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1. INTRODUCTION

Consider the differential equation

n—1
y® =aop@) [ [ i 6@, (1.1)
i=0

where g € {—1,1}, p: [a,w[' =0, +00[ (—00 <a <w < +00), ¢; : Ay, =10, +o00[
(i =0,...,n) are continuous functions, ¥; € {0,400} and Ay, is either the interval
[ylp, Y;[? or the interval |Y;, yl.o].
We also suppose that every ¢; (z) is regularly varying as z — Y; (z € Ay,) of
n—1
index o; and ) o7 # 1.
i=0
We say that the measurable function ¢ : Ay —]0,+o0[ is regularly varying as
z — Y of index o if for every A > 0 we have

im p(A2) =A%,
oY (2)

ZEAy

(1.2)

f w > 0 we will take @ > 0.
2f Y; = 4o00(Y; = —00) we take y? >0 (ylp < 0) correspondingly.
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Here, Y € {0,+o00}, Ay is some one-sided neighbourhood of Y. If 0 = 0, such
function is called slowly varying.

It follows from the results of the monograph [1 1] that regularly varying functions
have the next properties.

M : The function ¢(z) is regularly varying of index o as z — Y if and only if the
next representation takes place

9(z) = z276(2).

where 0(z) is a slowly varying function as z — Y.

M If the function L : Ayo —]0, 400[ is slowly varying as z — Y, the function
@ : Ay — Ayo isregularly varying as z — Y, then the function L(¢) : Ay —
10, 400 is slowly varying as z — Y.

M3 If the function ¢ : Ay —]0, 400 satisfies the condition

- 29'(@) _
=Y ¢(2)

zZEA

oe€R,

then ¢ is regularly varying as z — Y of index o.
My: For every regularly varying function ¢ as z — Y the property (1.2) takes
place uniformly as A € [c,d] for every segment [c,d] C]0, +o0].
According to M1, it is clear that for every solution y of the equation (1.1) defined
on [tg, w[C [a,w][ such that

¥y [to.0[— Ay, liTmy“"(t):Yl-(i=o,...,n—1), (1.3)
Tw

the representations ¢; (y@ (1)) = |y (¢)|% (1) take place as ¢ 1 w. Therefore the
equation (1.1) is in some sense similar to the well known differential equation

n—1

y® =aop@) [Ty (1.4)
i=0

We call the solution y of the equation (1.1), that satisfies (1.3), the P, (Ag_l)—
solution (—oo < kg_l < 400) if the next condition takes place

(n—1) 2
im0 W70 (1.5)
rto y () y* =D (1)

If p is regularly varying as ¢ 1 w it is easy to show, using Proposition 9 in [10,
p. 116], that every regularly varying as ¢ 1 w of index y € R\ {0, 1,...,n — 1} solution
of Equation (1.1), that satisfies (1.3), is the P, (y_”+2)—soluti0n of (1.1). By the

y—n+1
other side, by the investigation of P (4¢)-solutions of Equation (1.1) it will be clear,
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that (1.1) has the Py, (V_"+2)—solutions, where y € R\ {0,1,...,n — 1}, only if the

y—n—+1
n—1
function p is regularly varying ast ? w of index y —n+1— )" (y — j)o;.
Jj=0

It follows from the definition of P, (Ag)-solution, that every P (1)-solution of
Equation (1.1) is rapidly varying as ¢ 1 w. By the other side, by the investigation of
P, (A1g)-solutions of Equation (1.1) it will be clear, that (1.1) has the Py, (1)-solutions
only if the function p is rapidly varying as ¢ 1 w.

The first results about the asymptotic properties and the existence of P, (Ag_l)—
solutions of Equation (1.4) are found in [4]. All P, ()Lg_l)—solutions of Equation
(1.4) were investigated in [5,6]. In case n = 2 for all P,, (Ag_l)—solutions of Equation
(1.1) the necessary and sufficient conditions of existence and asymptotic representa-
tions as ¢ 1 w were found later in [1-3, 8].

The aim of the work is to establish the necessary and sufficient conditions of the
existence P, (Ag_l)—solutions of Equation (1.1) in general case n > 2 for )\2_1 €
R\{0.3.3....2=2}.

2. RESULTS

Let us introduce subsidiary notations

n—1 n—1
B | B ) . |t if o = +o00,
yo_l—;)aj, un—z;)(n—J—l)Gp ”w(f)—{ t—w ifw<+oo,
Jj= J=

6:(z) = 0i()|z7%, agi=m—i)A0_, —(n—i—1) (i =1,..,n),

n—-2| n—1 ok
C=aoAS 11" []| [] aos| signyo_y.
k=0|j=k+1
t t
Io(t) = /Cp(r)|nw(r)|“”dt, Ii(t)= /aop(r)dr,
A9, Al
a, if [ p(v)|7me ()| dT = 00, a, if [’ p(r)dt = o0,
w, if [’ p(0)|me(x)]0dT < +oo, w, if [ p(r)dt < o0,

1
; 0 a, if [7[11(7)]70 dt = +o0,
J(Z):/|y011(t)|V0 dtz, B, = 1
By, w, if [’|I1(x)]70 dt < +00.

The following conclusions take place for Equation (1.1).
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Theorem 1. The next conditions are necessary for the existence of P, (12_1)-
solutions (A0_, € R\ {0, 1 12 u}) of Equation (1.1)

757 §7 **y n_l
O (0) 30i+1
im 700200 Y0 im0, ()| A1 =y @
to  Lo(t) An—l —1 ttw
ylpyloﬂam“(kg_l —Dry(t) >0 ast € a,w], 2.2)
where y,? =aog i =0,...n—1.
If Equation
n—1 n—1 k n—1
Y ok T aoi [T(@oi+2) =1+ ][] @i+ (2.3)
k=0 i=k+1 i=1 i=1

has no roots with zero real part, then Conditions (2.1) and (2.2) are sufficient for the
existence of P, (kg_l)-solutions of Equation (1.1). For any such solution the next
asymptotic representations ast 1

|y @D )|

A = yolo(®)[1 +0(1)].
[T6:09@)
=0
- 2.4)
@) 0 . n—i—
On [ nl_)lnw(t)] (1t o(D)].
y (1)
[T a0
j=i+1

where i =0,...,n—2, take place.

Theorem 2. The next conditions are necessary for the existence of Py, (1)-solutions
of Equation (1.1)

‘ 1
f&% = o, }igy? [11(0)[0 = Yi, (2.5)
ozoy,?_2>0, y?yl-OHJ(t)>Oaste[a,w[, (2.6)
wherei =0,...,n—1.
If Equation
n—1
> ok(l+0)F = (142" @7
k=0

has no roots with zero real part, then Conditions (2.5) and (2.6) are sufficient for the
existence of Py (1)-solutions of Equation (1.1). For any such solution the asymptotic
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representations ast 1 @

(”_l)t Yo .
nl_yl—()l szgny,?_l[l +o0(1)],
[16:690)
Jj=0 2.8)

@) n—i—1
yOw ( J(r)) |
= +o(1)],
where i =0,...,n—2, take place.
Remark 1. If

n—2
> ol < 11=0n-1l.
i=0

Conditions (2.1) and (2.2) are necessary and sufficient for the existence of P,, ()Ln -
solutions (12_1 € R\ {O, 1, ;, %, o =T }) of Equation (1.1) and Conditions (2.5) and
(2.6) are necessary and sufficient for the existence of P, (1)-solutions of (1.1).

By additional conditions on the functions ¢g, ¢1, ..., ¢»—1 the asymptotic rep-
resentations as t 1 w of P, (12_1)—solutions and their derivatives from the first to
(n — 1)-th order are found in the explicit form.

In order to formulate our following results we present the next definition.

Definition 1. We call the slowly varying function 6 as z — Y (z € A) satisfies the
condition § if for every continuously differentiable function L : A —]0; 4o0[ such
that

2L'(z) _
m ,
s L

the representation
0(zL(z)) =0(2)[1 +o(1)] asz—>Y (z€4)
takes place.
The next conclusions follow from Theorems 1 and 2.

Corollary 1. Let the functions 6y, ..., 0,—1 satlsfy the condition S. Then for
any Pw()\g_l)—solution ()\2_1 € R\ {0, l%% = 1}) of Equation (1.1) the next
asymptotic representations ast 1 o

1

n—1 a0 +1

Yo
Y@ = yvlo) [ T6 (y})lﬂw(t)lAg 1“) signy,_[1+o(D)],

Jj=0
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0 n—i—1
[(An—s 1)7Tw(l)]

1_[ doj

Jj=i+1

y D) =y () l+o(l)], i=0,...n—2

take place.

Corollary 2. Let the functions 0y, ..., O,—1 satisfy the condition S. Then for any
P, (1)-solution of Equation (1.1) the next asymptotic representations as t 1 w

1
Mnn Y0

A ]_[9 (yJIJ(t)I) signyp_[1+o(1)].

(=1 ) = R
() = J/oll(f)‘ 0

yO(r) = y= “()(j(([))) [ to()], i=0,....n—2

take place.
2.1. Preliminary considerations
The following lemma is true.

Lemma 1. Let y : [to,w[— Ay, bea P, (Ag_l)-solution of Equation (1.1), where
Ag_l € R\ {O,é, g,. ,%} Then for every function y(i) (i €{0,....n—1}), the
-1

. W\ —1
inverse function (y(’)) exists. Moreover, the function yJ) ((y (’)) (z)) is reg-

ularly varying as z — Y; (z € Ay,) ofmdex ao +1 for every j €{0,...,n—1}.

Proof. Let y [to, [—> Ay, be a Py, ()Ln 1)-solution of Equation (1.1), where
AO _1 €R\ {O 5 3,. o= 1} By (1.3) and (1.1) the function y‘ (¢) is strongly mono-
tone on [fg, w[ forevery i € {0, ...,n — 1}, because its derivative y 1) has a fixed sign

: 1
on [to, w[. Therefore y¥) has an inverse function (y(l)) . Due to (1.5) and Lemmas

10.1 and 10.2 from [7] we would have the asymptotic representations as ¢t 1 w

7oy V@) apky
y®@ A, -1

in case A9_, € R\{0,1,3.%,...., 2=2}. Then, for every j € {0,....n — 1}, according
to the equality

. (y(j) ((y(i))_l (Z)))/ U ((y(i))_l (Z)) NG (<y(i))_1 (Z))

y(/)(( 1)~ (Z)) y(z+1)<( )~ (Z)) .y(j)((y(i))‘l(z))
(2.10)

[l+o(1)], (k=0,.n—1) 2.9)
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- . (y(j) ((y(i))‘l (Z)))/ )

;;nyi y() ((y(i))_l (Z))
e ((y(i))_l (Z)) yu*D ((y(f))_l (z))
B ;S%i y() ((y(i))_l (Z))
NG ((y(i))_l (z)) a
T ((y("))_1 (z)) yli+1) ((y(i))_l (z)) agi+1

, 1
Therefore by M3 the function y (/) ((y(’)) (Z)) isregularly varyingasz — Y; (z €

and (2.9), we have

X

X

Ay,) of index oL incase A0_; € R\{0,1,3,2,.... 253},
By Lemma 10.1 from [7] and (1.5) the asymptotic representations as ¢ 1
y(k+l)(t) _ y(l+1)([)
y® () yD)

take place in case /\2_1 = 1. Then, according to (2.10), in this case we have

. (y(j) ((ym)_l (Z)))/ JU+D (Q(z‘))_l (Z))
= i

zLY- ; A\ —1 Z_)Il)}' . oy —1
S (M) 000 )

y® ((y(i))_l (z))
X

[l+o(1)] (.k=0,..n—1). 2.11)

_m=j=D—=(m—=j=2) agj+1

=1= . : = :
i+ ((y(z'))—l (Z)) (n—i—1)—(—i—=2)  aoit+1
, 1
Therefore by M3 the function y (/) ((y(’)) (z)) isregularly varyingasz — Y; (z €
Ay;) of index ngj: in case /\2_1 =1. O

2.2. Proof of the main results.

Proof of Theorems I and 2. Necessity. Let y : [tg,w[— Ay, be a Pa,(kg_l)—
solution of Equation (1.1), where A9_; € R\{0,3,3,....2=2}. Then by Lemmas
10.1 and 10.2 from [7], according to (1.3) and (1.5), the asymptotic representations
(2.9) take place as )Lg_l # 1. It follows from (2.9), that (2.2) and the second of

conditions (2.1) take place in this case. We get (2.11) if )Lg_l =1 like in the proof
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of Lemma 1. Putting in (2.11) k =n—1, ] = n—2, we get the first of inequalities
(2.6). By virtue of (1.5), corollary 10.1 and note 10.1 from [7] we have as ¢ 1 w for
1=0,...n-2

[0, — D) ]

n—1
[T a0

y D) = j=it1 2.12)

YD1 +o(1)], if A, #1,

- (n_l)t n—i—1 .
! ”(t)(yy(n—)(t())) [1+o(D)], i A0, =1.

This means that the second of representations (2.4) takes place.

-1
By Lemma 1 the inverse function (y("_l)) exists for the function y®~1 on
[to,®[. So, we have

6: D)) = 6; (y“’ ((y(”_l))_l (y(”_l)(t)))) Vi €40,....n—2}.

. -1
From M, and Lemma 1 it follows, that every function 6; (y(’) ((y(”_l)) (Z)))

(i €{0,...,n—2}) is slowly varying as z — Y,_1 (z € Ay,_,). In case kg_l =1
for all i € {1,...,n} ap; = 1. Therefore by Lemma 1 in this case every function

. -1
y@) ((y(n—l)) (Z)) (i €{0,...,n —2}) is regularly varying of index 1 as 7z —
Yn—1 (z € Ay,_,). Then the function

|Z|V0

H 6 (y<,-> ((ym_l))—l (Z)))
zﬁ NG ((y(n—l))_1 (z)) ‘_Gi
1=0

H 6 (ym ((y(n—l))_l (Z)))

is regularly varying as z — Y, 1 (z € Ay,_,) of index yo # 0.
Foralli =0,...,n —2 using (2.12) and (1.1), we getas t ? w

™)
Yo @

iftAY_| #1,

V(z) =

iftAY_, =1,

_ , 0,if A% . #£1,
¥ (y(n 1)(1‘)) = Ik(t)[l +o(1)], k= { 1 if)kg_i ?:é 1. (2.13)
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By (2.13), Theorem 2.1 from [11] and the definition of the functions /I (¢), we
have ast 1 w

£70
o (5 0) =worwn o) k= P 7 e

If A9 # 1 (k = 0) the first of representations (2.4) follows from this.
Using (2.14) and (2.13) we have as ¢ 1 @

(n) I.(t) i£10
y (t) J . 0’ lfA — ;é 1,
= 1 1], = Pt 2.15

Yo " pwt OO { Lif A,y =1. 1)
Therefore the first of conditions (2.1) follows from (2.15), where j = 0 and (2.9),
where kK = n — 1. The second of conditions (2.5) follows from (2.15), (2.11) and
(1.3)incase A% . =1.

n—1 —

. -1
In view of M, and Lemma 1 every function 6; (y(’) ((y(”_z)) (Z))) (i€
{0,...,n —1}) is slowly varying as z — Y,—1 (2 € Ay,_,). Then by Lemma I the

function
Z

y(n=1) ((y(n—z))_1 (Z))

P e O I
x|y 1)((y(n 2)) l(Z)) il:!) 6; (y(i)((y(n—z))—l (Z)))

Vi(z) =

n—1

is regularly varying as z — Y,—1 (z € Ay,_,) of index 1 in case A2_, = 1. By
rewriting (2.14), where k = 1 as

(n—1)
Yy (t) (n—2) /
—Y1 |y @®))=J"®[14+01)] ast?tow, (2.16)
y(n—Z)(l) ! ( )
in case )\2_1 = 1 due to the Theorem 2.1 from [11] we get
v (y("_z)(t)) —JO[1+o(1)] as 1. 2.17)

By (2.11) this representation leads to the second of inequalities (2.6). From (2.17)
and (2.16) we have

Yo D@ '@
y 2@y J@)
Using (2.11), we get from this representation the second of representations (2.8). By
putting the second of representations (2.8) in (2.14), where k = 1, we get the first

of representations (2.8). From (2.11), (2.15) and (2.18) the first of conditions (2.5)
follows.

[1+0(1)] asttow. (2.18)
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Sufficiency. Let A9_; € R\ {0, % % Z%%} Let also Conditions (6 — 8) take
place as )Lg_l # 1 and Conditions (10 — 12) take place as )Lg_l =1
Let us consider the function

n—1
[T ®i(si)
i=0
S1
S0
2
F(SO,S],...,Sn_l) = 51 ’

\ =)

where
Z
@ (2) / dr (2.19)
(%) = T —r. —q. .
) e@e

1

W, if(n—i—1DAY_, >n—i-2,

ci = (2.20)
—y0, if(n—i—1AY_ <n—i-2,

m is the quantity of numbers i € {0, ...,n — 1}, for which (n —i — l)kg_l >n—i—2,

0 f dz
y' ) if —_— — (T = +OO’
: y£ @i (2)|z|'
Y= (i =0,...n—1)
Y.
. ! dZ
Y;, if — | < +00
’ y£ @i (2)|z]' 6

on the set A = Alyo X o X A%,n_l. For every i € {0,...,n — 1} the number yl.1 € Ay,
is chosen in such a way, that for z; € A;_ , where
1

Al _
Y; —
1Yi. vl if Ay, =]¥i. 0],
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the next inequality holds
n—1

’1 — Z o
i=0

8mn

2i®i@)

®i(zi)

It is easy to see that the function @; is monotone on Ay, forevery i € {0,...,n —1}.
In view of the second of conditions (2.1) and (2.20) the following equality holds

2.21)

n—1
[] lim @i(zi)=on. (2.22)
i=0 ZIEAY:
where
oo, if nw(t)(kg_l —1)yo >0, oragli(t) > 0if Ag_l =1,
Do = (2.23)
0, if 7o (t)(A_, —1)yo <0, oragl(r) <0if A0_, =1.
We have also
-1
21 ®{(zi) . X
m ——=¢ ((=0,...n—1), ci = Yo.- 2.24
lim =y = )2 a=m (224)
z€Ay; =0

We will show that F is the one to one correspondence between the set A and the
set

n—1 n—1
[.r[ di',-(yil);@on) X Ao %o X Ap—z, if [] ®i(y}) < Pon,

1=0 1=0
F(A) =
n—1 . . n—1 .
(‘p0n§ cDi(yi )]XAOX---XAn—Z, if ]—[ ¢i(yi)>¢0n,
i=0 i=0
where
(0; +00), if agj+2a0i+1 >0, yy? | >0,
(=00;0), if agiy2a0i+1 >0, Py, <0,
A= yil . J’,'l
! [fﬂo) if agj+2a0i+1 <0, f < Y,-O,
0 yi1+1 : yz'1+1 0
Y, S if api42a0i+1 <0, = > Y,
Y; ifY;11=0
0 __ 1> i+1 9 _ _
Y; —{ —oo, if Y4 = oo, 1=0,..,n—2
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Let us suppose that F is not a one to one mapping. Then

3 (PO,---apn—l),(qo,---,Qn—l) € Av (p07---»Pn—1) # (QO,---,Qn—I)
such that

F(po..... pn—1) = F(qo.....qn—1)
By definition of the set A the last equality means that

n—1 n—1

Pj qj+1 .
[[®p)=]]2i@. ;* =UF e R\{O), j=1,..n—1.
i=0 i=0

J J
(2.25)
Then the points (po, ..., pn—1) and (qo, ...,¢n—1) lie on the one line
o _St_ S2 _ __ Smmt
1 ki kiky 7 ki..kp—1’
n—1 n—1
On this line [] @;(si) = @o(s0) [| Pi(ky...kiso). We obtain also
i=0 i=1
n—1 !
(cbo(so) []® (kl...k,-so)) =
l=1 S0
n—1
Do (s0) 1_[ ;i (k1...kiso) 1 /
_ i=1 S()CD(/)(S()) +Zk1...kl’S0€Di(k1...kiS0)
50 Po(s0) 12 P (k1...kiso) '
By (2.22), (2.21) and the definition of the set A this means, that
n—1 ! n—1
sign (QDO(SO) l—[ b; (kl...kis())) =sign (ygcbo (1 — ZO’,’)) ,
l:1 SO l:()
where
n—1
0 = l_[signfpi (zi), (z;j € A%,l,). (2.26)
i=0
n—1

Therefore the function @y (sg) [] @i (k1...kiso) is strongly monotone on this line.
i=1

But then (2.25) is impossible. So, there exists the inverse function F~!: F(A) — A.

Looking on the function F, we obtain

F_l(w(), ...,wn_l) =
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Fo_l(wo,...,wn_l) \ ( Fo_l(wo,---»wn—l) \

Fl_l(w()s'“awn—l) wlF()_l(wOv-"awn—l)
\ Fr o, wne1) )\ wiea0pe1 Fy (wo, oy 1)
Let us show that we can choose the number ¢y € [a,w[ in such a way, that
(Ho(?),...,Hy—1(t)) € F(A) ift € [ty, 0], 2.27)
where
n—1
L@) | 5"
Hy(t) =yoBT(t ,
ol0) = Y0BT()| 7505
aoi fAO 1
00— Doy 7l
Hi(t) = i=1,..,n—1,
J'(O) eq0  _
Tt) if An—l = 1,
610
o if A,y 71, (1) i A0, #1,
T(t) = Mn L([) =
J(t . 090
1) J,((l)) i£20_ =1, JO)fA_ =1,
n—1 : 0 ) n—1
1—[ Slgc’tl)’i |/\0—1 _1|(n—l—1)c,~ 1—[ |610j —c; ifkg_l ?é 1
i= ! j=i+1
B =

n—1 . 0
signy; . .
I1 %szgny,?_l 1f12_1 =1.
i=0
By the type of the set F(A)it is sufficient to prove that

signHo(t) = % if t € [a,w], (2.28)

foralli =1,...n—1
signHi(t) = signylpyl-o_1 ift € [a,w], (2.29)
}IT% Ho(1) = ®on. (2.30)

and foralli =1,....,.n—1if agj+1a0; <0

lim H;(t) =Y ,. (2.31)
ttw
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By (2.24)

|z
ci0i(z)
Therefore sign®;(z) = sign(yloci). Then by (2.26)

Di(z) =

signz[l4+o(1)]asz — Y; (z € A;j) . (2.32)

n—1
@0 =sign 1_[ ylpc,- (2.33)
i=0

Using the first of conditions (2.1), we obtain in case /\2_1 #1
Tw)AS_ = 1Dyd_| >0ift € [a,0].
From this inequality and the condition (2.2), where i =n —1, it follows that yo Iy () >

0 fort € [a,w][ in case kg_l # 1. Therefore, in this case from (2.33) we have (2.28).
Using the first of conditions (2.5), in case )‘2—1 = 1 we obtain

yool1(t)J(t) > 0ift € [a,0].

From this inequality and the condition (2.6), where i =n —1, it follows that og y,?_l J() >
0fort € [a,w[in case 12_1 = 1. Therefore, J/oy,(,)_lh () > 0fort € [a,w[ and from
(2.33) we have (2.28) in this case.

The equality (2.29) follows from (2.2) incase A0_| # 1. If A% =1 we get (2.29)
due to the second of conditions (2.6).

It is easy to see, thatif i € {1,...,n —1} and

ai _ =Dy —(—i-l) Ay —1 -
agiv1 (m—i—DAS_ —mn—i—=2)  (m—i—-DA_ —(n—i—2)

the next inequality
0
(m—i—DAY_, —(n—i—2)
takes place. By (2.34), the second of conditions (2.1), the definition of the function
7 (¢) and the definition of Y10 we have (2.31).

Let us consider the equality

LOH)  LOT'0 (&, (_L(r)L”(r))
L/(t)Hom‘L/(t)T(z)+(§0(” ’ 1)"”) ooy )

0 (2.34)

Here
ﬂw(t)l(l)(t) if A0 1
LT NGO n-1 71,

LOTO | joyre JOION o
WJ”‘" (I_W) ifA0 =1,
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0ifAY_; #1,
L@L"@) _
(L'(1)? J((Jf}(ft))(é) ifA0_ =1

In case kg_l =1
JW)J (1) _ JOIQ@)
') yoJ L)
So, using the first of conditions (2.1) and the first of conditions (2.5), we have as
ttw

(2.35)

n—1 A0 41Ci .
LOH(t) igo —/\’é)jl_ll [1+o(D]ifAY_; #1, 036
L'(t1)Ho(t) '
yoll +o(D]ifA_, = 1.
The next representation
n—1
o0, if e (t)(A0_;—1) ( > a0i+1c,~) >0oryyJ(t) >0,
i=0

lim Ho(t) =
ttw n—1
0, ifnw(t)(kg_l—l)(z a0i+1c,~) <0orypJ(t) <O.

=0 (2.37)
follows from (2.36) by the type of functions L(z) and Ho(?).

By definition of numbers c;, the inequality yoag;+1¢; > 0 takes place for all i €
{0,...,n — 1}. Therefore, if 12_1 = 1 we obtain (2.30) using (2.37) and (2.2). The
existence of such by € [a,w][ that for any ¢ € [bg, w][ the inequality g (¢)yoJ(¢) > 0
takes place, follows from the first of representations (2.5) in case /\2_1 = 1. This
leads to (2.30) by (2.23).

So, we have (2.27).

Let us introduce the next notations for all i € {0,...,n — 1}

YU(t) = F7H (Ho (). ... Hy1 (1))

From the properties of the funcpion F and the functions Hy,...,H,—_1 it is easy to
see, that for all i € {0,...,n — 1} Y] is continuously differentiable on [tg, w].
Using (2.1), (2.2), (2.5), (2.6) and the transformation of Equation (1.1)

YO0 = YO +z: (0], (2.38)
where
1 if lmL(t) = oo,
tTw

x=pIILOL F=1 _| liTmL(t):O, (2.39)
ttw
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we get the system of differential equations
r__ BLU(x)) —(ylily :
4= Dty Moy O @i+ 2+
AR TENI +z,-+1]]  (i=0,...,n—2)

;L) M e 0 ) (240)
Zn—1—m[G(l(x))jl;[oll+z,| Q;(x,z))
(1) ()

Y= (x))

where

wor) TTo (rVm)

j=0
Y1)

0 (Y (o)l +251)
0; (Y
j =0,...,n—1, t(x) is the inverse function for the function x = B1In|L(¢)].
Then we consider the system (2.40) on the set
2 =[xo,+too[xD,  xo=fBln|me(0)l,

D ={(z1.22) : |zi| <&, i =1,2}.
The system (2.40) can be rewritten as the system

G(t)= . Qjx,zj) =

n—1
Z; = ZAUZ] +R[11](X’ZO,---72n—l) + Rg](X,ZOw--vZn—l)’ i =0,..,n—1,
j=0

where

aop; . .
_/\IBO Ol—i__ll as j :la/\r(')z—l?él,

n—1

ao; . .
A’ﬂo_()ltll as ] =1 + 17 /\2—1 # 1’

n—1

n—1

B as j=i+1,A0_ =1,

0 as j ¢ {i,i + 1},
if i=0,..,n-2,j=0,..,n—1,
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oj .
AO'B j—l as j #n—1,A0_| #1,
n—1
Blon—1—1) ; 0
= 2 asj=n—1,A)_; #1,
Bo; as j #n—1,A9_, =1,

B(on-1—1) asj=n—1A0_ =1,
if j=0,..n—1,

Rgi](x,z(), sZp—1) =

0 asi =0,...,n—2,
n—1 n—1

[Ti+217 =2 05z

Jj=0 j=0

= 1 )0
BOI_ —1) asi=n—1, A, | #1,

1 n—1
(]_[ |14+z;] J—Zajz]) asi=n—1,A%_, =1,
J

j=0

. [i1y/
RO e 2o, 2mt) = L1 4+ 21 (G000i+1 L)) (r(x)))

L'(t(x)Y e (x))
L)Y (x))
L'(t(x)Y e (x))

Rg’_l](x,m, e Zn—1) =

= o [ L)) =
=ﬂj11|1+z,'|- (L,(t(x))ca(x)) JE)QJ(X’ZJ')—l +

+,3[1+Zi+1]( —G000i+1) asi =0,...n—2,

L) _ L)Y @)
+L/(I(X)) G(Z(X)) GO) + ( L’(t(x))Y[n_l](t(x)) G()) (1 +Zn—1)
1 0
0 asA,_; # 1,
GO — An—l -1
1if A9 =1.

It is clear that

1 R[l](x ZO? ’Zn 1)
|zol+...lzn—11>0 [Zo| + ... + [Zn—1]
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uniformly on x € [xg, +00[.
To prove that

lim RY(x,20,...20-1) =0 (i =0,...,n—1) (2.42)

x—>400

uniformly on (zg,...,Zn—1) € D, we have to prove that for all j € {0,...,n —2}

L)Yy LYV
im—— ) — Goagj 11, lm—— 2 = Goagj+1.  (2.43)

o L'(t)YU1(1) o L'(1)YUl(2)

L(®)G(1)
=7 6 2.44
e L) 0 244)
and for alli € {0,...,n—1}
0 (YW1 +21) 1

lim =1, uniformly for |z;] < 5 (2.45)

) 6; (Y[i](l))

Let us show at first that for all i € {0,...,n —1}

}1& Y@ =v,. (2.46)
The inequality
Yi)o/(rir)) ol
o) 7| " 8mn

forall ¢ € [ty,w) follows from (2.27) and the definition of the set A. By this inequality
for ¢t € [tg, w[ we have

ol _YHOSx@)  pl

8mn ' @; (Ylil(r)) 8mn

From (2.47), (2.36), (2.35), the first of conditions (2.2), the first of conditions (2.6)
and the equalities

+cj, (2.47)

L(t) (Y["](t))t & L(OH ()

LoOYie kzompik(l), (2.48)
, Lif Ay # 1,
Lo _ L
L/(I)Hj(t) B M_lifko_l — 1’ J=1..

(J' (1))
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where foralli € {0,...,n—1}, k€ {l,....n—1}

! YU 0o )
N i —l Pl
T MR ,Zo @, (U0))

@ (YUl(r))

Pio(t) =

Jj=0

—1lifi <k-1,

~
o~
|

Oifi >k—1,

- L+ ¢ — ao ci =
K, Vo(ln —DiZo

Jj=0

=—\n—i—1+-- l7cj — aoc
Yo J kK (An 1—1) =0 o

- (2.49)

it follows that for every i € {0, 1} there exist constants k ,k’l € R such that

. . sign(aoi+1(Ao—1)) if)‘g—l # 1,
signk{ =signkj = 10
Lif A0, =1,

and the number #, € [t1,®][ such that
[1(ry)
KL'() _ (Y (7 )) _kLO
L(t) Ylil(@) L(t)
By integrating this inequality on [t,,#] we will get

fort € [t2,w].

L@

k
n——H ‘Y[’](tz)‘<ln‘Y[’](t)‘<l e
|L(t2)|*1

+In ‘Y[i](tz)‘ .
From (2.27) and one to one property of F it is clear, that signY[i](t) = signy? for
every i €{0,...,n—1}. So, we have (2.46).

The representation (2.45) follows from (2.46) M3 and My.
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By the definition of yll (i=0,..,n-2)
FYOl @), .Y U@)) = (Ho(t),.... Hu—1(1)) Vi€ [t2,0].

Therefore

YU+ .
YT(Z‘):Hi+1([) Vi =O,...,n—2.
S0 agi+1 0
. o e if A 1,
L(I)Y[l+1](l) B ’\n =1 A1 #
L)Yl —

1if A%, =1
and we have the second of representations (2.43). By (2.46), (2.48) and (2.24), we
have

ifAd_ | #1,

ooy | N (15 +ﬂ
o L)Y () Pl R Ol Nl R VYPE )

1ifAY_; = 1.
We get the first of representations (2.43), using the equality (2.49).
By virtue of (2.32), we have the asymptotic representation

n—1 X 0;TC;j
cop®) T1 [Y0) " 1+ 0(1)
G(f) = ln=_01 n—1 ast T @
Ylr=1(r) T & (Y1) ] cisigny?
i=0 i=0

From this representation and the equalities

gi+ci g;+ci

"y v ()
aop(@) I1 Y1) a0p(®) 1 \Y[n o
i=0

n—1 n—1 ’
Yin=1@) 1 @ (Y[i](t)) I1 c,'signylp Hy(t) ]_[ cisigny?signy,?_l
i=0 i=0 i=0

n—2 n—2

vl 2 vyWe) !
v~ v =556
it follows that as t 1

Locn |l UemITEL £

o | nomsoe

m[l +o()]ifA_, = 1.
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This leads to (2.44) by the first of conditions (2.1) and the first of conditions (2.5).
So, (2.42) takes place.

Equation (2.3) is the characteristic equation for the matrix of coefficients of linear
part of system (2.41) in case Ag_l # 1. Equation (2.7) is the characteristic equation
for this matrix in case Ag_l = 1. By Conditions of Theorems 1 and 2 these equations
have no roots with zero real part. Therefore all conditions of Theorem 2.2 from [9]
are satisfied for system (2.41). By this Theorem the system (2.40) has at least one
solution {z; }?Z3 : [x1,4+00[—> R" (x1 > xo), that follows to zero as x — +0c. So,
due to (2.38), (2.39) and the equality

Fi (YO0, ¥ V@), . Y0 0) = Hi).

we get that Equation (1.1) has at least one solution y that admits the next asymptotic
representations as ¢ 1
T o Q)
[[2 0P @) =Ho®[1+o()], ~imn = HiO+o(D]. i=0...n-2.
j=0 Y

(2.50)
By (2.19) and the second of representations (2.50), the first of representations (2.50)
can be rewritten like the first of representations (2.4) in case kg_l # 1. In case
)Lg_l = 1 let us rewrite the first of representations (2.50) like the first of represent-
ations (2.8). If )‘2—1 = 1 we rewrite the second of representations (2.50) like the
second of representations (2.8). By these representations and (1.1) it is clear that y is
apP, ()Lg_l)—solution of (1.1). The Theorems 1 and 2 are proved.

Proof of Corollaries 1, 2. Let y : [tg,w[— Ay, be a Py, ()L?l_l)—solution of Equa-
tion (1.1), where A9_, € R\ {0%%% . It follows from (2.9), that in case
)‘2—1 # 1 the function y)(¢) is regularly varying of the index ﬁ. Then, by
M, using the condition S, from the first of representations (2.4) ';ve get the first of
representations in Corollary 1.

In case )&2_1 = 1 it follows from (2.18), that for all i € {0,...n —1}

lim - = 7
ttw yD (1) ttw J' (1)

J()

(@) !
y) 1
J LA AN [
yD@y I

_ Oy
=lim —— —
tto J'(1)y P (@)
So, the next representation

YD) = 1J@O)|L(I(@)]y)signy?,
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where the function L(z) is slowly varying as z — Y;, takes place for all ¢ € [tg, w|.
Then, by M1, using the condition S, we get from the first of representations (2.8) the
first of representations in Corollary 2.

The second representations in Corollary 1 are the second of representations (2.4).
The second representations in Corollary 2 are the second of representations (2.8).
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