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1. Preliminaries

A method of integral manifolds is an effective algorithm to study singularly perturbed
ordinary differential equations [1–3], systems with time lag [4,5] and functional dif-
ferential equations [6–8]. The case of systems with time lag only in fast variables is
discussed in [4,5,7,8] and only in slow variables in [6,9]. In this paper we consider
a singularly perturbed system of functional differential equations with time lag both
in fast and in slow variables. For such systems we establish the existence conditions
of stable, and center-stable, center, center-unstable integral manifolds and consider
their application for the investigation of solution stability. For ordinary differential
equations analogous problems were studied in [3,10].

Let Rn be n-dimensional Euclidean space, C∆ = C[−∆, 0], Cε∆ = C[−ε∆, 0] are
the spaces of [−∆, 0], [−ε∆, 0] continuous n-dimensioned functions.

Consider the system of functional differential equations
dx

dt
= Axt + f(t, xt, yt, ε),

ε
dy

dt
= B(t)yt + g(t, xt, yt, ε),

(1.1)

where x ∈ Rn, y ∈ Rm, xt = x(t + θ), yt = y(t + εθ), −∆ ≤ θ ≤ 0, ∆ > 0, ε > 0 is a
small parameter. Functions f(t, x, y, ε), g(t, x, y, ε) are defined in domain {t ∈ R, x ∈
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C∆, y ∈ Cε∆, ε ∈ [0, ε0]} with values in Rn and Rm. A,B are linear operators, given
by

Aϕ =

0∫

−∆

[dη1(θ)]ϕ(θ), B(t)ϕ =

0∫

−∆

[dη2(t, θ)]ϕ(εθ),

where η1(θ) is n×n matrix, whose elements are functions of limited variation; η2(t, θ)
is m×m matrix, whose elements are functions of limited variation on θ for all t and
uniformly continuous on t with respect to θ and bounded for t ∈ R.

Suppose that for system (1.1) the following conditions are valid:

I) all roots of the characteristic equation

det

(
λE −

0∫

−∆

[dη2(t, θ)]eλθ

)
= 0

are located in the left half-plane Re λ < −2µ < 0;

II) functions f, g are continuous, bounded by constant K and satisfy the following
inequalities:

|f(t, x, y, ε)− f(t, x̄, ȳ, ε)| ≤ L(ε)(|x− x̄|+ |y − ȳ|),
|g(t, x, y, ε)− g(t, x̄, ȳ, ε)| ≤ L(ε)(|x− x̄|+ |y − ȳ|),

where L(ε) → 0 if ε → 0.

2. System transformation

Consider the linear autonomous functional differential equation
dx

dt
= Axt (2.1)

and its charateristc quasipolynomial

H(λ) = det

(
λE −

0∫

−∆

[dη1(θ)]eλθ

)
.

Define the shift operator, corresponding to equation (2.1), by the relation T (t)ϕ =
xt(ϕ), where xt(ϕ) is the solution of (2.1) with initial value ϕ ∈ C∆ at t = 0.

Let us introduce the following notation:

Λ1 = {λ : H(λ) = 0,Re λ > 0}, Λ2 = {λ : H(λ) = 0,Re λ = 0},
Λ3 = {λ : H(λ) = 0,Re λ < 0}.

It is known [11] that there is only a finite number of roots of equation H(λ) = 0 in
any half-plane Re λ ≥ γ, so the sets Λ1, Λ2 are finite dimensional.

The sets Λi, i = 1, 3 generate on the space C∆ invariant under T (t) subspaces
P1, P2, Q. Subspaces P1, P2 correspond to the initial values of all those solutions of
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(2.1) which are in the form q(t)eλt, where λ ∈ Λi, i = 1, 2, q(t) is a polynomial in t.
They are finite dmensional. Let their dimensions be equal to n1, n2 respectively.

We denote by Φi(θ), ∆ ≤ θ ≤ 0 is a basis of Pi, and Ψi, 0 ≤ θ ≤ ∆ is a basis of
P ∗i ⊂ C[0, ∆] of the initial values of solutions of the adjoint to (2.1) system

dy

dt
= A∗yt, A∗ψ = −

0∫

−∆

[dηT
1 (θ)]ψ(−θ).

For elements ϕ ∈ C[−∆, 0], ψ ∈ C[0, ∆] we define the scalar product by

(ψ, ϕ) = ψT (0)ϕ(0)−
0∫

−∆

θ∫

0

ψ(ξ − θ)[dη1(θ)]ϕ(ξ)dξ.

It is known [11] that ni × ni matrix (Ψi,Φi) is nonsingular and we can take that
(Ψi, Φi) = E. Let Bi denote ni × ni matrix such that

d

dθ
Φi(θ) = Φi(θ)B, i = 1, 2, θ ∈ [−∆, 0].

The space C∆ can be decomposed into direct sum C∆ = P1 + P2 + Q. Every element
xt ∈ C∆ can be represented in the form [11, 12]

xt = Φ1u1(t) + Φ2u2(t) + zt, (2.2)

u1(t) = (Ψ1, xt), u2(t) = (Ψ2, xt), zt ∈ Q, (Ψi, zt) = 0, i = 1, 2.

Define matrices

X0(θ) =
{

0, −∆ ≤ θ < 0,
E, θ = 0,

Y0(θ) =
{

0, −ε∆ ≤ θ < 0,
E, θ = 0

and shift operator V (t, σ) for equation

ε
dy

dt
=

0∫

−∆

[dη2(t, θ)]y(t + εθ). (2.3)

Changing variables (2.2) in system (1.1) and using the variation of constants for-
mula [12] we get the equivalent system of differential and integral equations

dui

dt
= Biui + Fi(t, u1, u2, yt, zt, ε), i = 1, 2,

zt = T (t− σ)zσ +

t∫

σ

T (t− s)XQ
0 F (s, u1, u2, yt, zt, ε)ds, (2.4)

yt = V (t, σ)yσ +
1
ε

t∫

σ

V (t, s)Y0G(s, u1, u2, yt, zt, ε)ds,

where
F (t, u1, u2, yt, zt, ε) = f(t,Φ1u1 + Φ2u2 + zt, yt, ε),
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Fi(t, u1, u2, yt, zt, ε) = ΨT
i (0)F (t, u1, u2, yt, zt, ε), i = 1, 2,

G(t, u1, u2, yt, zt, ε) = g(t,Φ1u1 + Φ2u2 + zt, yt, ε),

XPi
0 = ΦiΨT

i (0), i = 1, 2, XQ
0 = X0 −XP1

0 −XP2
0 .

The integrals in (2.4) for each θ are understood as the integrals in Euclidean spaces
Rn and Rm.

From the definition of the sets Λi, i = 1, 3 and under assumption II there exist
positive constants K1,K2, α such that following inequalities are valid [12, 13]:

|eB1t| ≤ K1e
αt, t ≤ 0,

|eB2t| ≤ K1e
α
4 |t|, t ∈ R,

|T (t)ϕQ| ≤ K1e
−αt|ϕQ|, t ≥ 0,

|V (t, σ)ξ| ≤ K2e
−µ

ε (t−σ)|ξ|, t ≥ σ, ξ ∈ Cε∆.

(2.5)

3. Existence of the center and center-unstable integral manifolds

Definition 1. A set of points M ⊂ R×Rn1 ×Rn2 ×Q×Cε∆ is said to be an integral
manifold of system (2.4) if for each ε ∈ [0, ε0] and any point (t0, u10, u20, zt0 , yt0) ∈ M
it follows that (t, u1(t), u2(t), zt, yt) ∈ M for all t ≥ t0, where (u1(t), u2(t), zt, yt) is
the solution of system (2.4) with the initial values (t0, u10, u20, zt0 , yt0).

Theorem 1. Let conditions I-II hold. Then there exist positive constants ρ0, η0 such
that for all 0 < ρ < ρ0, 0 < η < η0 and sufficiently small ε the system (2.4) has the
center and center-unstable integral manifolds

M∗ = {(t, u1, u2, z, y) : t ∈ R, u1 = r∗(t, u2, ε), u2 ∈ Rn2 ,

z = v∗(t, u2, ε), y = w∗(t, u2, ε)},
M∗− = {(t, u1, u2, z, y) : t ∈ R, u1 ∈ Rn1 , u2 ∈ Rn2 ,

z = v∗−(t, u1, u2, ε), y = w∗−(t, u1, u2, ε)},
where functions r∗, v∗, w∗, v∗−, w∗− are continuous with respect to all variables and
satisfy the Lipschitz condition by u1, u2 with constant η and not exceeding ρ.

Proof. The existence of the center manifold of system (2.4) was studied in [14]. Now
we prove that system (2.4) has center-unstable integral manifold M∗−.

Define the sets of functions

Sz = {v : R×Rn1 ×Rn2 × [0, ε0] → Q},
Sy = {w : R×Rn1 ×Rn2 × [0, ε0] → Cε∆},

which are bounded by ρ and satisfy the Lipschitz condition by u1, u2 with constant
η.
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Consider the following system for any v ∈ Sz, w ∈ Sy

dui

dt
= Biui + Fi(t, u1, u2, v(t, u1, u2, ε), w(t, u1, u2, ε), ε), i = 1, 2. (3.1)

Due to the conditions of functions f, v, w the following inequalities hold

|Fi(t, u1, u2, v(t, u1, u2, ε), w(t, u1, u2, ε), ε)−
−Fi(t, ū1, ū2, v(t, ū1, ū2, ε), w(t, ū1, ū2, ε), ε)| ≤
≤ L(ε)mi(ν1 + ν2 + 2η)(|u1 − ū1|+ |u2 − ū2|),

where mi = |ΨT
i (0)|, νi = |Φi|, i = 1, 2.

Thus, for every point (u10, u20) ∈ Rn1 × Rn2 system (3.1) has a unique solution
u1(t) = U1(t, t0, u10, ε, v, w), u2(t) = U2(t, t0, u20, ε, v, w) such that u1(t0) = u10,
u2(t0) = u20.

Lemma 1. Let conditions I-II hold. Then for all sufficient small ε the following
inequality is valid

|U1− Ū1|+ |U2− Ū2| ≤ K1e
−α

2 (t−s)(|u1− ū1|+ |u2− ū2|+ ||v− v̄||+ ||w− w̄||), t ≤ s.

The proof of Lemma 1 can be easily obtained using the Gronwal inequality and
properties of functions f, v, w.

Consider now the set S = Sz × Sy of functions (v, w) with the norm ‖(v, w)‖ =
max(‖v‖, ‖w‖). Define in set S the operator

H(v, w) = (H1
t,u1,u2

(v, w), H2
t,u1,u2

(v, w)),

where

H1
t,u1,u2

(v, w) =

t∫

−∞
T (t− s)XQ

0 F (s, u1(s), u2(s),

v(s, u1, u2, ε), w(s, u1, u2, ε), ε)ds, (3.2)

H2
t,u1,u2

(v, w) =
1
ε

t∫

−∞
V (t, s)Y0G(s, u1(s), u2(s),

v(s, u1, u2, ε), w(s, u1, u2, ε), ε)ds . (3.3)

It follows from inequalities (2.5) and condition II that the integrals on the right
side of (3.2), (3.3) converge uniformly with respect to θ ∈ [−∆, 0].

Consider any sequence of numbers tn < t such that tn → −∞ when n → ∞. It
follows from (2.4) that

An =

t∫

tn

T (t− s)Y Q
0 F (s, u1, u2, v, w, ε)ds ∈ Q,

Bn =
1
ε

t∫

tn

V (t, s)Y0G(s, u1, u2, v, w, ε)ds ∈ Cε∆ .
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Then H1
t,u1,u2

(v, w) ∈ Q, H2
t,u1,u2

(v, w) ∈ Cε∆ since An → H1
t,u1,u2

(v, w), Bn →
H2

t,u1,u2
(v, w) when n →∞ uniformly with respect to θ ∈ [−∆, 0].

By means of similar arguments to those in [14] one can easily make sure that the
following statement is valid.

Lemma 2. Let conditions I-II hold. Then for all sufficiently small ε the operator H
is a contraction mapping of S into itself.

Denote by (v∗−, w∗−) the unique fixed point of the operator H. Let u1(t) =
U1(t, t0, u10, ε, v

∗−, w∗−), u2(t) = U2(t, t0, u20, ε, v
∗−, w∗−) be a solution of system

(3.1). Then functions v∗−, w∗− satisfy such system

v∗−(t, u1(t), u2(t), ε) =

t∫

−∞
T (t− s)XQ

0 F (s, u1(s), u2(s),

v∗−(s, u1(s), u2(s), ε), w∗−(s, u1(s), u2(s), ε), ε)ds, (3.4)

w∗−(t, u1(t), u2(t), ε) =
1
ε

t∫

−∞
V (t, s)Y0G(s, u1(s), u2(s),

v∗−(s, u1(s), u2(s), ε), w∗−(s, u1(s), u2(s), ε), ε)ds.

Let (t0, u10, u20) ∈ R × Rn1 × Rn2 be an arbitrary point. Using the following
identity for solutions of system (3.1)

Ui(s, t0, ui0, ε, v, w) = Ui(s, t, Ui(t, t0, ui0, ε, v, w), ε, v, w), i = 1, 2

and also the property of the operators T, V

T (t− s) = T (t− t0)T (t0 − s), V (t, s) = V (t, t0)V (t0, s)

we rewrite system (3.4) in the form

v∗−(t, u1, u2, ε) = T (t− t0)v∗−(t0, u10, u20, ε) +

t∫

t0

T (t− s)XQ
0 F (s, u1, u2,

v∗−(s, u1, u2, ε), w∗−(s, u1, u2, ε), ε)ds, (3.5)

w∗−(t, u1, u2, ε) = V (t, t0)w∗−(t0, u10, u20, ε) +
1
ε

t∫

t0

V (t, s)Y0G(s, u1, u2,

v∗−(s, u1, u2, ε), w∗−(s, u1, u2, ε), ε)ds.

It follows from (3.5) that functions v∗−(s, u1, u2, ε), w∗−(s, u1, u2, ε) satisfy the
third and fourth equations of system (2.4) for all t ≥ t0. Thus, the set M∗− is
an integral manifold for (2.4). ¤
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Corollary 1. The flow of the initial system (1.1) on the center-stable manifold M∗−

is governed by the system of ordinary differential equations
dui

dt
= Biui + Fi(t, u1, u2, v

∗−(t, u1, u2, ε), w∗−(t, u1, u2, ε), ε), i = 1, 2, (3.6)

which is regular and has no time lag.

4. Existence of the stable and center-stable integral manifolds

Further we suppose that such equalities are valid:

f(t, 0, 0, ε) = 0, g(t, 0, 0, ε) = 0.

Theorem 1. Let conditions I-II be valid. Then there exist positive constants l0, N
such that for all 0 < l < l0 and sufficiently small ε system (2.4) has the stable and
center-stable manifolds

M+ = {(t, u1, u2, z, y) : u1 = r+
1 (t, z, y, ε),

u2 = r+
2 (t, z, y, ε), z ∈ Q, y ∈ Cε∆},

M∗+ = {(t, u1, u2, z, y) : u1 = r∗+(t, u1, z, y, ε), u2 ∈ Rn2 , z ∈ Q, y ∈ Cε∆},
where functions r+

1 , r+
2 , r∗+ are continuous with respect to all variables and satisfy the

Lipschitz condition by u2, y, z with constant l.

The following estimates are valid for the arbitrary solution of the system (2.4),
whose initial values lie on a stable manifold M+, when t ≥ t0:

|ui| ≤ N(|yt0 |+ |zt0 |)e−
α
2 (t−t0), i = 1, 2,

|zt| ≤ N(|yt0 |+ |zt0 |)e−
α
2 (t−t0), (4.1)

|yt| ≤ N(|yt0 |+ |zt0 |)e−
α
2 (t−t0).

Proof. Denote by

Ω := {ri : R×Q× Cε∆ × [0, ε1] → Rni}, i = 1, 2

the sets of all continuous functions with respect to all variables, which satisfy the Lip-
schitz condition on z, y with constant l and condition ri(t, 0, 0, ε) = 0. For arbitrary
r1 ∈ Ω1, r2 ∈ Ω2 we consider the following system

zt = T (t− t0)zt0 +

t∫

t0

T (t− s)XQ
0 F [s, zs, ys, ε]ds,

yt = V (t, t0)yt0 +
1
ε

t∫

t0

V (t, s)Y0G[s, zs, ys, ε]ds, (4.2)

where
F [s, zs, ys, ε] = F (s, r1(s, zs, ys, ε), r2(s, zs, ys, ε), zs, ys, ε),

G[s, zs, ys, ε] = G(s, r1(s, zs, ys, ε), r2(s, zs, ys, ε), zs, ys, ε).
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Let us prove the existence of the solution of system (4.2) with the help of the successive
approximations method

z0
t = 0, y0

t = 0,

zj+1
t = T (t− t0)zt0 +

t∫

t0

T (t− s)XQ
0 F [s, zj

s , y
j
s, ε]ds,

yj+1
t = V (t, t0)yt0 +

1
ε

t∫

t0

V (t, s)Y0G[s, zj
s , y

j
s, ε]ds, j = 0, 1, ....

With the help of the mathematical induction method we ensure that the following
inequalities are valid:

|zm+1
t − zm

t | ≤
K̄

2m
e−

α
2 (t−t0)(|zt0 |+ |yt0 |),

|ym+1
t − ym

t | ≤
K̄

2m
e−

α
2 (t−t0)(|zt0 |+ |yt0 |),

(4.3)

where K̄ = max(K1,K2), m = 0, 1, ....

From estimates (2.5) for ε <
2µ

α
we obtain that the inequalities (4.3) are valid for

m = 0. Suppose that (4.3) are valid for m = j. Then obtain

|zj+1
t − zj

t | ≤
t∫

t0

K1e
−α(t−s)L(ε)(ν1l + ν2l + 1)(|zj

t − zj−1
t |+ |yj

t − yj−1
t |)ds ≤

≤ K̄

2j−1

4L(ε)(ν1l + ν2l + 1)
α

(|zt0 |+ |yt0 |)e−
α
2 (t−t0),

|yj+1
t − yj

t | ≤
t∫

t0

K2e
−µ

ε (t−s)L(ε)(ν1l + ν2l + 1)(|zj
t − zj−1

t |+ |yj
t − yj−1

t |)ds ≤

≤ K̄

2j−1

4L(ε)(ν1l + ν2l + 1)
2µ− εα

(|zt0 |+ |yt0 |)e−
α
2 (t−t0).

For ε <
µ

α
and L(ε) <

α

8K̄(ν1l + ν2l + 1)
we obtain that (4.3) are valid for m = j +1.

Thus, inequalities (4.3) are valid for all natural m.

It follows from (4.3) that sequences zm
t , ym

t uniformly converge to the solutions
zt(t0, zt0 , yt0 , r1, r2), yt(t0, zt0 , yt0 , r1, r2) of the system (4.2). After summation of
inequaities (4.3) on m, it is obtained the following uniform estimates:

|zt(t0, zt0 , yt0 , r1, r2)| ≤ 2K̄(|zt0 |+ |yt0 |)e−
α
2 (t−t0),

|yt(t0, zt0 , yt0 , r1, r2)| ≤ 2K̄(|zt0 |+ |yt0 |)e−
α
2 (t−t0),

(4.4)

for t ≥ t0.
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Denote by zt(t0, z̄t0 , ȳt0 , r1, r2), yt(t0, z̄t0 , ȳt0 , r1, r2) the solution of system (4.2)
with initial value (z̄t0 , ȳt0). Similarly to (4.3), (4.4) one can show that the following
estimations are valid:

|zt(t0, zt0 , yt0 , r1, r2)− zt(t0, z̄t0 , ȳt0 , r1, r2)| ≤
2K̄(|zt0 − z̄t0 |+ |yt0 − ȳt0 |)e−

α
2 (t−t0),

|yt(t0, zt0 , yt0 , r1, r2)− yt(t0, z̄t0 , ȳt0 , r1, r2)| ≤
2K̄(|zt0 − z̄t0 |+ |yt0 − ȳt0 |)e−

α
2 (t−t0),

(4.5)

for t ≥ t0.

Let us denote by Ω = Ω1 × Ω2 the set of function (r1, r2) with the norm

‖(r1, r2)‖ = max(‖r1‖, ‖r2‖), ‖ · ‖ = sup
t,z,y,ε

| · |.

Let define the operator

H(r1, r2) = (H1
r1,r2

(t0, zt0 , yt0 , ε), H
2
r1,r2

(t0, zt0 , yt0 , ε)),

where

Hi
r1,r2

(t0, zt0 , yt0 , ε) = −
∞∫

t0

eBi(t−s)F [s, zs, ys, ε]ds, i = 1, 2. (4.6)

From estimates (2.5) and inequalities (4.4), (4.5) it follows that for sufficiently small
ε the operator H maps Ω into itself.

Let (r1, r2), (r̄1, r̄2) ∈ Ω. Using the estimates (2.5), (4.5) and properties of functions
f, r1, r2, we obtain

|Hi
r1,r2

(t0, zt0 , yt0 , ε)−Hi
r̄1,r̄2

(t0, z̄t0 , ȳt0 , ε)| ≤

≤ K̄(ν1 + ν2)
α

L(ε)(‖r1 − r̄1‖+ ‖r2 − r̄2‖).
Thus, operator H is a contraction on Ω if

L <
α

K̄(ν1 + ν2)
.

Let us denote by (r+
1 , r+

2 ) the unique fixed point of H on Ω. We are going to prove
that M+ is an integral manifold. Let (zt, yt) be the solution of the system (4.2),
where ri = r+

i , i = 1, 2. Then functions r+
i , i = 1, 2 satisfy equations

r+
i = −

∞∫

t

eBi(t−s)F [s, zs, ys, ε]ds, i = 1, 2. (4.7)

Differentiating these equations we obtain that functions r+
i , i = 1, 2 satisfy the first

and the second equations of system (2.4). Thus, the set M+ is an integral manifold
for system (2.4).

From (4.5) and properties of the functions r+
1 , r+

2 it follows that estimates (4.1)
are valid for N = max(2K̄, 4lK̄). The existence of the center-stable manifold M∗+ is
proved similarly to the case of stable manifold. ¤
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5. The stability problem

In this item we study the behaviour of solutions of system (1.1) when t →∞.

Theorem 1. Let the conditions I-II are valid. Then for all sufficiently small ε and
arbitrary solution (u1(t), u2(t), zt, yt) of system (2.4) there exists a solution

(h1(t), h2(t), v∗−(t, h1, h2, ε), w∗−(t, h1, h2, ε))

of system (2.4), starting from a center-unstable manifold that following inequalities
hold

|ui(t)− hi(t)| ≤ K3ϕe−
α
2 (t−t0), i = 1, 2,

|zt − v∗−(t, h1, h2, ε)| ≤ K3ϕe−
α
2 (t−t0), (5.1)

|yt − w∗−(t, h1, h2, ε)| ≤ K3ϕe−
α
2 (t−t0),

where ϕ = |zt0 − v∗−(t, h1(t0), h2(t0), ε)|+ |yt0 − w∗−(t, h1(t0), h2(t0), ε)|, K3 > 0.

Proof. Let consider arbitrary solution (u1(t), u2(t), zt, yt) of system (2.4) with initial
values (t0, u10, u20, zt0 , yt0) and a solution (h1(t), h2(t), ξt, ψt) of system (2.4) with ini-
tial values (c1, c2, v

∗−(t0, c1, c2, ε), w∗−(t0, c1, c2, ε)), where c1 = h1(t0), c2 = h2(t0).
Changing the variables in system (2.4)

p1(t) = u1(t)− h1(t), p2(t) = u2(t)− h2(t), qt = zt − ξt, ωt = yt − ψt, (5.2)

we obtain the following system
dpi

dt
= Bipi + F̄i(t, p1, p2, qt, ωt, ε), i = 1, 2,

qt = T (t− t0)qt0 +

t∫

t0

T (t− s)XQ
0 F̄ (s, p1, p2, qs, ωs, ε)ds, (5.3)

ωt = V (t, t0)ωt0 +
1
ε

t∫

t0

V (t, s)Y0Ḡ(s, p1, p2, qs, ωs, ε)ds,

where

F̄i = Fi(t, p1 + h1, p2 + h2, qt + ξt, ωt + ψt, ε)− Fi(t, h1, h2, ξt, ψt, ε), i = 1, 2

and functions F̄ , Ḡ have the same form.

According to theorem 1, the system (5.3) has a stable integral manifold. This
manifold is described by functions pi = r+

i (t, qt, ωt, ε), i = 1, 2, which satisfy the
following conditions

r+
i (t, 0, 0, ε) = 0,

|r+
i (t, qt, ωt, ε)− r+

i (t, q̄t, ω̄t, ε)| ≤ l(|qt − q̄t|+ |ωt − ω̄t|).
For arbitrary solution (p1, p2, qt, ωt) of system (5.3), which belongs to M+, it follows
that

|pi(t)| ≤ Ne−
α
2 (t−t0)(|qt0 |+ |ωt0 |), i = 1, 2,

|qt| ≤ Ne−
α
2 (t−t0)(|qt0 |+ |ωt0 |), (5.4)
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|ωt| ≤ Ne−
α
2 (t−t0)(|qt0 |+ |ωt0 |).

Let us now show that representations (5.2) are valid if solutions (p1(t), p2(t), qt, ωt)
are on the stable manifold M+. It is sufficient to show that (5.2) holds for t = t0. In
this case we obtain

r+
1 (t0, qt0 , ωt0 , ε) = u10 − c1, r+

2 (t0, qt0 , ωt0 , ε) = u20 − c2,
qt0 = zt0 − v∗−(t0, c1, c2, ε), ωt0 = yt0 − w∗−(t0, c1, c2, ε).

(5.5)

Next we show that system (5.5) has the solution with respect to (c1, c2, qt0 , wt0) for
any (u10, u20, zt0 , ωt0).

Let S denote the sphere in the space Rn1 ×Rn2 which is defined by

|c1 − u10|+ |c2 − u20| ≤ 4l(|zt0 − v∗−(t0, u10, u20, ε)|+ |yt0 − w∗−(t0, u10, u20, ε)|).
Let consider the operator J = (J1, J2) on S, where

Ji(c1, c2) = ui0 − r∗i (t0, zt0 − v∗−(t0, c1, c2, ε), yt0 − w∗−(t0, c1, c2, ε)), i = 1, 2.

It is easy to obtain that for each ε ∈ [0, ε1] and fixed u10, u20 the operator J is
equicontinuous on S and maps S into itself if constant η0 in the theorem 1 satisfy the

following condition η0 <
1
8l

.

According to Schauder theorem it follows that the mapping J has at least one fixed
point in S. Let (c∗1, c

∗
2) denote this fixed point. Then

c∗1, c
∗
2, q

∗
t0 = zt0 − v∗−(t0, c∗1, c

∗
2, ε), ω∗t0 = yt0 − w∗−(t0, c∗1, c

∗
2, ε)

satisfy the system (5.5). ¤

The next assertion follows from theorem 1.

Theorem 2. Let the conditions I-II are valid. Then for all sufficiently small ε the
trivial solution of system (1.1) is stable (asymtotic stable, unstable) if and only if stable
(asymtotic stable, unstable) the trivial solution of system (3.6) on center-unstable
manifold.
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