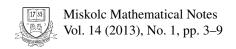


HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2013.499

Generalized derivations on ideals of prime rings

 $Emine\ Albaş$



GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS

EMINE ALBAŞ

Received March 19, 2012

Abstract. Let R be a prime ring. By a generalized derivation we mean an additive mapping $g: R \to R$ such that g(xy) = g(x)y + xd(y) for all $x, y \in R$ where d is a derivation of R. In the present paper our main goal is to generalize some results concerning derivations of prime rings to generalized derivations of prime rings.

2000 Mathematics Subject Classification: 16N60; 16W25; 16R50; 16U80

Keywords: prime ring, derivation, generalized polynomial, generalized derivation

1. Introduction

Throughout this paper R always denotes an associative prime ring with center Z(R), extended centroid C, Martindale quotients ring Q and Utumi quotients ring Q. For any $x, y \in R$, the commutator of X and Y denoted by [x, y] is defined to be xy - yx. Recall that a ring X is prime if X if X if X is called a derivation if X if X is called a derivation if X if X is called a derivation was initiated by Posner [16]. Over the last two decades, a lot of work has been done on this subject (see [4,7,11,16] where further references can be found). Following Brešar [4], X is called a generalized derivation if there exists a derivation X of X such that

$$d(xy) = d(x)y + x\alpha(y)$$
 for all $x, y \in R$.

Hence the concept of generalized derivations covers both the concepts of a derivation and of a left multiplier that is, an additive mapping $f: R \to R$ satisfying f(xy) = f(x)y for all $x, y \in R$. Basic examples are derivations and generalized inner derivations given by maps of type $f: R \ni x \mapsto ax + xb \in R$ for some $a, b \in R$.

In [9], Hvala initiated generalized derivations from the algebraic viewpoint. In [13], T.K. Lee extended the definition of generalized derivations as follows:

By a generalized derivation we mean an additive mapping $g: I \to U$ such that g(xy) = g(x)y + xd(y) for all $x, y \in I$, where I is a dense right ideal of R and d is a derivation from I into U.

© 2013 Miskolc University Press

Moreover Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation of U and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U and obtained the following results:

Theorem 1 ([13], Theorem 3). Every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form g(x) = ax + d(x) for some $a \in U$ and a derivation d on U.

In this paper we extend some well-known results concerning derivations of prime rings to generalized derivations of prime ring.

We note that if R has the property that Rx = 0 implies x = 0 and $h: R \to R$ is any function, $d: R \to R$ is any additive mapping such that $d(xy) = d(x)y + x\alpha(y)$ for all $x, y \in R$, then d is uniquely determined by h and moreover h must be a derivation (see [4], Remark 1).

In all that follows, unless stated otherwise, R will be a prime ring. The related object we need to mention is the two-sided Quotient ring Q of a ring R, the two-sided Utumi quotient U of a ring R (sometimes, as in [3], U is called the maximal ring of quotients). The definitions, the axiomatic formulations and the properties of these quotient rings U and Q can be found in [2] and [3].

We make a frequent use of the theory of generalized polynomial identities and of the theory of differential identities (see [3, 5, 10, 12, 15]). In particular we need to recall that when R is a prime ring and I a nonzero two-sided ideal of R, then I, R, Q and U satisfy the same polynomial identities [5] and also the same differential identities [12].

We will also make frequent use of the following result due to Kharchenko [10] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided ideal of R. Let $f(x_1,...,x_n,d(x_1),...,d(x_n))$ be a differential identity on I, that is the relation

$$f(r_1,...,r_n,d(r_1),...,d(r_n)) = 0$$

holds for all $r_1, ..., r_n \in I$.

One of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that d(x) = [q, x], for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1,...,r_n,[q,r_1],...,[q,r_n]);$$

2) or I satisfies the generalized polynomial identity

$$f(x_1,...,x_n,y_1,...,y_n).$$

In [14], T.K. Lee and W.K. Shiue proved a version of Kharchenko's theorem for generalized derivations and presented some results concerning certain identities with

generalized derivations. More detail about generalized derivations can be in [9, 13] and [14].

We recall some related known result in literature: We say that an additive map F acts as a homomorphism on a nonempty subset $T \subseteq R$, if F(xy) = F(x)F(y) for all $x, y \in T$; F acts as an anti-homomorphism on T, if F(xy) = F(y)F(x) for all $x, y \in T$; finally F acts as a Jordan homomorphism on T if $F(x^2) = F(x)^2$ for all $x, y \in T$. Obviously any additive mapping, which is a homomorphism or an anti-homomorphism, is a Jordan homomorphism. On the other hand, in [8] Herstein proved that in case R is a prime ring of characteristic different from 2, any Jordan homomorphism on R is either a homomorphism or an anti-homomorphism of R. In [17], Rehman proved:

Theorem 2 ([17], Theorem 1.2). Let R be a prime ring of characteristic different from 2 and F a nonzero generalized derivation of R, with associated derivation d. If F acts as homomorphism or anti-homomorphism on a two-sided ideal of R, then R is commutative unless d = 0.

Recently in [6], De Filippis extended the Rehman's result as follows:

Theorem 3 ([6], Theorem 2). Let R be a prime ring, L a noncetral Lie ideal of R and F a nonzero generalized derivation of R. If F acts as a Jordan homomorphism on L, then either F(x) = x for all $x \in R$, or char(R) = 2, R satisfies the standard identity $s_4(x_1, x_2, x_3, x_4)$, L is commutative and $u^2 \in Z(R)$, for all $u \in L$.

By motivating above results, in the present paper our aim is to obtain a generalization of Rehman's one in [17], moreover this study is a partial generalization of the result in [6] (in case I = L is a two-sided ideal of R).

Throughout the paper, we denote by I_{id} the identity map of a ring R (i.e., the map $I_{id}: R \to R$ defined by $I_{id}(x) = x$ for all $x \in R$).

2. RESULTS

In the following, we assume that R is a prime ring and that Z(R) is the center of R without stated otherwise.

For the proof of our main results we need the following lemma.

Lemma 1. Let R be a noncommutative prime ring with a generalized derivation d associated with a derivation α of R. Suppose that $0 \neq c$ is an element of R such that $cd(x) \in Z(R)$ for all $x \in R$. Then there exists $q \in U$ such that d(x) = qx and cq = 0.

Proof. By Theorem 1 we can write d as the form $d(x) = qx + \alpha(x)$, where $q \in U$. By the hypothesis we have $c(qx + \alpha(x)) \in Z(R)$ for all $x \in R$. Since R and U satisfy the same differential identity [12] we get

$$c(qx + \alpha(x)) \in C$$
 for all $x \in U$. (2.1)

Suppose first that $\alpha \neq 0$. By the result of modulo Kharchenko's Theorem [10] we can divide the proof into two cases.

Assume first that α is an inner derivation of U induced by an element $b \in U$, that is [b,x], for all $x \in U$. In this case d(x) = qx + [b,x]. By the hypothesis we have $c(qx + [b,x]) \in C$ for all $x \in U$. Hence above relation implies that

$$[r, c(qx + [b, x])] = 0$$
 for all $r, x \in U$ (2.2)

and in particular $cq \in C$. Replacing x by b we get cq[r,b]=0 for all $r \in U$. By the primeness of R we obtain that either cq=0 or $b \in C$. Since $\alpha \neq 0$ we are forced to consider the first case. Let cq=0. By (2.2) we get [r,c[b,x]]=0 for all $r,x \in U$. Substituting xb for x in the last relation we have

$$c[b,x][r,b] = 0$$
 for all $r, x \in U$.

By the primeness of U and by the supposing on α the above relation implies that c = 0, a contradiction.

Assume now that α is not an inner derivation of U. By Kharchenko's Theorem in [10,12], we get $c(qx+y) \in C$ for all $x, y \in U$. In particular we obtain that $cqx \in C$ for all $x \in U$. Since R is noncommutative prime ring and $cq \in C$ we arrive at cq = 0. By the last relation we get $cy \in C$ implying that c = 0, a contradiction.

Thanks to two contradictions we are forced to assume that $\alpha = 0$. So we get d(x) = qx and using (2.1) we also obtain that cq = 0, as asserted.

Now we are ready to prove our main results. The following theorem may be considered as a generalization of [1], Theorem 3.4.

Theorem 4. Let R be a prime ring with center Z(R) and I be a nonzero ideal of R. If R admits a nonzero generalized derivation d of R, with associated derivation α such that $d(xy) - d(x)d(y) \in Z(R)$ or $d(xy) + d(x)d(y) \in Z(R)$ for all $x, y \in I$, then either R is commutative or $d = I_{id}$ or $d = -I_{id}$.

Proof. As we have remarked above we may take a generalized derivation d as the form $d(x) = ax + \alpha(x)$ for all $x \in U$ where $a \in U$ and it is known that R and I satisfy the same differential identity [12]. So we may assume that R admits a generalized derivation such that $d(xy) - d(x)d(y) \in Z(R)$ or $d(xy) + d(x)d(y) \in Z(R)$ for all $x, y \in R$. For each $y \in R$ we consider two subsets $K_y = \{x \in R : d(xy) - d(x)d(y) \in Z(R)\}$ and $M_y = \{x \in R : d(xy) + d(x)d(y) \in Z(R)\}$. Then K_y and M_y are two additive subgroups of (R, +) such that $(R, +) = K_y \cup M_y$; and since a group cannot be the union of two proper subgroups, we have that either $R = K_y$ or $R = M_y$ for all $y \in R$. Repeating the same above argument we obtain that either $R = \{y \in R : R = K_y\}$ or $R = \{y \in R : R = M_y\}$. Note that the second case can be reduced to the first case. Indeed, since f = -d is also a generalized derivation of R associated with a derivation $g = -\alpha$ the latter case just means that g(xy) - g(x) = g(x) for all g(x) = g(x). Thus we only need to handle the case that

$$d(xy) - d(x)d(y) \in Z(R)$$
 for all $x, y \in R$.

If R is commutative we are done. So we may suppose that R is not commutative. For some $a \in U$ write $d(x) = ax + \alpha(x)$ in the last relation. Since R and U satisfy the same differential identity [12] we have

$$d(xy) - d(x)d(y) \in C \quad \text{for all } x, y \in U.$$
 (2.3)

Take 1 instead of x in (2.3). Hence we get $(1-a)d(y) \in C$ for all $y \in U$.

First suppose that $a \neq 1$. In view of Lemma 1 there exists $q \in U$ such that d(y) = qy for all $y \in U$ and (1-a)q = 0. By (2.3) we have $qxy - qxqy \in C$ and so $qx(1-q)y \in C$ for all $x, y \in U$. Since R is a noncommutative prime ring the last relation gives us that q = 0 or q = 1. The first case implies that d = 0, a contradiction. Moreover it is easily seen that a = q. Thus the second case gives a contradiction. Now suppose that a = 1. By (2.3) we have

$$\alpha(x)\alpha(y) \in C \quad \text{for all } x, y \in U.$$
 (2.4)

Applying Lemma 1 to (2.4), we obtain $\alpha(x)\alpha(y) = 0$ for all $x, y \in U$. Replacing x by xz in the last relation we get $\alpha(x)z\alpha(y) = 0$ for all $x, y, z \in U$. By the primeness of U we arrive at $\alpha = 0$. By the last relation and the assumption a = 1 we arrive at $d = I_{id}$, as asserted.

Theorem 5. Let R be a prime ring with center Z(R) and I be a nonzero ideal of R. If R admits a nonzero generalized derivation d of R, with associated derivation α such that $d(xy) - d(y)d(x) \in Z(R)$ or $d(xy) + d(y)d(x) \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. In a similar manner as the proof of Theorem 4 we obtain that either $d(xy) - d(y)d(x) \in Z(R)$ for all $x, y \in R$ or $d(xy) + d(y)d(x) \in Z(R)$ for all $x, y \in R$. As stated before, since the second case can be reduced to the first case by using the observation in the proof of Theorem 4, we consider only the case

$$d(xy) - d(y)d(x) \in Z(R)$$
 for all $x, y \in R$.

If R is commutative we are done. So we may suppose that R is not commutative. By Theorem 1, for some $a \in U$ write $d(x) = ax + \alpha(x)$ for all $x \in R$ and since R and U satisfy the same differential identity [12] we have

$$d(xy) - d(y)d(x) \in C \quad \text{for all } x, y \in U. \tag{2.5}$$

Substituting 1 for y in (2.5) we get $(1-a)d(x) \in C$ for all $x \in U$. If $a \neq 1$, there exits $q \in U$ such that d(x) = qx and (1-a)q = 0 by Lemma 1. Using this fact in (2.5) we have

$$qxy - qyqx \in C$$
 for all $x, y \in U$.

Replacing x by xy we get $(qxy-qyqx)y \in C$ for all $x,y \in U$. Since $qxy-qyqx \in C$ and $(qxy-qyqx)y \in C$ for all $x,y \in U$, we see that for every $y \in U$, qxy-qyqx=0 for all $x \in U$ or $y \in C$. Recall that R is noncommutative. So qxy-qyqx=0 for all $x,y \in U$. Setting x=1 in the last relation, we get qU(1-q)=0. So the

last relation implies that q = 0 or q = 1. If q = 0, then d = 0, a contradiction to our hypothesis. If q = 1, then xy - yx = 0 for all $x, y \in U$ and hence R is commutative, a contradiction to our assumption.

Now let a=1. Then by the hypothesis we have $xy + \alpha(x)y + x\alpha(y) - yx - y\alpha(x) - \alpha(y)x - \alpha(y)\alpha(x) \in C$ for all $x, y \in U$ yielding that

$$[x, y] + [\alpha(x), y] + [x, \alpha(y)] - \alpha(y)\alpha(x) \in C \quad \text{for all } x, y \in U. \tag{2.6}$$

If $\alpha=0$, then (2.6) implies that $[x,y]\in C$ for all $x,y\in U$ which gives us that R is commutative, a contradiction. So we can assume that $\alpha\neq 0$. By Kharchenko's Theorem [10], if α is an inner derivation induced by an element $b\in U\setminus C$ such that $\alpha(x)=[b,x]$ for all $x\in U$ then replacing y by b in (2.6) we get $[x,b]+[\alpha(x),b]\in C$ for all $x\in U$. Taking xb instead of x we have $([x,b]+[\alpha(x),b])b\in C$ for all $x\in U$. Since $b\notin C$ we obtain $0=[x,b]+[\alpha(x),b]=\alpha(x)+\alpha^2(x)$. Replacing x by $\alpha(x)$ in (2.6) and using the last relation we have $\alpha(x)\alpha(y)\in C$. Replacing y by yb in the last relation and using $b\notin C$ we get $\alpha(x)\alpha(y)=0$ for all $x,y\in U$ yielding that $\alpha=0$, a contradiction. If α is not inner, then by Kharchenko's Theorem in [10,12], we get

$$[x, y] + [z, y] + [x, w] - wz \in C$$
 for all $x, y, z, w \in U$.

In particular we obtain $[x, y] \in C$ for all $x, y \in U$ yielding that R is commutative, a contradiction.

Example 1. Let R_1 be any commutative and R_2 any noncommutative ring. Define the ring R as $R = R_1 \oplus R_2 = \{(a,b) : a \in R_1 \ and \ b \in R_2\}$. It is clear that R is a noncommutative ring. Let δ be any derivation of R_1 . Define an additive map $\alpha: R \to R$ as $\alpha((a,b)) = (\delta(a),0)$, where $(a,b) \in R$. One can be easily shown that α is a derivation on R. Then the map $d: R \to R$ defined as $d((a,b)) = (a+\delta(a),b)$ is a generalized derivation on R associated with the derivation α . It is easy to verify that d satisfies $d(xy) - d(x)d(y) \in Z(R)$ for all $x, y \in R$, but neither R is commutative, nor d = 0 nor $d = I_{id}$.

ACKNOWLEDGEMENTS

The author would like to express sincere gratitude to the referee for his or her careful reading and making several corrections.

REFERENCES

- [1] E. Albaş and N. Argaç, "Generalized derivations of prime rings," *Algebra Colloq.*, vol. 11, no. 3, pp. 399–410, 2004.
- [2] K. I. Beidar, "Rings of quotients of semiprime rings," *Vestn. Mosk. Univ., Ser. I*, vol. 33, no. 5, pp. 36–43, 1978.
- [3] K. I. Beidar, W. S. Martindale, and A. V. Mikhalev, *Rings with generalized identities*, ser. Pure and Applied Mathematics. New York: Marcel Dekker, 1996.
- [4] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations," *Glasg. Math. J.*, vol. 33, no. 1, pp. 89–93, 1991.

- [5] C.-L. Chuang, "GPIs having coefficients in Utumi quotient rings," Proc. Am. Math. Soc., vol. 103, no. 3, pp. 723–728, 1988.
- [6] V. De Filippis, "Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals," Acta Math. Sin., Engl. Ser., vol. 25, no. 12, pp. 1965–1974, 2009.
- [7] A. Giambruno and I. N. Herstein, "Derivations with nilpotent values," *Rend. Circ. Mat. Palermo, II. Ser.*, vol. 30, pp. 199–206, 1981.
- [8] I. N. Herstein, *Topics in ring theory*, ser. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press, 1969.
- [9] B. Hvala, "Generalized derivations in rings," Commun. Algebra, vol. 26, no. 4, pp. 1147–1166, 1998
- [10] V. K. Kharchenko, "Differential identities of prime rings," Algebra Logic, vol. 17, pp. 155–168, 1978.
- [11] P. H. Lee and T. K. Lee, "On derivations of prime rings," Chin. J. Math., vol. 9, no. 2, pp. 107–110, 1981.
- [12] T.-K. Lee, "Semiprime rings with differential identities," *Bull. Inst. Math., Acad. Sin.*, vol. 20, no. 1, pp. 27–38, 1992.
- [13] T.-K. Lee, "Generalized derivations of left faithful rings," *Commun. Algebra*, vol. 27, no. 8, pp. 4057–4073, 1999.
- [14] T.-K. Lee and W.-K. Shiue, "Identities with generalized derivations," Commun. Algebra, vol. 29, no. 10, pp. 4437–4450, 2001.
- [15] W. S. Martindale, "Prime rings satisfying a generalized polynomial identity," *J. Algebra*, vol. 12, pp. 576–584, 1969.
- [16] E. C. Posner, "Derivations in prime rings," Proc. Am. Math. Soc., vol. 8, pp. 1093–1100, 1957.
- [17] N. ur Rehman, "On generalized derivations as homomorphisms and anti-homomorphisms," *Glas. Mat., III. Ser.*, vol. 39, no. 1, pp. 27–30, 2004.

Author's address

Emine Albaş

Ege University, Science Faculty, Department of Mathematics, 35100 Bornova, Izmir, Turkey *E-mail address:* emine.albas@ege.edu.tr