
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No 3, pp. 1067-1084 DOI: 10.18514/MMN.2013.486

On the numerical solution of generalized

nonlinear Schrodinger equation using RBFS

Marjan Uddin and Sirajul Haq



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No. 3, pp. 1067–1084

ON THE NUMERICAL SOLUTION OF GENERALIZED
NONLINEAR SCHRODINGER EQUATION USING RBFS

MARJAN UDDIN AND SIRAJUL HAQ

Received 21 February, 2012

Abstract. A meshfree technique based on radial basis functions (RBFs) is applied for the nume-
rical solution of generalized nonlinear Schrodinger equation. The spatial derivatives are appro-
ximated by using the derivative of interpolation and a low order forward scheme is used to app-
roximate the temporal derivative. Three test problems concerning the motion of solitary wave,
interaction of two solitary waves and solution that blows up in finite time respectively are in-
vestigated, which examined the accuracy of the method in terms of the L2, L1 error norms, and
the conservative quantities, I1, I2 and I3 . The results obtained from the method are compared
with the exact solution and the earlier work in the literature.
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1. INTRODUCTION

The generalized nonlinear Schrodinger (GNS) equation given by
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(1.1)
where i D

p
�1, w is a complex valued function of the spatial coordinate x and time

t , the parameters q1, q2, q3 and q4 are real constants. The general solution of Eq.
(1.1) does not belong to the class of integrable equations. However some cases of
Eq. (1.1) are completely integrable, and has application in fluid mechanics, nonlinear
optics and plasma physics (see [21, 22] and references therein). For the coefficients
q1 ¤ 0; q2 ¤ 0 and q3 D q4 D 0 Eq. (1.1) reduces to nonlinear Schrodinger (NS)
Equation. For certain values of the coefficients and some initial condition the solution
of GNS equation experience finite time blow up [21]. Under the assumption that the
solution jwj ! 0 as jxj !1 GNS equation possess infinite number of conservation
laws. However, rapidly decaying solution to Eq. (1.1) have three conservative laws
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[21, 22] given by
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Although the GNS equation has been studied by many researchers (see [1, 12] and
references therein), only a few numerical methods have been applied to solve the
GNS equation. D. Pathria and J. LI. Morris [22] used the pseudo-spectral methods
to obtain the solution of GNS equation, and discussed some of its properties, M. P.
Robinson [23] used orthogonal spline collocation method for numerical solution of
GNS equation. In some numerical studies of GNS equation the contribution from the
nonlinear derivatives have been ignored [3, 4, 24]. More recently G. M. Muslu and
H. A. Erbay [19] have been used Higher-order split-step method for the solution of
GNS equation.

In the last decade, the theory of radial basis functions (RBFs) has enjoyed a great
success as scattered data interpolating technique. A radial basis function, �.x�xj /D

�.k x�xj k/, is a continuous spline which depends upon the separation distances of a
subset of data centers, X �<n, fxj � X;j D 1;2; :::;N g. Due to spherical symmetry
about the centers xj , the RBFs are called radial. The distances, kx�xj k, are usually
taken to be the Euclidean metric. Hardy [11] was the first to introduced a general
scattered data interpolation method, called radial basis functions method for the app-
roximation of two-dimensional geographical surfaces. In 1982 Franke [8] in a review
paper made the comparison among all the interpolation methods for scattered data
sets available at that time, and the radial basis functions outperformed all the other
methods regarding efficiency, stability and ease of implementations. Franke found
that Hardy’s multiquadrics (MQ) were ranked the best in accuracy, followed by thin
plate splines (TPS). Despite MQ’s excellent performance, it contains a shape para-
meter c, and the accuracy of MQ is greatly affected by the choice of shape parameter
c whose optimal value is still unknown. Franke[7] used the formula c2 D .1:25/2d2

where d is the mean distance from each data point to its nearest neighbor. Hickernell
and Hon [13] and Golberg et al. [9] had successfully used the technique of cross-
validation to obtain an optimal value of the shape parameter. In 1990 radial basis
functions scheme was introduced by Kansa [14] to solve partial differential equa-
tions. The existence, uniqueness and convergence of this method was discussed by
Micchelli [18], Madych [17], Frank and Schaback [6]. It was studied by Micchelli in
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1986 that for distinct interpolation points system obtained in multiquadric (MQ) met-
hod is always solvable. Very recently RBFs method have been used for the solutions
of nonlinear PDEs (see [10,25,26]). Nicolas ali libre et.al [16] have used an adaptive
scheme for nearly singular PDEs, Emdadi et. al [5] proposed a stable PDE solution
method for large multiquadric shape parameters whereas a modified meshless control
volume method was proposed by P. Orsini, H. Power [20]. G. Kosec and B. Sarler
[15] have used local RBF collocation method for Darcy flow. S.N. Atluri et.al [2]
have developed a meshless finite volume method through MLPG mixed approach.
The RBFs scheme is truly a meshfree method which does not require the genera-
tion of a mesh, and since the MQ is infinitely differentiable, we can approximate
the higher order spatial derivative directly by computing the derivative of the basis
functions. However the RBFs method faces a serious ill-conditioning problem when
we use RBFs as a global interplant and increases the number of collocation points.
There are different ways to overcome this problem e.g to use domain decomposition
technique.

In this work, we apply meshfree collocation method based on three radial basis
functions, MQ

p
r2C c2 where c is a shape parameter, Spline basis (r5) and TPS

(r4log.r/) for the numerical solution of generalized nonlinear Schrodinger (GNS)
equation. GNS equation has an exact traveling solitary wave solution [19]
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This solitary wave is centered at x0 D 15 and moving to the right with the velocity 2.
To avoid complex computation, we transform the GNS equation (1.1) into a non-

linear coupled equations, by decomposing w into its real and imaginary parts,

w.x; t/D u.x; t/C iv.x; t/; i2 D�1; (1.7)

where u.x; t/ and v.x; t/ are real functions. As a result we obtained the following
coupled pair of equations
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The structure of the present paper is organized as follows. In Section 2 we discuss
the meshfree method. In Section 3 we deal the stability analysis. Section 4 is devoted
to the numerical tests of the method on the problems related to the GNS equation. In
Section 5, the results are concluded.

2. ANALYSIS OF THE METHOD

In this section, we consider a general time dependent boundary value problem

@u

@t
CLuD f .x; t/; x 2˝;; BuD g.x/; x 2 @˝; (2.1)

where L and B are derivative and boundary operators respectively. ˝ and @˝ rep-
resent interior and boundary of the domain respectively. Eq. (2.1) has to be supple-
mented by initial condition of the form u.x;0/D u0.x/. We use � -weighted scheme
for temporal derivative in the following form

u.nC1/�u.n/

ıt
C�Lu.nC1/

C .1��/Lu.n/
D f .x; t .nC1//: (2.2)

In the above equation ıt is the time step, u.n/ (n is non-negative integer) is the so-
lution at time t .n/ D n ıt , 0 � � � 1. Let fxig

Nd

iD1 and fxig
N
iDNdC1 be respectively

interior and boundary points among the collocation points fxig
N
iD1 in the domain.

The solution of Eq. (2.1) can be approximated by
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In the above eqution  .rij / are radial basis functions with Euclidean norm rij D

kPi �Pj k between the points Pi and Pj , f�j g
N
jD1 are constants to be determined.

From Eqs. (2.2) and (2.3), we can write
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where rij D kPi �Pj k. Eqs (2.4)-(2.5) are N equations in N unkhown f�j g
N
jD1,

which can be solved by using Gauss elimination method. We use � D 0:5 in our
work.
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2.1. GNS equation

The decomposed form of GNS equation can be written as

ut C .2q3Cq4/u
2ux D�vxx �q1.u
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Cv2/v (2.6)
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where q1, q2, q3 and q4 are real constants.
The boundary conditions are

u.a; t/D f1.a; t/;u.b; t/D f2.b; t/; (2.8)

v.a; t/D g1.a; t/;v.b; t/D g2.b; t/; t > 0;

and initial conditions

u.x;0/D f .x;0/; v.x;0/D g.x;0/ a � x � b: (2.9)

From Eqs. (2.6), we can write
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where t .nC1/ D t .n/C ıt . Rearanging Eqs. (2.10)-(2.11), and substituting the line-
arised values of the nonlinear terms .u2ux/

.nC1/ and .v2vx/
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we get the following equations

u.nC1/
C .3q3Cq4/ıt�Œ.u

2/.n/u.nC1/
x C2.u.n/u.n/

x /u.nC1/� (2.14)

D u.n/
C2.3q3Cq4/ıt�.u

2ux/
.n/
� .3q3Cq4/ıt.1��/.u

2ux/
.n/

C ıt Œ�.vxx/
.n/
�q1..u

2/.n/
C .v2/.n//v.n/

�q2..u
2/.n/

C .v2/.n//2v.n/
�2q3.uvvx/

.n/
�q4.v

2ux/
.n/�;

v.nC1/
C .3q3Cq4/ıt�Œ.v

2/.n/v.nC1/
x C2.v.n/v.n/

x /v.nC1/� (2.15)



1072 MARJAN UDDIN AND SIRAJUL HAQ
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The RBFs approximations for the solutions u and v of Eqs. .2:6/ are given by
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In more compact form we can write Eqs. (2.17)-(2.18) as
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Eq. (2.16) can be written in matrix form as

u.n/
D A�.n/

1 ; v.n/
D A�.n/

2 : (2.21)

Using Eq.(2.19) in Eq. (2.21), we get
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1 F.nC1/; (2.22)
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2 N2A�1v.n/
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2 G.nC1/:

From here we can find the solution at any time level n.

3. STABILITY OF THE SCHEME

In this section, we discuss the stability analysis of the scheme (2.22), by using
spectral norm of the amplification matrix. We assume that u, v be the numerical and
u�, v� be the exact solutions of Eqs. (2.6). The error vectors ".n/

i .i D 1;2/ are
defined by ".n/

1 D u.n/�u�.n/, ".n/
2 D v.n/�v�.n/. Putting values from Eq. (2.22) in

these equations, we arrive at the following equations
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1 ; (3.1)

"
.nC1/
2 D v.nC1/
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2 N2A�1"
.n/
2 D E2"

.n/
2 ;

where E1 D AM�1
1 N1A�1 and E2 D AM�1

2 N2A�1 are the amplification matrices.
For the scheme to remain stable, ".n/

i must approach to zero, .i D 1;2/ as n �!1
i:e �.E1/ � 1, �.E2/ � 1, which is a condition of stability, where �.E1/ and �.E2/
represent spectral radii of the matrices E1 and E2 respectively.
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TABLE 1. Spectral radii �.E1/ and �.E2/ for various values of MQ
shape parameter c, at time t D 0:2, when time step size ıt=0.0001,
spatial step size ıx =0.4, number of nodes N=201, spatial interval [-
5,45], q1 D

1
2

, q2 D
�7
4

, q3 D�1, q4 D�2, corresponding to Prob-
lem 1.

c �.E1/ �.E2/
0.10 1.00025 1.00038
0.20 1.00035 1.00043
0.30 1.00038 1.00032
0.40 1.00000 1.00032
0.50 1.00039 1.00034
0.80 1.00040 1.00035
0.90 1.00040 1.00036
1.50 1.00038 1.00038
2.00 1.00052 1.00164
2.50 1.00646 1.08955
3.00 3.34593 4.09048
3.30 46874.5 16416.02

TABLE 2. Conserved quantities I1, I2 and I3 for various values of
MQ shape parameter c, at time t D 0:2, when time step size ıt D
0:0001, spatial step size ıx D 0:4, number of nodes N=201, spatial
interval [-5,45], q1D

1
2

, q2D
�7
4

, q3D�1, q4D�2, corresponding
to problem 1.

c I1 I2 I3 L2

0.10 2.189675 2.435363 -5.569890 6.60587E-002
0.20 2.194867 2.570123 -5.732372 9.24601E-003
0.30 2.196505 2.673238 -5.823594 1.99296E-003
0.40 2.197113 2.722172 -5.862737 4.17283E-004
0.50 2.197341 2.742960 -5.878324 6.90097E-005
0.80 2.197476 2.756321 -5.887649 9.76190E-005
0.90 2.197482 2.756920 -5.888028 1.24626E-004
1.50 2.197488 2.757416 -5.888330 1.72375E-004
2.00 2.197489 2.757430 -5.888339 1.77317E-004
2.50 2.197489 2.757432 -5.888341 1.87258E-004
3.00 2.197487 2.757434 -5.888338 2.46310E-004
3.30 2.197487 2.757440 -5.888344 7.55716E-004
3.40 2.197467 2.757423 -5.888275 1.61953E-003
3.50 2.197461 2.757449 -5.888238 3.22212E-003
3.60 2.197450 2.757574 -5.888219 7.13120E-003
3.70 2.197212 2.759948 -5.887675 1.73985E-002
3.80 2.197143 2.855818 -5.886441 7.13152E-002
3.90 7.985062 9815.303 -28.67049 2.02353E+001
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FIGURE 1. Plots, show L2 error norms, versus N (Number of no-
des), and temporal step size ıt , at time t D 0:2, time step size
ıt D 0:0001, spatial step size ıx D 0:4, number of nodes N=201,
spatial interval [-5,45], q1D

1
2

, q2D
�7
4

, q3D�1, q4D�2, corres-
ponding to Problem 1.

4. NUMERICAL EXAMPLES

In this section, we apply the proposed method for the numerical solution of GNS
equation. The accuracy of the meshfree method is tested in terms of the three in-
variants of GNS equation given in Eq. (1.2) and the error norms L2, L1 defined
as

L2 D kw
�
�wk2 D

24ıx NX
jD1

.w��w/2

351=2

; (4.1)

L1 D kw
�
�wk1 Dmaxj

ˇ̌
w��w

ˇ̌
:

The tested problems are given below.
Problem 1: Single soliton
We consider GNS equation (1.1) and choose the initial condition from the exact so-
lution (1.5)

w.x;0/D

�
4

4C3 sinh2.x�15/

�1=2

exp Œi�.x;0/�: (4.2)

�.x;0/D 2 tanh�1

�
1

2
tanh.x�15/

�
Cx�15

In this problem the solution of GNS Eq. (1.1) represents a solitary wave initially
centered at x0 D 15 . The exact values of the three invariants are I1 D 2 log3,
I2 D�3=2C3:875 log3 and I3 D 4�9 log3, respectively.
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We solved the problem on the spatial interval, �20 � x � 60 and the time interval
Œ0;3�, using three radial basis function, MQ, r5 and TPS. The L2, L1 error norms
and the three invariants of motion I1, I2 and I3 are presented in Table 3. We observe
that better results are obtained, when MQ is used as compared to spline basis r5 and
TPS, and all the three invariants are very well preserved.
In Fig. 2(A), The relation between L2 error norm and the number of collocation
points N , for fixed value of the time step ıt D 0:0001, is presented. We observed
that the solution converges for the choice of the nodes between, N D 40 to N D 180.
In Fig. 2(B), L2 error norm for various values of time step ıt , and for fixed value of
N D 201 is shown.
In Fig. 3(A)-3(B), motion of the solitary wave is shown. The soliton, which is initi-
ally centered at x0D 15, moves from left to right, with constant speed and amplitude.
Hence the motion of solitary wave is well resolved by the present method. For the
purpose of comparison, we presented the three invariants, I1, I2, I3 and L2 error
norm, in Table 4. In this case, we chose constants q1 D

1
2
; q2 D

�7
4
; q3 D�1; q4 D

�2, spatial interval �5 � x � 45, and time interval Œ0;3�. Table 4, show that the
present method preserved all the three invariants, when all the three radial basis func-
tions are used, and are agreed with results obtained by orthogonal spline collocation
method [23], however the present method conserved the second invariant I2 more
accurately than orthogonal spline collocation method [23]. In case of L2 error norm,
MQ radial basis function shown better accuracy than orthogonal spline collocation
method [23].
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TABLE 3. Error norms and Invariants for single soliton jwj, when
time step size ıt D 0:0001, spatial step size ıx D 0:4, number of
nodesN D 201, spatial interval [-20,60], q1D

1
2

, q2D
�7
4

, q3D�1,
q4 D �2, and MQ shape parameters c1 D c2 D 2, corresponding to
the Problem 1.

MQ r5 TPS
t L1 L2 L1 L2 L1 L2

0.0001 1.55e-04 5.58e-08 1.55E-04 6.03E-07 1.55E-04 2.93E-06
0.2 2.45e-04 1.80e-04 7.60E-03 1.59E-04 2.10E-02 4.08E-04
0.4 2.34e-04 3.70e-04 1.18E-02 3.61E-04 3.46E-02 2.44E-03
0.6 4.24e-04 8.09e-04 1.37E-02 2.17E-03 4.15E-02 1.10E-02
0.8 3.50E-04 1.74E-03 1.54E-02 8.02E-03 4.84E-02 3.04E-02
1.0 4.62E-04 2.54E-03 1.68E-02 1.60E-02 5.60E-02 5.91E-02

MQ r5

I1 I2 I3 I1 I2 I3

0.0001 2.1972 2.7571 -5.8875 2.1972 2.7528 -5.8852
0.6 2.1980 2.7580 -5.8900 2.1979 2.7562 -5.8883
1.0 2.1986 2.7587 -5.8917 2.1984 2.7570 -5.8900
1.6 2.1994 2.7596 -5.8942 2.1992 2.7580 -5.8925
2.0 2.1999 2.7602 -5.8959 2.1997 2.7585 -5.8942
2.6 2.2007 2.7611 -5.8984 2.2005 2.7593 -5.8966
3.0 2.2012 2.7617 -5.9001 2.2010 2.7598 -5.8982

TABLE 4. Invariants andL2 error norm for Single soliton, time step
size ıt D 0:0001, spatial step size ıx D 0:4, number of nodes N D
126, spatial interval Œ�5;45�, q1 D

1
2

, q2 D
�7
4

, q3 D�1, q4 D�2,
and MQ shape parameters c1D c2D 2, corresponding to Problem 1.

t I1 I2 I3 L2

MQ
0 2.197225 2.757123 -5.887504 5.837E-011
1 2.198555 2.758655 -5.891696 1.837E-003
2 2.199890 2.760191 -5.895901 3.842E-003
3 2.201225 2.761726 -5.900107 5.691E-003

TPS
0 2.197225 2.742761 -5.879475 1.797E-005
1 2.197724 2.761787 -5.888847 5.841E-002
2 2.200530 2.797950 -5.880088 3.963E-001
3 2.206579 2.854238 -5.848961 6.603E-001

r5

0 2.197225 2.752753 -5.885190 3.032E-008
1 2.198397 2.757003 -5.890038 1.557E-002
2 2.199696 2.758516 -5.894150 6.436E-002
3 2.201017 2.759837 -5.898085 9.878E-002

OSC [23]
0 2.190546 2.861766 -5.873885 1.451E-002
1 2.192070 2.917542 -5.881301 1.837E-002
2 2.192500 2.970853 -5.882713 2.320E-002
3 2.193853 3.242514 -5.881409 3.390E-002
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FIGURE 2. Motion of solitary wave jwj, for time step size ıt D
0:0001, spatial step size ıxD 0:4, number of nodesN D 201, spatial
interval Œ�20;60�, q1 D

1
2

, q2 D
�7
4

, q3 D �1, q4 D �2, and MQ
shape parameters c1 D c2 D 2, corresponding to problem 1.

Problem 2: Blow-up
Here we present a test problem for the GNS equation. In [21] it has been shown
that the exact solution of GNS will blow up in finite time for some specific values of
the coefficients q1 D �2; q2 D 20; q3 D q4 D 0 and the Gaussian initial condition
w.x;0/ D e�x2

. For this problem the exact values of the three invariants are I1 Dp
�=2� 1:253, I2 D

p
�.9
p
2C9�20

p
6/=18��2:684, and I3 D 0. We applied

two radial basis functions for the solution of the problem on the interval Œ�7:5;7:5� for
time up to t D 0:075. The numerical values of the three invariants I1, I2, I3 and the
maximum modulus of the approximate solution jw.x;0/j, for each time t, are shown
in Table 5 and Fig. 4. The same problem has also been investigated numerically by
G.M. Muslu [19] using Higher-order split-step Fourier method, and M. P. Robinson
[23] using an orthogonal spline collocation method. The results obtained by these
methods are given in Table 5. From the comparison, we observed that the results
obtained by these different methods, about the predicted time of blow up are fully
consistent, which show accuracy and correctness of these methods. By the present
method the blowup is quite evident near the time t=0.08, and quite consistent with the
results obtained in [23] and [19]. This blowup is accompanied by a radical change
in the three invariants I1, I2 and I3, and the maximum modulus of the approximate
solution jw.x;0/j, however I2 changes more rapidly as compared to I1 and I3.
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TABLE 5. Variation of invariants and jw.0; t/j in case of blow-up,
time step size ıt D 0:0001, spatial step size ıx D 0:1, number of
nodesN D 151, spatial interval [-7.5,7.5], q1D�2, q2D 20, q3D 0,
q4 D 0, and MQ shape parameters c1 D c2 D 0:1, corresponding to
Problem 2.

t I1 I2 I3 jw.0; t/j

MQ
0.0 1.253314 -2.684666 0.000000 1.000000
0.01 1.253453 -2.687043 0.000000 1.007541
0.06 1.255209 -3.210414 0.000000 1.527028
0.07 1.267249 -34.599645 -0.000000 2.316339
0.75 1.613581 -500.855311 0.000000 3.115970
r5

0.0 1.253314 -2.684467 0.000000 1.000000
0.01 1.253454 -2.685862 0.000000 1.007411
0.06 1.255197 -2.892629 0.000000 1.526226
0.07 1.267809 -26.934744 0.000008 2.325083

0.075 1.582609 -412.744272 0.000001 3.046048
OSC [23]

0.00 1.253314 -2.684467 0.000000 1.000000
0.01 1.253154 -2.682892 0.303(-13) 1.007286
0.06 1.253098 -2.681302 -0.864(-09) 1.525606
0.07 1.252911 -2.566558 0.220(-09) 2.368234
0.08 1.244698 34.08543 -0.675(-03) 3.856267

SFS [19]
0.00 1.253314 -2.684467 -9.993(-17) 1.000000
0.01 1.253314 -2.684467 -6.651(-13) 1.007348
0.06 1.253314 -2.684467 -4.673(-12) 1.526243
0.07 1.253314 -2.684448 -4.395(-12) 2.376429
0.08 1.253335 -2.829258 -6.085(-10) 3.430374
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FIGURE 3. Graph of jw.0; t/j, at time t D 0:01; 0:06; 0:07; 0:75 in
case of blow-up, time step size ıt D 0:0001, spatial step size ıx D
0:1, number of nodes N D 151, spatial interval [-7.5,7.5], q1 D�2,
q2 D 20, q3 D 0, q4 D 0, and MQ shape parameters c1 D c2 D 0:1,
corresponding to Problem 2.
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Problem 3: Two soliton interaction
Here we consider the interaction of two solitary waves, with the initial condition of
the form

w.x;0/D 1=
p
2 sech

�
1

2
.x�x1/

�
exp i

�
1

4
.x�x1/C tanh.

1

2
.x�x1//

�
(4.3)

C1=2
p
2 sech

�
�
1

4
.x�x2/

�
exp i

�
�
1

2
.x�x2/C

1

2
tanh.

1

4
.x�x2//

�
:

This equation corresponds to sum of two solitary waves, the one initially located at
x1 D 15, while the other initially located at x2 D 35 and moving in opposite direc-
tions. The problem is solved on the interval �60� x � 110, for up to time t D 30 by
the meshfree method. For q1D 1; q2D 1, q3D�2 and q4D 0, the interaction profile
is shown in Fig. 6. We note that the two waves moves toward each other, collides
with each other, and then moves away from each other as the time increases. We see
that interaction, is consistent with [19]. The numerical values of the three invariants
for this interaction of two waves up to time t D 30 are presented in Table 5, by using
two radial basis functions MQ and r5. We can see that all the three invariants are pre-
served, and this behavior of the conserved quantity is a handy check on the accuracy
of the present method.

5. CONCLUDING REMARKS

In this paper, a meshfree interpolation method using different types of RBFs is
applied for the numerical solution of GNS equation. The method have shown ex-
cellent agreement with exact solution and the earlier work [19, 23]. As a whole the
present method produces better results with ease of implementation. The technique
used in this paper provides an efficient alternative for the solution of nonlinear partial
differential equations.

TABLE 6. Invariants for two soliton, ıt D 0:0001;ıx D 1;N D

171; Œ�60;110�;q1 D 1; q2 D 1; q3 D �2; q4 D 0, and MQ shape
parameters c1 D c2 D 2, corresponding to Problem 3.

MQ r5

t I1 I2 I3 I1 I2 I3

0.0001 3.00168 0.44296 -0.75434 3.00168 0.44098 -0.75159
5 3.00180 0.44299 -0.75439 2.99974 0.44584 -0.75614
10 3.00188 0.44303 -0.75438 3.00073 0.44727 -0.75390
15 3.00197 0.44308 -0.75432 2.99976 0.44765 -0.75673
20 3.00107 0.44314 -0.75423 2.99979 0.44769 -0.75648
25 3.00214 0.44319 -0.75427 2.99989 0.44768 -0.75589
30 3.00224 0.44326 -0.75441 3.00008 0.44768 -0.75501
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