

ON COFINITELY (D_{12}^*) -MODULES

FIGEN ERYILMAZ

Received 26 February, 2024

Abstract. In this paper, concepts of (cofinitely) (D_{12}^*) -modules which are a proper generalization of concept of \oplus_{δ} -supplemented modules are studied. We say that M is a (D_{12}^*) -module if for every submodule A of M, there exists a direct summand B of M and an epimorphism $f: B \to \frac{M}{A}$ such that $\ker(f) \ll_{\delta} B$. The module M is called cofinitely (D_{12}^*) -module if for every cofinite submodule A of M, there exists a direct summand B of M and an epimorphism $f: B \to \frac{M}{A}$ such that ker $(f) \ll_{\delta} B$. In this paper, various properties of these modules are given. In addition, a new characterization of δ -semiperfect rings is given using cofinitely (D_{12}^*) -modules.

2010 Mathematics Subject Classification: 16D10; 16P70 Keywords: (cofinitely) (D_{12}^*) -module, δ -(semi)perfect ring

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary right modules, unless otherwise specified. Let R be such a ring and M be such a module. By the notation $X \leq M$, we mean that X is a submodule of M. A submodule X of M is called *small* in M if $M \neq X + Y$ for any proper submodule Y of M, denoted by $X \ll M$, and we denote that Rad(M), the sum of all small submodules of M. Dual to this concept, a submodule X of M is called *essential* in M, denoted by $X \leq M$, if the intersection of X is non-zero with the other submodules of M, except for $\{0\}$. It is known that the set $Z(M) = \{m \in M \mid Ann(m) \le R\}$ is the singular submodule of M. The module M is called *singular* in case Z(M) = M. A submodule X of M is called *cofinite* whenever $\frac{M}{X}$ is finitely generated. A supplement submodule T of X in M is minimal element of the set $\{Y \leq M | M = X + Y\}$ that equivalents M = X + T and $X \cap T \ll T$. A module M is called *supplemented* if every submodule of M has a supplement in M [19]. A module M is called *cofinitely supplemented* if every cofinite submodule of M has a supplement in M [3]. A generalization of supplement submodule is defined as a Rad-supplement submodule (according to [18], a generalized supplement submodule). For a module M and a submodule A of M,

© 2025 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC

a submodule B of M is called a Rad-supplement of A if M = A + B and $A \cap B \subseteq Rad(B)$. An R-module M is called GS-module (or briefly Rad-supplemented) if each submodule of M has a Rad-supplement in M. A module M is called \oplus -cofinitely radical supplemented (according to [8] generalized \oplus -cofinitely supplemented) if every cofinite submodule of M has a Rad-supplement that is a direct summand of M. In [15], it is used a cgs^{\oplus} -module.

Small submodules are generalized to δ -small submodules in [20]. By [20], a submodule A of M is called δ -small in M (denoted by $A \ll_{\delta} M$) if for any submodule B of M with $\frac{M}{B}$ is singular, M = A + B implies that M = B. The sum of δ -small submodules of a module M is denoted by $\delta(M)$. It is easy to see that every small submodule of a module M is δ -small in M, so Rad M is M and Rad M if M is singular. Also any non-singular semisimple submodule of M is M and any M-small submodules of a singular module are small submodules. For more detailed discussion on M-small submodules we refer to [20].

Let A be a submodule of a module M. A submodule B of M is called a δ -supplement of A in M provided that M = A + B and $M \neq A + X$ for any proper submodule X of B with $\frac{B}{X}$ singular; or equivalently, M = A + B and $A \cap B \ll_{\delta} B$ in [7]. The module M is called δ -supplemented if every submodule of M has a δ -supplement in M by [7]. Some properties of this modules class are investigated in [16]. Also, M is called \oplus - δ -supplemented (or \oplus_{δ} -supplemented) if every submodule of M has a δ -supplement which is a direct summand of M in [12]. According to [13], an R-module M is called \oplus -cofinitely δ -supplemented (or \oplus -cof $_{\delta}$ -supplemented) if every cofinite submodule of M has a δ -supplement that is a direct summand of M. A module M is called δ -lifting, if for every submodule A of M there exists a direct summand K of M with $K \subseteq A$ and $\frac{A}{K} \ll_{\delta} \frac{M}{K}$. Equivalently, for any $A \leq M$, there exists a decomposition $M = K \oplus B$ such that $K \leq A$ and $A \cap B \ll_{\delta} B$ by [7].

 (D_{12}) -modules are generalized to \oplus -supplemented modules. To addition cofinitely (D_{12}) -modules as a generalization of cofinitely \oplus - supplemented modules are introduced in [1,5] and [17], respectively. M is called a (D_{12}) -module if for every submodule A of M, there exists a direct summand B of M and an epimorphism $f: B \to \frac{M}{A}$ such that $\ker(f) \ll B$. M is called a *cofinitely* (D_{12}) -module if for every cofinite submodule A of M, there exists a direct summand B of M and an epimorphism $f: \frac{M}{B} \to \frac{M}{A}$ such that $\ker(f) \ll \frac{M}{B}$. Similarly, (cofinitely) $\operatorname{Rad} - D_{12}$ -modules are studied and some features are obtained in [6] and [11].

In this paper, inspired from the definitions given above, we introduce the concept of (D_{12}^*) and cofinitely (D_{12}^*) -modules, as follows. We say that M is a (D_{12}^*) -module if for every submodule A of M, there exists a direct summand B of M and an epimorphism $f \colon B \to \frac{M}{A}$ such that $\ker(f) \ll_{\delta} B$ and M is a cofinitely (D_{12}^*) -module if for every cofinite submodule A of M, there exists a direct summand B of M and an epimorphism $f \colon B \to \frac{M}{A}$ such that $\ker(f) \ll_{\delta} B$. We give some results related with these concepts. We give an example which is a cofinitely (D_{12}^*) -module but not a cofinitely

 (D_{12}) -module. We have given a new characterization of δ-semiperfect rings using cofinitely (D_{12}^*) -modules and we have shown that every free right R- module over a δ-perfect ring R is (D_{12}^*) -module. By the definitions given above, we can get the following implication on modules:

2. (Cofinitely) (D_{12}^*) -modules

Definition 1. M is called a (D_{12}^*) -module if for every submodule A of M, there exists a direct summand B of M and an epimorphism $f: B \to \frac{M}{A}$ provided that $\ker(f) \ll_{\delta} B$.

Example 1. For n > 1 consider the left \mathbb{Z} -module $M = \mathbb{Z}_{p^n}$ where p is an arbitrary prime integer. Since M is local, it is clear that M is a (D_{12}^*) -module. So \mathbb{Z} -module \mathbb{Z}_4 , \mathbb{Z}_8 and \mathbb{Z}_{p^∞} are (D_{12}^*) -modules.

Proposition 1. Let M be a \oplus_{δ} -supplemented module. Then M is a (D_{12}^*) -module.

Proof. Suppose that A be a submodule of M. There exist direct summands B and B_1 of M such that $M = A + B = B \oplus B_1$ and $A \cap B \ll_{\delta} B$ as M is a \oplus_{δ} -supplemented module. From here, we have the epimorphism $\alpha \colon B \to \frac{M}{A}$, $\alpha(b) = b + A$ for every $b \in B$. Note that $\ker(\alpha) = B \cap A \ll_{\delta} B$. Finally M is a (D_{12}^*) -module.

Corollary 1. Let M be a \bigoplus_{δ} -supplemented module and A be a submodule of M such that $\frac{M}{A}$ is projective. Then A is a (D_{12}^*) -module.

Proof. By Theorem 2.7 in [12], A is a \bigoplus_{δ} -supplemented module. If we use Proposition 1, then we get that A is a (D_{12}^*) -module.

The notion of $I-\oplus$ -supplemented modules are introduced in [14], where I is an ideal of R. A module M is called $I-\oplus$ -supplemented if for every submodule A of M, there exists a direct summand B of M such that M=A+B, $A\cap B\subseteq IB$ and $A\cap B\ll_{\delta} B$. $I-\oplus$ -supplemented modules are characterized in [14]. It is clear that every $I-\oplus$ -supplemented module is \oplus_{δ} -supplemented, for every ideal I of R.

Corollary 2. *Let M be an I* $- \oplus$ *-supplemented module. Then M is a* (D_{12}^*) *-module.*

Example 2. Let R be a discrete valuation ring with maximal ideal m and any ideal I of R. By Proposition 3.7 in [14], ${}_{R}R$ is $I - \oplus$ -supplemented module if and only if I = m and I = R. So ${}_{R}R$ is a (D_{12}^*) -module.

Recall from [10] that a submodule $A \leq M$ is called *weak* δ -supplement of a submodule B of M if M = A + B and $A \cap B \ll_{\delta} M$. The module M is called *weakly* δ -supplemented if every submodule A of M has a *weak* δ -supplement.

Recall from [19] that a module M is called *refinable* if for, every submodules $A, B \le M$ with M = A + B, there exists a direct summand B_1 of M with $B_1 \le B$ and $M = B_1 + B$.

Proposition 2. Let M be a weakly δ -supplemented refinable module. Then M is a (D_{12}^*) -module.

Proof. Suppose that $A \leq M$. Since M is *weakly* δ - *supplemented*, there exists a submodule B of M such that M = A + B and $A \cap B \ll_{\delta} M$. Since M is a refinable module, then there is a direct summand A_1 of M such that $M = A_1 + A$ and $A_1 \leq B$. If we consider the natural epimorphism $\psi \colon A_1 \to \frac{A_1}{A_1 \cap A}$, we have $\ker(\psi) = A_1 \cap A$. As $A_1 \leq B$, $A_1 \cap A \leq B \cap A \ll_{\delta} M$. Since there exists an isomorphism $\theta \colon \frac{A_1}{A_1 \cap A} \to \frac{M}{A}$, say $f = \theta \psi \colon A_1 \to \frac{M}{A}$. Here $\ker(f) = \ker(\theta \psi) = \psi^{-1}(\ker \theta) = \psi^{-1}(0) = \ker \psi = A_1 \cap A$. From here $A_1 \cap A \ll_{\delta} A_1$ because A_1 is a direct summand of M. Therefore M is a (D_{12}^*) -module.

Recall from [12] that a module M is called δ -radical if $\delta(M) = M$ and the sum of all δ -radical submodules of the module M is denoted by $P_{\delta}(M)$, that is, $P_{\delta}(M) = \{U \leq M | \delta(U) = U\}$. It is clear that, for any submodule M, $P_{\delta}(M)$ is the largest δ -radical submodule of M.

Proposition 3. Let M be a (D_{12}^*) -module. If $P_{\delta}(M)$ is a direct summand of M, then $P_{\delta}(M)$ is a D_{12}^* -module.

Proof. Since $P_{\delta}(M)$ is a direct summand of M, there exists a submodule A of M such that $M = P_{\delta}(M) \oplus A$. By the hypothesis, there exists a direct summand B of M and an epimorphism $\varphi \colon B \to \frac{M}{T \oplus A}$ such that $\ker(\varphi) \ll_{\delta} B$ for any submodule T of $P_{\delta}(M)$. Note that $\frac{M}{T \oplus A} \cong \frac{P_{\delta}(M)}{T}$. Hence $\delta\left(\frac{B}{\ker(\varphi)}\right) = \frac{B}{\ker(\varphi)}$. We have $\delta(B) = B$ because $\ker(\varphi) \ll_{\delta} B$ and so $B \leq P_{\delta}(M)$.

Theorem 1. Let $M = M_1 \oplus M_2$. Then M_2 is a (D_{12}^*) -module if and only if for every submodule A of M containing M_1 , there exists a direct summand B of M_2 and an epimorphism $f: M \to \frac{M}{A}$ such that B is a δ -supplement of $\ker(f)$ in M.

Proof.

(⇒): Assume that M_2 is a (D_{12}^*) -module and A is a submodule of M with $M_1 \le A$. Consider the submodule $A \cap M_2$ of M_2 . Since M_2 is a (D_{12}^*) -module, there exists a direct summand B of M_2 and an epimorphism $g: B \to \frac{M_2}{A \cap M_2}$ such that $\ker(g) \ll_{\delta} B$. On the other hand, we have $M = A + M_2$ and for any submodule B_1 of M, $M = B \oplus B_1$ because B is a direct summand of M_2 . Consider the projection map $h: M \to B$ and the isomorphism $\mu: \frac{M_2}{A \cap M_2} \to \frac{M}{A}$ defined by

 $\mu(m_2 + A \cap M_2) = m_2 + A$. Thus $f = \mu \circ g \circ h$: $M \to \frac{M}{A}$ is an epimorphism. It is clear that $\ker(f) = \ker(g) + B_1 = A + B_1$. Hence $M = B + \ker(f)$. From here, $B \cap \ker(f) = B \cap A = \ker(g) \ll_{\delta} B$. Finally, B is a δ -supplement of $\ker(f)$ in M which is a direct summand of M.

(⇐): Conversely, suppose that every submodule of M containing M_1 has the stated property. Suppose that X be a submodule of M_2 . Note that $X \oplus M_1 \le M$. By the hypothesis, there exists a direct summand B of M_2 and an epimorphism $f: M \to \frac{M}{X \oplus M_1}$ such that $M = B + \ker(f)$ and $B \cap \ker(f) \ll_{\delta} B$. Assume that $g: B \to \frac{M}{X \oplus M_1}$ be the restriction of f to B. We can take the isomorphism $h: \frac{M}{X \oplus M_1} \to \frac{M_2}{X}$ defined by $h(m_1 + m_2 + (X \oplus M_1)) = m_2 + X$. From here, $\mu = hog: B \to \frac{M_2}{X}$ is an epimorphism. Clearly,

$$\begin{split} \ker\left(\mu\right) &= \ker\left(h \circ g\right) = \left\{b \in B \middle| h\left(g\left(b\right)\right) = \left\{X\right\}\right\} \\ &= \left\{b \in B \middle| g\left(b\right) = \frac{X \oplus M_1}{X \oplus M_1}\right\} = \left\{b \in B \middle| b \in \ker\left(g\right)\right\}. \end{split}$$

Since $\ker(g) = \ker(\mu) = B \cap \ker(f) \ll_{\delta} B$. Finally, M_2 is a (D_{12}^*) -module.

Recall from [19] that a submodule X of M is called *fully invariant* if $\varphi(X)$ is contained in X for every R-endomorphism φ of M. In [4], a module M is called a *duo module* if every submodule of M is fully invariant.

Theorem 2. Let M_i be a (D_{12}^*) -module for every $i \in I$ and $M = \bigoplus_{i \in I} M_i$. If M is a duo module, then M is a (D_{12}^*) -module.

Proof. Suppose that $A \leq M$. Since M is a duo module, we have $A = \bigoplus_{i \in I} (A \cap M_i)$ by Lemma 2.1 in [4]. Now, we consider the submodule $A \cap M_i$ of M_i for every $i \in I$. As M_i is a (D_{12}^*) -module, we have a direct summand B_i of M_i and an epimorphism $\varphi_i \colon \bigoplus_{i \in I} B_i \to \bigoplus_{i \in I} \left(\frac{M_i}{A \cap M_i}\right) \cong \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}} \bigoplus_{\substack{i \in I \\ \bigoplus_{i \in I} (A \cap M_i)}}$

Definition 2. M is called a cofinitely (D_{12}^*) -module if for every cofinite submodule A of M, there exists a direct summand B of M and an epimorphism $f: B \to \frac{M}{A}$ such that $\ker(f) \ll_{\delta} B$.

Now, we give examples which are (D_{12}^*) -modules but not a (D_{12}) -modules. Since ${}_RR$ is finitely generated, the module in the following example is (cofinitely) (D_{12}^*) -module but not (cofinitely) (D_{12}) -module.

Example 3.

(i) (See [2, Example 3.10]) Let S be a field, $U = \begin{bmatrix} S & S \\ 0 & S \end{bmatrix}$ and

$$R = \{(x_1, x_2, \dots, x_n, x, x, \dots) | n \in \mathbb{N}, x_i \in M_2(S)\},$$

with component-wise operations. The Jacobson radical Rad (R) = 0 and R is not regular ring, hence R is not semiperfect. Since

$$\delta(R) = \{(x_1, x_2, \dots, x_n, x, x, \dots) | n \in \mathbb{N}, x_i \in M_2(S), x \in V\},\$$

where $V = \begin{bmatrix} 0 & S \\ 0 & 0 \end{bmatrix}$, R is δ -semiperfect. From here, R as a right R-module is (D_{12}^*) -module by Theorem 8. But R is not (D_{12}) -module by Theorem 4.7 in [5].

(ii) (See [15, Example 2.2]) Let M be a uniform module and $S = \operatorname{End}(M)$. Consider the projective S-module P with $\dim(P) = (1,0)$. So P is a indecomposable w-local module. Since $\dim(P) = (1,0)$, P is not finitely generated. By [15], P is a $\operatorname{cgs}^{\oplus}$ -module but not cofinitely supplemented. Therefore P is a \oplus -cofinitely δ -supplemented module. It follows from that P is a cofinitely (D_{12}^*) -module. Since P is not \oplus -cofinitely supplemented, P is not a cofinitely (D_{12}) -module by [6, Example 2.4].

Proposition 4. Let M be a cofinitely \bigoplus_{δ} -supplemented module. Then M is a cofinitely (D_{12}^*) -module.

Proof. The proof can be made similar to Proposition 1.

Theorem 3. *Let M be a quasi-projective module.*

- (i) If M is a (D_{12}^*) -module, then M is \bigoplus_{δ} -supplemented.
- (ii) If M is a cofinitely (D_{12}^*) -module, then M is cofinitely \oplus_{δ} -supplemented.

Proof.

(i) For a submodule A of M, by the hypothesis there exists a direct summand B of M and an epimorphism $\varphi \colon B \to \frac{M}{A}$ such that $\ker(\varphi) \ll_{\delta} B$. Now, we consider $\alpha \colon M \to \frac{M}{A}$ be the natural epimorphism. Since M is quasi-projective, we get that the following commutative diagram for the homomorphism $\beta \colon M \to B$ with $\alpha = \varphi \circ \beta$:

$$\begin{array}{ccc}
 & M \\
\beta & \downarrow \alpha \\
B & \stackrel{}{\longrightarrow} & \frac{M}{4} & \longrightarrow & 0
\end{array}$$

From here $\beta(M) = B$ because $(\varphi \circ \beta)(M) = \alpha(M) = \frac{M}{A}$ and $\ker(\varphi) \ll_{\delta} B$. And so β is an epimorphism. On the other hand, β splits as B is M-projective. Therefore, there is a direct summand of B_1 of M such that $\beta \downarrow_{B_1} : B_1 \cong B$ and so $\alpha \downarrow_{B_1}$ is an epimorphism. Hence $M = B_1 + A$ and $B_1 \cap A = \ker(\alpha \downarrow_{B_1}) \ll_{\delta}$

M. It follows from $B_1 \cap A \ll_{\delta} B_1$ because B_1 is a direct summand of M. Finally M is \oplus_{δ} -supplemented.

(ii) The proof can be made similar to (i).

Recall from [20] that an epimorphism $f: P \to M$ is called δ -cover if $\ker(f) \ll_{\delta} P$ and a cover f is called a *projective* δ -cover if P is a projective module. A module M is called δ -semiperfect if every factor module of M has a projective δ -cover. A ring R is called δ -perfect (δ -semiperfect) if every (finitely generated) right (or left) R-module has a projective δ -cover.

Theorem 4. Let M be a projective module. Then M is δ -semiperfect if and only if M is a (D_{12}^*) -module.

Proof.

- (\Rightarrow): Assume that *M* is a projective δ-semiperfect module. By Lemma 2.4 in [9] and Proposition 1, *M* is \oplus_{δ} -supplemented and so *M* is a (D_{12}^*) -module.
- (⇐): This proof is made using Theorem 3 (ii) and Lemma 2.4 in [9], respectively.

Corollary 3. Let R be a δ -perfect ring. Then every free right R-module is a (D_{12}^*) -module

Theorem 5. Let $M = M_1 \oplus M_2$. Then M_2 is a cofinitely (D_{12}^*) -module if and only if for every cofinite submodule A of M containing M_1 , there exists a direct summand B of M_2 and an epimorphism $f: M \to \frac{M}{A}$ such that B is a δ -supplement of $\ker(f)$ in M.

Proof. The proof can be made similar to Theorem 1. \Box

Theorem 6. Let $\{M_i\}_{i\in I}$ be any family cofinitely (D_{12}^*) -module and $M=\bigoplus_{i\in I}M_i$. If every cofinite submodule of M is fully invariant, then M is a cofinitely (D_{12}^*) -module.

Proof. Let *A* be a cofinite submodule of *M*. As *A* is fully invariant, we can write $A = \bigoplus_{i \in I} (A \cap M_i)$. Since $\frac{M}{A} \cong \bigoplus_{i \in I} \frac{M_i}{A \cap M_i}$, $A \cap M_i$ is a cofinite submodule of M_i for every $i \in I$. The rest of the proof by Theorem 2.

Recall from [19] that an R-module M has the summand sum property (SSP) if the sum of two direct of M is again a direct summand of M.

Proposition 5. Let M be a (cofinitely) (D_{12}^*) -module with the property (SSP) and A be direct summand of M. Then $\frac{M}{A}$ is a (cofinitely) (D_{12}^*) -module.

Proof. Suppose that $\frac{B}{A}$ be a submodule of $\frac{M}{A}$. Then B is a submodule of M. As M is (cofinitely) (D_{12}^*) -module, then there exists a direct summand T of M and an epimorphism $f\colon T\to \frac{M}{B}$ with $\ker(f)\ll_{\delta}T$. As M has the property (SSP), both A and T are direct summand of M. Hence, there exists a submodule Y of M such that $M=(A+T)\oplus Y$. Since the property $\frac{T+A}{A}\cap \frac{Y+A}{A}\subseteq \frac{[Y\cap(T+A)]+[A\cap(T+A+Y)]}{A}=\frac{A}{A}$, we have $\frac{M}{A}=\frac{T+A}{A}\oplus \frac{Y+A}{A}$. From here, we obtain that $\frac{M}{B}\cong \frac{M}{B}$. So we can define the homomorphism $g\colon \frac{T+A}{A}\to \frac{M}{B}$ by $t+a+A=t+A\to g(t)$ with $t\in T$, $a\in A$. It is clear that g is an epimorphism with $\ker(g)\ll_{\delta}\frac{T+A}{A}$ and $\frac{T+A}{A}$ is a direct summand of $\frac{M}{A}$. Finally, $\frac{M}{A}$ is a (cofinitely) (D_{12}^*) -module.

Theorem 7. Let M be a (cofinitely) (D_{12}^*) -module. If A is a fully invariant submodule of M, then $\frac{M}{A}$ is a (cofinitely) (D_{12}^*) -module.

Proof. Let $\frac{B}{A}$ be a (cofinite) submodule of $\frac{M}{A}$. Then B is a (cofinite) submodule of M. Since M is a (cofinitely) (D_{12}^*) -module, there exists a direct summand T of M and an epimorphism $f\colon T\to \frac{M}{B}$ with $\ker(f)\ll_\delta T$. From here, we can write $M=T\oplus T_1$ for every submodule T_1 of M. As A is a fully invariant submodule of M, $A=(A\cap T)\oplus (A\cap T_1)$. Note that $\frac{M}{A}=\frac{A+T}{A}\oplus \frac{A+T_1}{A}$. It follows from $\frac{M}{B}\cong \frac{M}{B}$ that, we can define the homomorphism $g\colon \frac{T+A}{A}\to \frac{M}{B}$ by $t+A\to g(t+A)=f(t)$ with $t\in T$. Therefore g is an epimorphism with $\ker(g)\ll_\delta \frac{T+A}{A}$. Therefore, $\frac{M}{A}$ is a (cofinitely) (D_{12}^*) -module.

Theorem 8. R is a δ -semiperfect ring if and only if every free right R-module is cofinitely (D_{12}^*) -module.

Proof.

- (\Rightarrow): Let *R* be a δ-semiperfect ring. By Lemma 3.5 in [12], every free right *R*-module is \oplus_{δ} -cofinitely supplemented. Then every free right *R*-module is cofinitely (D_{12}^*) -module by Proposition 4.
- (\Leftarrow): As every free right *R*-module is a cofinitely (D_{12}^*) -module, it is \oplus_{δ} -cofinitely supplemented by Theorem 3 (ii). If we use Lemma 3.5 in [12], then we get that *R* is δ-semiperfect.

REFERENCES

[1] D. K. Tütüncü and R. Tribak, "On (D_{12}) -modules." *Rocky Mountain J. Math.*, vol. 43, no. 4, pp. 1355–1373, 2013, doi: 10.1216/rmj-2013-43-4-1355.

[2] K. Al-Takhman, "Cofinitely δ-supplemented and cofinitely δ-semiperfect modules." *Int. J. Algebra.*, vol. 1, no. 9-12, pp. 601–613, 2007, doi: 10.12988/ija.2007.07065.

[3] R. Alizade, G. Bilhan, and P. F. S. , "Modules whose maximal submodules have supplements," Comm. Algebra, vol. 29, no. 6, pp. 2389–2405, 2001, doi: 10.1081/AGB-100002396.

- [4] A. Ç. Özcan, A. Harmanci, and P. F. Smith, "Duo modules." Glasg. Math. J., vol. 48, no. 3, pp. 533–545, 2006, doi: 10.1017/S0017089506003260.
- [5] D. Keskin and W. M. Xue, "Generalizations of lifting modules." *Acta Math. Hungar.*, vol. 91, no. 3, pp. 253–261, 2001, doi: 10.1023/A:1010675423852.
- [6] R. Kılıç and B. N. Türkmen, "Rad- D_{12} modules." *Palest. J. Math.*, vol. 4, no. Special issue, pp. 519–525, 2015.
- [7] M. T. Koşan, "δ-lifting and δ-supplemented modules." *Algebra Colloq.*, vol. 14, no. 1, pp. 53–60, 2007, doi: 10.1142/S1005386707000065.
- [8] M. T. Koşan, "Generalized cofinitely semiperfect modules," *Int. Electron J. Algebra*, vol. 5, no. 5, pp. 58–69, 2009, doi: 10.1007/s10011-000-0305-9.
- [9] H. X. Nguyen, M. T. Koşan, and Y. Zhou, "On δ-semiperfect modules." *Comm. Algebra*, vol. 46, no. 11, pp. 4965–4977, 2018, doi: 10.1080/00927872.2018.1459650.
- [10] Y. Talebi and A. R. M. Hamzekolaei, "Closed weak δ-supplemented modules." *JP J. Algebra Number Theory Appl.*, vol. 13, no. 2, pp. 193–208, 2009.
- [11] Y. Talebi, A. R. Moniri Hamzekolaei, and D. K. Tütüncü, "On Rad- D_{12} modules." *An. Ştiinţ. Univ.* "Ovidius" Constanţa Ser. Mat., vol. 21, no. 1, pp. 201–208, 2013, doi: 10.2478/auom-2013-0012.
- [12] Y. Talebi and M. H. Pour, "On ⊕-δ-supplemented modules." *JP J. Algebra, Number Theory Appl.*, vol. 1, no. 2, pp. 89–97, 2009.
- [13] L. V. Thuyet, M. T. Koşan, and T. C. Quynh, "On cofinitely δ-semiperfect modules." Acta Math. Vietnam., vol. 33, no. 2, pp. 197–207, 2008.
- [14] R. Tribak, Y. Talebi, A. R. Moniri Hamzekolaei, and S. Asgari, "⊕-supplemented modules relative to an ideal." *Hacet. J. Math. Stat.*, vol. 45, no. 1, pp. 107–120, 2016.
- [15] B. N. Türkmen, "Generalizations of \oplus supplemented modules." *Ukrainian Math. J.*, vol. 65, no. 4, pp. 612–622, 2013.
- [16] Y. Wang, "δ-small submodules and δ-supplemented modules." Int. J. Math. Math. Sci., pp. Art. ID 58 132, 8, 2007, doi: 10.1155/2007/58132.
- [17] Y. Wang, "Cofinitely (D_{12}) -modules." JP J. Algebra Number Theory Appl., vol. 27, no. 2, pp. 143–149, 2012.
- [18] Y. Wang and N. Ding, "Generalized supplemented modules." JP J. Algebra Number Theory Appl., vol. 10, no. 6, pp. 1589–1601, 2006.
- [19] R. Wisbauer, Foundations of module and ring theory: Algebra, Logic and Applications. Berlin: Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [20] Y. Zhou, "Generalizations of perfect, semiperfect, and semiregular rings," *Algebra Colloq.*, vol. 7, no. 3, pp. 305–318, 2000, doi: 10.1007/s10011-000-0305-9.

Author's address

Figen Eryılmaz

Ondokuz Mayıs University, Department of Mathematics Education, Kurupelit Campus, zip. 55200, Atakum/Samsun, Turkey

E-mail address: fyuzbasi@omu.edu.tr