous equations A �x D 0
and A �x D b are the same. We first formulate it for the homogeneous case.

Problem 3. Can all solutions of the homogeneous equation A �x D 0 be generated
from the minimal solutions? In other words: does Mmin

A;0 � Rm generate MA;0 with
linear combinations?

The inhomogeneous version of this problem will be Problem 7.

Theorem 4. Mmin
A;0 generates MA;0 for all matrices A 2 Rn�m.

Proof. We have to show that each vector x 2 MA;0 (solution of (2.2)) is a lin-
ear combination of vectors from Mmin

A;0 . We proceed by induction on the size of
supp.x/ ; here x ¤ 0 can clearly be assumed. In the case x 2Mmin

A;0 we are done.
For x …Mmin

A;0 choose a minimal vector ´ 2Mmin
A;0 such that

¿¤ supp
�
´
�

¤ supp.x/ . (3.3)

Let k 2 supp
�
´
�

be any index and consider the vector

x0 WD x�
xk

´k

�´ , (3.4)

which is also a solution of (2.2).
By the definition of supp

�
´
�

we have ´k ¤ 0 , x0
k
D 0 (i.e. k … supp.x0/), and so

supp
�
x0
�

¤ supp.x/ . (3.5)

Clearly x0 ¤ 0 since x0 D 0 would imply x k ´ but x …Mmin
A;0 was assumed.

Finally, by the induction hypothesis we know that x0 is a linear combination of
vectors fromMmin

A;0 . This fact together with (3.4) and ´ 2Mmin
A;0 implies that x is also

a linear combination of minimal vectors. �

The proof given above implies that (the supports of) all solutions x 2MA;0 are
covered by minimal solutions:

supp.x/j
[n

supp
�
´
�
W ´ 2Mmin

A;0

o
(3.6)

what does not follow from Proposition 2.
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However, not every column of the coefficient matrix A takes part in any solutions
(reactions in stoichiometry); this is explained in the following assertion.

Proposition 6. For any index i � m the column vector ai takes part in some
solution x 2MA;0 (that is, i 2 supp.x/) if and only if ai is linearly dependent on
the other column vectors

˚
a1; : : : ;ai�1;aiC1; : : : ;am

	
.

Proof. For any solution vector x, write the equality Ax D 0 as

xi �ai D�

X
j¤i

xj �aj . (3.7)

The existence of a solution x satisfying i 2 supp .x/ is equivalent to the solvabil-
ity of (3.7) with xi ¤ 0. This exactly means the dependency of ai on the vectors˚
a1; : : : ;ai�1;aiC1; : : : ;am

	
, because ai ¤ 0 has been assumed. �

Nonparallel elements ofMmin
A;0 can be linearly dependent. One might ask for a base

of Mmin
A;0 ; we have not investigated this question yet.

Now we proceed with the investigation of the inner structure of the set of minimal
solutions.

Proposition 7. Let ´2Mmin
A;0 , i.e. ´ is a minimal solution of the equationA �´D 0 .

Then the set of column vectors ai “used” by ´,

S´ WD
˚
ai W i 2 supp

�
´
�	
� Rn

is a minimal linearly dependent set.

Proof. S´ is linearly dependent since A �´ D 0 is in fact a linear combination of
the elements of S´ .

If some proper subset T �S´ was linearly dependent then ´would not be minimal.
�

This result explains the following notion.

Definition 3. A set S � Rn is called a linear algebraic simplex if S is minimal
(linearly) dependent, that is S itself is dependent but all its proper subsets T � S are
independent.

Remark 2. The term “simplex” is also used in Euclidian and in affine geometry
with different meanings. In the present paper we deal only with linear algebraic ones
but always use the attribute “linear” to avoid confusion. Several notions of simplexes
and their applications can be found in [7].

Remark 3. Let us now clarify the difference between base solutions and minimal
solutions of a system of (linear) equations .2:1/ and .2:2/.

For inhomogeneous equations .2:1/ the base solutions correspond to bases of A ,
i.e. r independent column vectors of A where r D rank .A/ . The coefficients for
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resulting b when using a base are always uniquely determined. So, a base solution is
minimal exactly when it is nondegenerate.

For homogeneous equations .2:2/ (according to [3]) the support of a base solution
contains a base of A (as in the previous paragraph) plus exactly one from the remain-
ing column vectors of A . So, in the homogeneous case, all base solutions have size
exactly rC1 , contain dependent column vectors of A , but are not necessarily min-
imal (a simplex). On the other hand, the set of column vectors of A corresponding to
the support of a minimal solution always forms a minimal dependent set (a simplex)
but may have size less than rC1 .

The following characterization is fundamental both in theory and in applications
of (linear algebraic) simplexes.

Theorem 5. A (nonempty) set S D fv1;v2; : : : ;vkg � Rn of vectors is a linear
algebraic simplex if and only if there exists a linear combination


1v1C
2v2C�� �C
kvk D 0 , (3.8)

and for each linear combination .3:8/ we must have 
i ¤ 0 for all i � k .
Moreover, the linear combination in .3:8/ is unique up to a constant factor; that is,
for all linear combinations


 01v1C

0
2v2C�� �C


0
kvk D 0 (3.9)

we must have �

 01;


0
2; : : : ;


0
k

�
D � � Œ
1;
2; : : : ;
k� (3.10)

for some � 2 Rnf0g .

Proof. The linear combination (3.8) exists since S is dependent. The minimality
of S implies 
i ¤ 0 for all i � k .

Suppose now that (3.10) does not hold for any �2R for the two sequences Œ
1;
2;

: : : ;
k� and
�

 01;


0
2; : : : ;


0
k

�
satisfying (3.8) and (3.9), respectively. Then the linear

combination

 01 � .3.8/�
1 � .3.9/

does not contain v1 , contradicting the minimality of S .
On the other hand, (3.8) implies that S is linearly dependent. Clearly, S is not

minimal if and only if there is a linear combination (3.8) where 
i D 0 for some i � k .
So, the uniqueness of (3.8) (in the sense of (3.10)) together with the assumption
“ 
i ¤ 0 for all i � k ” ensures that S must be minimal linearly dependent. �

Using the result above, we can sharpen Proposition 5 for minimal solutions ´ 2
Mmin

A;0 as follows. (See also Remark 1.)

Corollary 1. For any minimal solutions ´ , y 2Mmin
A;0 we have

supp
�
´
�
D supp

�
y
�
” ´ k y , (3.11)
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that is each minimal solution ´ is unique (up to a scalar multiplier) on its support.

Proof. The statement follows from Theorem 2, Proposition 7 and Theorem 5. �

In Theorem 6 we extend the result above to inhomogeneous equations.
Theorem 5 also implies the following property of linear algebraic simplexes.

Proposition 8. For any two simplexes S1 and S2 , for which S1\S2 ¤¿ holds,
and for any vector w 2 S1\S2 there is a simplex S3 contained in .S1\S2/n fwg :

S3 j .S1\S2/n fwg . (3.12)

In other words, if ´1 , ´2 2M
min

A;0 are two minimal solutions of the equation A �x D 0
.2:2/ such that supp

�
´1

�
\supp

�
´2

�
¤¿ , then for any j 2 supp

�
´1

�
\supp

�
´2

�
one can find a minimal solution ´3 2M

min
A;0 for which

j … supp
�
´3

�
� supp

�
´1

�
\ supp

�
´2

�
. (3.13)

Proof. Consider the linear combinations


1v1C
2v2C�� �C
kvk D 0 (3.14)

and
ı1u1C ı2u2C�� �C ı`u` D 0 (3.15)

where S1D fv1;v2; : : : ;vkg and S2D fu1;u2; : : : ;u`g . Now, by Theorem 5 we have

j ¤ 0 and ıj ¤ 0 (where w D vj D uj ) and so

1


j

�

1v1C
2v2C�� �C
kvk

�
�
1

ıj

�
ı1u1C ı2u2C�� �C ı`u`

�
D w�w D 0 . (3.16)

This means that the set S1\S2nfwg is linearly dependent, hence it must contain
a simplex S3 . �

4. INHOMOGENEOUS EQUATIONS

First we extend Proposition 5 and Corollary 1 to inhomogeneous equations.

Theorem 6. Let ´ 2Mmin
A;b

be a minimal solution of the inhomogeneous equation
Ax D b (b ¤ 0) and let H WD supp

�
´
�

. Then the equation

.A jH / �y D b (4.1)

has the unique solution y D ´ jH only.
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Proof. Let y1 WD ´ jH2 Rh (hD jH j), in which no coordinate is 0 . Let further
y2 2 Rh be any other solution of (4.1), assuming that the i th coordinate of y

2
is

nonzero but distinct from the i th coordinate of y
1

(for some i 2 supp
�
´
�

).
It is well-known that for each ˛ 2 R the vectors

v D ˛ �y1C .1�˛/ �y2 (4.2)

satisfy (4.1). By the assumptions above we can choose an ˛ such that the i th coordin-
ate of v is equal to 0 . But then supp.v/ ¦ supp

�
´
�

, contradicting the minimality
of ´ . �

Second, we extend Problem 3.

Problem 7. Can all solutions of the inhomogeneous equation A �x D b be gener-
ated from the minimal solutions? In other words, does Mmin

A;b
generate MA;b ?

We can prove the following result.

Theorem 8. Each solution vector x 2MA;b can be written as an affine combina-
tion of some elements of Mmin

A;b
plus a solution of the homogeneous equation

x D

IX
iD1

˛i´i Cy where
IX

iD1

˛i D 1 ; (4.3)

all ´i 2M
min

A;b
are minimal solutions (i D 1; : : : ;I , ˛i 2 R), and y 2MA;0[f0g .

Let us emphasize that Theorem 8 extends the well known formula MA;b D ´C

MA;0 for minimal solution vectors. Moreover, together with Theorem 4 it implies
that Mmin

A;b
[Mmin

A;0 generates MA;b .

Proof. Let x 2MA;b be any solution vector. We proceed by induction on the size
of supp.x/ ; x ¤ 0 can clearly be assumed.

In the case x 2Mmin
A;b

we are done.
In the case x …Mmin

A;b
choose a minimal vector ´ 2Mmin

A;b
such that

supp
�
´
�

¦ supp.x/ . (4.4)

Such a ´ does exist since x is not minimal and supp.x/¤¿ .

Subcase a) There exists a ´ 2 Mmin
A;b

which has an index k 2 supp
�
´
�

such that
´k ¤ xk (and, of course ´k ¤ 0).

Then consider the vector

x0 WD

�
x�

xk

´k

�´

�
�

1

1� xk

´k

D
�
x�ˇ´

�
�
1

1�ˇ
. (4.5)
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It is an affine linear combination of x and ´ , and hence also a solution of A �x D b .
Clearly x0

k
D 0 (i.e. k … supp.x0/), so

supp
�
x0
�

¦ supp.x/ , (4.6)

moreover x0¤ 0 by (4.4). Using the induction hypothesis we know that x0 is an affine
linear combination of vectors from Mmin

A;b
plus y0 2MA;0[f0g :

x0 D

I 0X
iD1

˛0i´
0
i Cy

0 where
IX

iD1

˛i D 1 . (4.7)

From (4.5) and (4.7) we get

x D .1�ˇ/x0Cˇ´D .1�ˇ/

I 0X
iD1

˛0i´
0
i Cˇ´C .1�ˇ/y

0 (4.8)

which is also an affine linear combination of vectors from Mmin
A;b

plus one from
MA;0[f0g .

Subcase b) We have
x jsupp.´/ D ´ jsupp.´/ (4.9)

for all vectors ´ 2Mmin
A;b

satisfying (4.4).
Let ´ 2Mmin

A;b
be such a fixed vector. By (4.9) and Proposition 4 we have

Ajsupp.´/ �xjsupp.´/ D Ajsupp.´/ �´jsupp.´/ D b (4.10)

and so �
Ajsupp.x/nsupp.´/

�
�

�
xjsupp.x/nsupp.´/

�
D 0 . (4.11)

Letting
y WD xjsupp.x/nsupp.´/ (4.12)

we have y 2MA;0[f0g , and by

supp
�
´
�
\ supp

�
y
�
D¿ (4.13)

we obtain x D ´Cy which clearly justifies (4.3) and proves the theorem. �

5. THE SECOND LEVEL

Recall that the set of solution vectors of the linear equation (2.2) is denoted by
MA;0 in (2.4). Since MA;0 j Rm, we can pick some arbitrary elements

X1; : : : ;Xk 2MA;0 (5.1)
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and consider the new linear equation
kX

`D1

m`X` D 0 (5.2)

for the unknowns.
This is the second step of the Hierarchy of equations: the coefficients X` of the

equality (5.2) are, in fact, all the solutions of the previous (original) equality (2.2).
The final connection among the coefficients Aj of (2.2) and the solutions M WD

Œm1; : : : ;m`� of (5.2) has been raised but not investigated yet.
Considering the result of Theorem 4 we could choose X1; : : : ;Xk to be all the

minimal solutions of the (original) equality (2.2).
The stoichiometrical importance of this question will be explained in the next sec-

tion.

6. CHEMICAL APPLICATIONS

As usual, we consider the reactions in stoichiometry as (systems of) homogeneous
linear equations. For example the chemical reaction

NaOH CHNO3 DNaNO3CH2O (6.1)

corresponds to the vector-equation

Œ1;0;1;1�T C Œ1;1;0;3�T D Œ0;1;1;3�T C Œ2;0;0;1�T (6.2)

using the base B D fH;N;Na;Og .
In a general formulation, if the chemical compounds A1;A2 ; : : : ; Am consist of

elements E1;E2; : : : ;En as Aj D
Pn

iD1ai;jEi (ai;j 2 N, j D 1;2; : : : ;m) and we
write Aj for the vector

�
a1;j ; : : : ;an;j

�T , then there may exist a chemical reaction
between the compounds fAj W j 2 Sg for any S j f1;2; : : : ;mg if and only if the
homogeneous linear equation X

j2S

xjAj D 0 (6.3)

has a nontrivial solution for some xj 2R .j 2 S/, that is if the vector set fAj W j 2 Sg

is linearly dependent. Similarly, the inhomogeneous linear equationX
j2S

xjAj D b (6.4)

corresponds to the chemical reaction resulting the compound B D
Pn

iD1 biEi de-
noted by b D Œb1; : : : ;bn�

T . (Of course the reactions obtained in the way described
above are only possibilities, e.g. the reaction 2AuC 6HCl ! 2AuC l3C 3H2

does not occur under normal conditions.)
These ideas motivate the study of the objects (2.1) through (2.7). The question

“are there Ai and Aj parallel for some i ¤ j ? ” (Condition 1.i) means “are the
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compounds Ai and Aj isomers or multiple doses of each other? ” in the language of
stoichiometry.

The support of a solution vector x 2 Rm (see Definition 1) collects the compounds
which effectively take part in the reaction (6.3) or (6.4): supp.x/ j S in (6.3) and
in (6.4). Minimal solution vectors x 2Mmin

A;b
and x 2Mmin

A;0 clearly mean minimal
chemical reactions in the following sense.

Definition 4. The reaction in .6:3/ is called a minimal reaction if for no T ¤ S

might there be any reaction among the compounds fAj W j 2 T g; that is if the vector
set fAj W j 2 T g is linearly independent for any T ¤ S .

As Proposition 7 and Definition 3 explain, minimal chemical reactions correspond
to minimal linearly dependent sets of vectors, which we call (algebraic) simplexes.
Simplexes are widely used e.g. in stoichiometry when finding minimal reactions and
mechanisms or for finding dimensionless groups in dimensional analysis, see e.g. [1],
[4] and [6]. Algorithmic and extremal quantitative questions of minimal reactions
(simplexes) were extensively studied in several papers of the authors; we refer only
to [9], [2] and [8]. Other kinds of simplexes and their several mathematical aspects
are surveyed in [7].

In the present paper we focused on the inner structure of MA;0 and MA;b , the set
of all reactions / solutions of the linear equations

mX
jD1

xjAj D 0 , equivalently A �x D 0 (6.5)

and
mX

jD1

xjAj D b , equivalently A �x D b (6.6)

i.e. of (2.2) and (2.1)). We gave thorough extensions of the results in [3].
Proposition 5 and its extensions, Theorems 2 and 6 prove the uniqueness of the

reactions (solutions) in the sense of Remark 1, if the given set of compounds is min-
imal.

Theorems 4 and 8 are fundamental in our investigations, since they ensure: All
reactions can be obtained from minimal ones.

Our further results were listed in Remark 3 through Proposition 8.
The “second level of hierarchy” corresponds to mechanisms: sequences of reac-

tions, i.e. linear combinations of solution vectors of (6.5) (of (2.1) and (2.2)). This
and other questions are planned to discuss in [5].
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